Supplemental information

Whole genome sequencing for *USH2A*-associated

disease reveals several pathogenic deep-intronic

variants that are amenable to splice correction

Janine Reurink, Nicole Weisschuh, Alejandro Garanto, Adrian Dockery, L. Ingeborgh van den Born, Isabelle Fajardy, Lonneke Haer-Wigman, Susanne Kohl, Bernd Wissinger, G. Jane Farrar, Tamar Ben-Yosef, Fatma Kivrak Pfiffner, Wolfgang Berger, Marianna E. Weener, Lubica Dudakova, Petra Liskova, Dror Sharon, Manar Salameh, Ashley Offenheim, Elise Heon, Giorgia Girotto, Paolo Gasparini, Anna Morgan, Arthur A. Bergen, Jacoline B. ten Brink, Caroline C.W. Klaver, Lisbeth Tranebjærg, Nanna D. Rendtorff, Sascha Vermeer, Jeroen J. Smits, Ronald J.E. Pennings, Marco Aben, Jaap Oostrik, Galuh D.N. Astuti, Jordi Corominas Galbany, Hester Y. Kroes, Milan Phan, Wendy A.G. van Zelst-Stams, Alberta A.H.J. Thiadens, Joke B.G.M. Verheij, Mary J. van Schooneveld, Suzanne E. de Bruijn, Catherina H.Z. Li, Carel B. Hoyng, Christian Gilissen, Lisenka E.L.M. Vissers, Frans P.M. Cremers, Hannie Kremer, Erwin van Wijk, and Susanne Roosing

Table of Contents

Figure S1: Effects on pre-mRNA splicing observed in minigene splice assays for thirteen variants 2
Figure S2: Position of antisense oligonucleotides (AONs) and 3 nucleotide mismatch AONs (3ntMM AONs) relative to their targets
Figure S3: Differentiation efficiency of patient-derived photoreceptor precursor cells (PPCs)
Table S1: Pre-screening methods of all samples 6
Table S2: All genes associated with Usher(-like) syndrome and autosomal recessive retinitispigmentosa that were assessed in genome sequencing data of 100 cases9
Table S3: Sequences of primers used to generate constructs for the minigene splice assays
Table S4: Sequences of primers used in qPCR. 11
Table S5*: All USH2A variants that met our variant inclusion criteria in 100 cases.
Table S6*: All USH2A variants with a predicted effect on splicing
Table S7: Overview of observed effects on pre-mRNA splicing and consequences on protein level of21 variants that were tested with minigene splice assays.14
Table S8: Characteristics of all oligonucleotides designed in this study 15
Supplemental references

* Table S5 and Table S6 are separate excel files

Figure S1: Effects on pre-mRNA splicing observed in minigene splice assays for thirteen variants.

Thirteen of the 21 tested variants revealed differences in pre-mRNA splicing between mutant (M) and wildtype (WT) constructs in our minigene splice assays. The effects observed after RT-PCR are shown as well as a schematic representation of these effects including the *RHO* exons 3 and 5 that are flanking the *USH2A* genomic region cloned in the minigene. Splice predictions were obtained with SpliceAI. nt: nucleotides PE: pseudoexon

Figure S2: Position of antisense oligonucleotides (AONs) and 3 nucleotide mismatch AONs (3ntMM AONs) relative to their targets.

AONs were designed complementary to the splice sites or exonic splice enhancers of each specific pseudoexon (PE). The sequence of each AON is shown in green, 3ntMM AONs are in black with mismatches in red. The PE sequences that are incorporated in the mature *USH2A* transcript as a consequence of the identified deep-intronic variants are depicted in black, intronic sequences are in grey and the identified genetic variants are indicated in red. The bars above the sequences represent different types of putative exonic splice enhancers based on predictions from the ESEfinder tool¹ accessed from Alamut Visual Plus v1.4.

Figure S3: Differentiation efficiency of patient-derived photoreceptor precursor cells (PPCs). Expression of several neuronal progenitor, photoreceptor and retinal pigment epithelium markers (*CRX, OPN1SW, OTX2, PAX6, RCVRN, RPE65, VDM2*) as well as expression of *USH2A* and a pluripotency marker (*NANOG*) were determined with RT-qPCR in induced pluripotent stem cells (iPSCs) and compared PPCs after 30 days of differentiation. Expression was normalized against *GUSB* and compared to the corresponding iPSC line at the start of differentiation (day 0) using "delta delta Ct". As expected, pluripotency markers decreased while most of the other markers showed an increased. These data indicate that the differentiation of iPSCs towards PPCs was successful for both cell lines.

Table S1: Pre-screening methods of all samples

Study ID	Causal gene	Status of proband	Pre-screening		
arRP1	USH2A	Possibly solved	Molecular inversion probe based sequencing		
arRP2	-	Unsolved	Molecular inversion probe based sequencing		
arRP3	-	Unsolved	Molecular inversion probe based sequencing		
arRP4	PQLC2	Solved	Molecular inversion probe based sequencing		
arRP5	-	Unsolved	Whole exome sequencing		
arRP6	EYS	Possibly solved	Whole exome sequencing		
arRP7	-	Unsolved	Whole exome sequencing		
arRP8	USH2A	Possibly solved	Whole exome sequencing		
arRP9	-	Unsolved	Whole exome sequencing		
arRP10	USH2A	Possibly solved	Whole exome sequencing		
arRP11	USH2A	Solved	Target 5000 sequencing		
arRP12	-	Unsolved	Target 5000 sequencing		
arRP13	-	Unsolved	Target 5000 sequencing		
arRP14	-	Unsolved	Target 5000 sequencing		
arRP15	-	Unsolved	Whole exome sequencing		
arRP16	-	Unsolved	Whole exome sequencing		
arRP17	-	Unsolved	Targeted sequencing		
arRP18	-	Unsolved	Target 5000 sequencing		
arRP19	USH2A	Solved	Molecular inversion probe based sequencing		
arRP20	USH2A	Solved	Molecular inversion probe based sequencing		
arRP21	USH2A	Possibly solved	Molecular inversion probe based sequencing		
arRP22	USH2A	Solved	Molecular inversion probe based sequencing		
arRP23	-	Unsolved	Molecular inversion probe based sequencing		
arRP24	USH2A	Possibly solved	Molecular inversion probe based sequencing		
arRP25	-	Unsolved	Molecular inversion probe based sequencing		
arRP26	USH2A	Solved	Molecular inversion probe based sequencing		
arRP27	-	Unsolved	Molecular inversion probe based sequencing		
arRP28	-	Unsolved	Cegat panel sequencing		
arRP29	PROM1	Possibly solved	Cegat panel sequencing		
arRP30	-	Unsolved	Cegat panel sequencing		
arRP31	-	Unsolved	Cegat panel sequencing		
arRP32	-	Unsolved	Molecular inversion probe based sequencing		
arRP33	-	Unsolved	Sanger sequencing		
arRP34	USH2A	Solved	Micro array and Sanger sequencing		
arRP35	-	Unsolved	Whole exome sequencing		
arRP36	USH2A	Solved	Whole exome sequencing		
arRP37	RPE65	Solved	Whole exome sequencing		
arRP38	-	Unsolved	Whole exome sequencing		
arRP39	-	Unsolved	Whole exome sequencing		
arRP40	-	Unsolved	Whole exome sequencing		
arRP41	USH2A	Solved	Whole exome sequencing		

arRP42	USH2A	Solved	Whole exome sequencing	
arRP43	-	Unsolved	Whole exome sequencing	
arRP44	-	Unsolved	Whole exome sequencing	
arRP45	-	Unsolved	Whole exome sequencing	
arRP46	-	Unsolved	Whole exome sequencing	
arRP47	-	Unsolved	Whole exome sequencing	
CRD1	-	Unsolved	Molecular inversion probe based sequencing	
DFNB1	-	Unsolved	Targeted sequencing	
DFNB2	USH2A	Solved	Targeted sequencing	
DFNB3	-	Unsolved	Targeted sequencing	
USH1	-	Unsolved	Molecular inversion probe based sequencing and	
			multiplex ligation-dependent probe amplification	
USH2	-	Unsolved	Whole exome sequencing	
USH3	-	Unsolved	Whole exome sequencing	
USH4	-	Unsolved	Molecular inversion probe based sequencing and whole	
			exome sequencing	
USH5	USH2A	Solved	Targeted sequencing	
USH6	-	Unsolved	Targeted sequencing	
USH7	USH2A	Solved	Targeted sequencing	
USH8	USH2A	Solved	Targeted sequencing	
USH9	-	Unsolved	Targeted sequencing	
USH10	USH2A	Solved	Molecular inversion probe based sequencing	
USH11	PEX6	Solved	Molecular inversion probe based sequencing	
USH12	USH2A	Solved	Targeted resequencing panel of 10 USH genes	
USH13	USH2A	Solved	Targeted resequencing panel of 10 USH genes	
USH14	-	Unsolved	Whole exome sequencing	
USH15	-	Unsolved	Whole exome sequencing	
USH16	USH2A	Solved	Whole exome sequencing	
USH17	USH2A	Solved	Target 5000 sequencing	
USH18	-	Unsolved	Target 5000 sequencing	
USH19	USH2A	Solved	Target 5000 sequencing	
USH20	ARSG	Solved	Target 5000 sequencing	
USH21	-	Unsolved	Target 5000 sequencing	
USH22	USH2A	Solved	Target 5000 sequencing	
USH23	USH2A	Possibly solved	Target 5000 sequencing	
USH24	USH2A	Solved	Targeted sequencing of 13 USH genes and multiplex	
			ligation-dependent probe amplification	
USH25	ΜΥΟ7Α	Solved	Whole exome sequencing	
USH26	USH2A	Solved	Whole exome sequencing	
USH27	-	Unsolved	Targeted sequencing	
USH28	USH2A	Solved	Treatrush sequencing	
USH29	USH2A	Possibly solved	Treatrush sequencing	
USH30	-	Unsolved	Treatrush sequencing	

USH31	USH2A	Solved	Treatrush sequencing
USH32	USH2A	Possibly solved	Cegat panel sequencing
USH33	USH2A	Solved	Treatrush sequencing
USH34	USH2A	Solved	Treatrush sequencing
USH35	ARSG	Solved	Cegat panel sequencing
USH36	-	Unsolved	Cegat panel sequencing
USH37	USH2A	Solved	Sanger sequencing
USH38	-	Unsolved	Whole exome sequencing
USH39	USH2A	Solved	Micro array and Sanger sequencing
USH40	-	Unsolved	Whole exome sequencing
USH41	USH2A	Solved	Micro array and Sanger sequencing
USH42	USH2A	Solved	Molecular inversion probe based sequencing
USH43	-	Unsolved	Whole exome sequencing
USH44	USH2A	Solved	Whole exome sequencing
USH45	-	Unsolved	Whole exome sequencing
USH46	USH2A	Possibly solved	Whole exome sequencing
USH47	-	Unsolved	Whole exome sequencing
USH48	-	Unsolved	Whole exome sequencing
USH49	USH2A	Possibly solved	Targeted sequencing and multiplex ligation-dependent
			probe amplification

Table S2: All genes associated with Usher(-like) syndrome and autosomal recessive retinitis pigmentosa that were assessed in genome sequencing data of 100 cases.

	ABCA4	AGBL5	AHR	ARHGEF18	ARL2BP
	ARL6	BBS1	BBS2	BEST1	C2orf71
	C8orf37	CERKL	CLCC1	CLRN1	CNGA1
	CNGB1	CRB1	CYP4V2	DHDDS	DHX38
	EMC1	EYS	FAM161A	GPR125 (ADGRA3)	HGSNAT
Autosomal	IDH3B	IFT140	IFT172	IMPG2	KIAA1549
recessive retinitis	KIZ	LRAT	ΜΑΚ	MERTK	ΜVΚ
pigmentosa	NEK2	NEUROD1	NR2E3	NRL	PDE6A
	PDE6B	PDE6G	POMGNT1	PRCD	PROM1
	RBP3	REEP6	RGR	RHO	RLBP1
	RP1	RP1L1	RPE65	SAG	SAMD11
	SLC7A14	SPATA7	TRNT1	TTC8	TULP1
	ZNF408	ZNF513			
	ABHD12	ADGRV1	ARSG	CDH23	CEP250
Lichor syndromo	CEP78	CIB2	CLRN1	ESPN	HARS1
Usher syndrome	MYO7A	PCDH15	PEX1	PEX6	USH1C
	USH1G	WHRN			
Retinal modifier of					
Usher syndrome	PDZD7				

Table S3: Sequences of primers used to generate constructs for the minigene splice assays.

Target variant		
(NM_206933.2)	Forward primer (5'>3')	Reverse primer (5'>3')
c.1551-504C>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtcccttcaccaaccttcc	GGGGACCACTTTGTACAAGAAAGCTGGGTGagtgccatgctatccaaacac
c.1644+7453A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtaagaggccccaatgtgtgt	GGGGACCACTTTGTACAAGAAAGCTGGGTGtggggcggaagagttaacat
c.1841-377A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCggagatcgagaccatgctgg	GGGGACCACTTTGTACAAGAAAGCTGGGTGatgcaaaggaccaccgaact
c.2303G>A	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtgcattcttttcaaaccagatgc	GGGGACCACTTTGTACAAGAAAGCTGGGTGtttcaggggacatagggtgg
c.4396+6885T>C	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCacatcaatggaaacgagtgacc	GGGGACCACTTTGTACAAGAAAGCTGGGTGtggaaaggagaaaatgtaggctc
c.4397-3890A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCttctggcctagcagtgtttg	GGGGACCACTTTGTACAAGAAAGCTGGGTGcagggaagcaatggagaacc
c.4714C>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCacaattcccgccaaatccttc	GGGGACCACTTTGTACAAGAAAGCTGGGTGtcttcctttccctctggctg
c.4885+375A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtgtcatacatgttgtcgagctc	GGGGACCACTTTGTACAAGAAAGCTGGGTGaagaggaggagaaggtgcac
c.5573-19A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtcaccaccatccctctgaag	GGGGACCACTTTGTACAAGAAAGCTGGGTGcaggccacaagatcgagttg
c.5775A>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtcaccaccatccctctgaag	GGGGACCACTTTGTACAAGAAAGCTGGGTGcaggccacaagatcgagttg
c.6806-7599C>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcacatccctgcctcattcac	GGGGACCACTTTGTACAAGAAAGCTGGGTGcactgtctttgctacatcccag
c.8710G>A	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCccatgccaccacctttg	GGGGACCACTTTGTACAAGAAAGCTGGGTGgctgtaaccaaattcaaggctg
c.9258G>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCccaagcaagtgttccaggtc	GGGGACCACTTTGTACAAGAAAGCTGGGTGgatgggttgttaggtgcagc
c.9259-9T>A	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcagaatgtaggcccttgatagtg	GGGGACCACTTTGTACAAGAAAGCTGGGTGtctcctgagcttgtgatccg
c.9959-3C>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCaaacaattcaggaccccagg	GGGGACCACTTTGTACAAGAAAGCTGGGTGgcttgaagtgcatttggagc
c.12343C>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCagatatggcagtccccttcc	GGGGACCACTTTGTACAAGAAAGCTGGGTGtgttccctgtattcactgtactc
c.14134-5T>C	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCtgctagctccttacttccctg	GGGGACCACTTTGTACAAGAAAGCTGGGTGtgcagaaatgatggtggttcc
c.14583-26A>G	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcgttaacacgtttgaggcac	GGGGACCACTTTGTACAAGAAAGCTGGGTGgccacgggaaatgcaaatac
c.14664G>A	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcgttaacacgtttgaggcac	GGGGACCACTTTGTACAAGAAAGCTGGGTGgccacgggaaatgcaaatac
c.14753C>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCcgttaacacgtttgaggcac	GGGGACCACTTTGTACAAGAAAGCTGGGTGgccacgggaaatgcaaatac
c.14791+5G>T	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCccagcacgatgaagactcttg	GGGGACCACTTTGTACAAGAAAGCTGGGTGtctgggtggagggtataca
RHO exons 3 to 5 (RT-PCR)	cggaggtcaacaacgagtct	aggtgtaggggatgggagac
GAPDH control (RT-PCR)	ctgcaccaactgcttag	agctcagggatgaccttgc

The sequence of the Gateway[®] attB site is depicted in upper case, the USH2A-specific sequence in lower case letters.

Table S4: Sequences of primers used in qPCR.

Target	Remark	Forward primer (5'>3')	Reverse primer (5'>3')
GUSB	Housekeeping gene	AGAGTGGTGCTGAGGATTGG	CCCTCATGCTCTAGCGTGTC
CRX		CCCCAGTGTGGATCTGATG	CAAACAGTGCCTCCAGCTC
NANOG		CCTGTGATTTGTGGGCCTG	CAGTCTCCGTGTGAGGCAT
OPN1SW		TTCTTCTCCAAGAGTGCTTGC	CCTTCCCACACACCATCTTC
OTX2		TATCTTAAGCAACCGCCTTACG	GGAGGGGTGCAGCAAGTC
PAX6		GCTGCAAAGAAATAGAACATCC	TTGGCTGCTAGTCTTTCTCG
RCVRN		ACACCAAGTTCTCGGAGGAG	ACTTGGCGTAGATGCTCTGG
RPE65		TTACTACGCTTGCACAGAGACC	GCCCCATTGACAGAGACATAG
VDM2		TCAGTGTGGACACCTGTATGC	AAGCTGTACACCGCCACAG
USH2A Exon 8-9	Specific for wildtype transcript	ACAACTGAGACTGCTGTTAACC	GACCATGGCACTGACATCTC
USH2A exon 8-PE8	Specific for transcript with PE	ACAACTGAGACTGCTGTTAACC	CAGAGCAAAAGCCTCCCAC
USH2A exon 12-13	Reference for expression levels	GCAAAGCAAACGTTATTGGGCT	TACACTGGCAGGGCTCACAT
USH2A exon 20-21	Specific for wildtype transcript	ACTTTAGCAGCAGCACCAGC	GGAGAGGGTCCATTCAGTTC
USH2A PE20-exon 21	Specific for transcript with PE	GGACAGTCCCATTGCTAGATG	AGTTCTTGGGATTTAGCAGTGTG

PE: pseudoexon

Table S5: All USH2A variants that met our variant inclusion criteria in 100 cases.

See separate excel sheet

Table S6: All USH2A variants with a predicted effect on splicing.

See separate excel sheet

Variant	Effect on splicing	Protein effect			
Deep-intronic variants					
c.1551-504C>T	PE inclusion (Δ118 nt)	p.Arg517_Cys518ins*13			
c.1644+7453A>G	No effect	p.=			
c.1841-377A>G	1. PE inclusion (Δ94 nt), 2. No effect	p.[Gly614Aspfs*9,=]			
c.4396+6885T>C	No effect	p.=			
c.4397-3890A>G	PE inclusion (Δ87 nt)	p.Ala1465_Ala1466ins*5			
c.4885+375A>G ²	PE inclusion (Δ130 nt)	p.Ser1629Valfs*52			
c.6806-7599C>G	No effect	p.=			
	Non-canonical splice site variants				
c.5775A>T	Exon 28 skipping (Δ204 nt)	p.Gly1858_Thr1925del			
c.9258G>T	1. Partial exon 46 skipping (Δ153 nt), 2. Partial exon 46 skipping (Δ116 nt)	p.[Arg3037_Val3087del,Val3049*]			
c.9259-9T>A	Inclusion of last 7 nt of intron 46 to exon 47	p.Val3087Phefs*4			
c.9959-3C>G	1. Exon 51 skipping (Δ224 nt), 2. Partial exon 51 skipping (Δ57 nt)	p.[Met3321Asnfs*22,=,Gly3320_Ser3338del]			
c.14134-5T>C	1. No effect, 2. Intron 64 inclusion (Δ47 nt)	p.[=,Val4712Profs*2]			
c.14791+5G>T	Exon 67 skipping (Δ209 nt)	p.Tyr4862Alafs*22			
	Exonic variants				
c.2303G>A	1. No effect, 2. Partial skipping of center exon 13 (Δ398 nt), 3. Partial exon 13 skipping (Δ513 nt)	p.[Cys768Tyr,Cys766Tyrfs*3,Glu767_Gly937del]			
c.4714C>T	No effect	p.(Leu1572Phe)			
c.8710G>A	No effect	p.(Val2904Ile)			
c.12343C>T	No effect	p.(Arg4115Cys)			
c.14664G>A	No effect	p.(Thr4888=)			
c.14753C>T	No effect	p.(Thr4918Met)			
Branchpoint variants					
c.5573-19A>G	Exon 28 skipping (Δ204 nt)	p.Gly1858_Thr1925del			
c.14583-26A>G	1. No effect, 2. Exon 67 skipping (Δ209 nt)	p.[=,Tyr4862Alafs*22]			

Table S7: Overview of observed effects on pre-mRNA splicing and consequences on protein level of 21 variants that were tested with minigene splice assays.

nt: nucleotide; PE: pseudoexon

Table S8: Characteristics of all oligonucleotides designed in this study

			Coordinates of	Length	GC-content
Oligonucleotide	Sequence (3'>5')	Target variant	pseudoexon (hg19)	(nt)	(%)
AON1 USH2A PE8	GCCUGGGUGACAGAGCAAAA			20	55
AON2 USH2A PE8^	CUGUAGUCCCAGUUACUUUGGAG		obr1,216405924	23	48
AON3 USH2A PE8	CUUUGGAGGCUGAGAUGAGAG	(n ArgE17 CycE18inc*12)	216405041	21	52
SON USH2A PE8	CUCUCAUCUCAGCCUCCAAAG	(p.Aig517_Cy5516iiis 15)	210495941	21	52
AON3 3ntMM USH2A PE8	CUUUGaAGuCUGAGAUGAaAG			21	38
AON1 USH2A PE10	UUUAUUAUUCUGUAGUUAACAC			22	23
AON2 USH2A PE10	UACUUACACAGUAAGAAGCAAGC	c.1841-377A>G	chr1:216463130-	23	39
AON2 3ntMM USH2A PE10	UACUUACACAuUAAuAAaCAAGC	(p.[Thr613_Gly614ins*9,=])	216463223	23	26
SON USH2A PE10*	GUAGUAAAGAACUGCUUGAUUCC			23	39
AON1 USH2A PE20	CCUUUAGAAGUCAAUUCCUGAG			22	41
AON2 USH2A PE20	GUAGUAGAGCACUUCUUGAUUCC	c.4397-3890A>G	chr1:216352719-	23	43
SON USH2A PE20	GGAAUCAAGAAGUGCUCUACUAC	(p.Ala1465_Ala1466ins*5)	216352805	23	43
AON2 3ntMM USH2A PE20*	GUAGUAaAGaACUgCUUGAUUCC			23	39
AON1 USH2A PE23	GGUCCACACGAAUUGUAAAGAACUGUA	C 4995 1275 A>C ²	chr1,216261095	27	41
SON USH2A PE23*	GUAGUAAAGAACUGCUUGAUUCC	(n Sar1670)/alfc*57)	216262111	27	33
AON1 3ntMM USH2A PE23	GGUCCACACcAAUUuUAAAGAACUuUA	(p.3ei 1029 valls '32)	210202114	23	39

Oligonucleotides labeled with an asterisk are the same. For 3 nucleotide mismatch antisense oligonucleotides (3ntMM AONs), lowercase nucleotides are mismatches. PE: pseudoexon; SON: sense oligonucleotide; ^: many off-target binding regions predicted for this oligonucleotide

Supplemental references

- Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. & Krainer, A. R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31, 3568-3571, doi:10.1093/nar/gkg616 (2003).
- 2. Mansard, L. et al. The Study of a 231 French Patient Cohort Significantly Extends the Mutational Spectrum of the Two Major Usher Genes MYO7A and USH2A. Int J Mol Sci 22, doi:10.3390/ijms222413294 (2021).
- 3. Liquori, A. et al. Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations. Hum Mutat 37, 184-193, doi:10.1002/humu.22926 (2016).
- 4. Vaché, C. *et al.* Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy. *Hum Mutat* **33**, 104-108, doi:10.1002/humu.21634 (2012).
- 5. Lenassi, E. et al. A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants. Eur J Hum Genet 23, 1318-1327, doi:10.1038/ejhg.2014.283 (2015).