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1 Methods

1.1 The SIR Model

We use a standard Susceptible, Infectious, Recovered (SIR) model of disease transmission. The
standard SIR model describes disease transmission in a well-mixed system in which an interaction
between any two individuals is equally likely. Our approach implements the non-dimensional form
of the standard SIR model because we couple it to the dimensionless forms of cost functions to
find solutions to the social distancing problems. We start by providing a derivation of the non-
dimensional SIR form starting from its standard form.

The differential equations describing the dynamics of the susceptible, infectious, and recovered
individuals in the population are:

d

dt
S = −βSI

N
d

dt
I =

βSI

N
− γI

d

dt
R = γI

(1)

where S is the number of the susceptible, I is the number of the infectious, R is the number of the
recovered, and N is the total number of individuals in the population. The parameters β and γ
respectively represent the transmission and recovery rate and have units of inverse time.

1.1.1 Non-Dimensionalization

As is typically done, we define the dimensionless unit of time τ , which is:

τ = γt. (2)

In other words, in the dimensionless SIR model, τ = 1 represents the average duration an individual
is infectious for. We further recast the state variables in their dimensionless form where

s =S/N,

i =I/N,

r =R/N.

(3)

The dimensionless differential equations for the population dynamics become:

d

dτ
s = −β

γ
si,

d

dτ
i =

β

γ
si− i,

d

dτ
r = i.

(4)

By defining the reproduction number R0 =
β
γ , these equations can be formulated as

d

dτ
s = −R0si,

d

dτ
i = R0si− i,

d

dτ
r = i.

(5)
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1.1.2 Final Epidemic Size

Without mitigation measures, and under the assumption that the initial conditions for the propor-
tion of the population infected is very small (i.e., i(τ = 0) ≪ 1), and nearly the entire population is
initially susceptible (i.e., s(τ = 0) ≈ 1), the proportion of the population that remains susceptible
as τ → ∞ is given by the solution to the equation [Diekmann(2013)]

s∞ = e−R0(1−s∞), (6)

and the final epidemic size is 1− s∞.

1.1.3 The Effective Reproduction Number and Herd Immunity

The effective reproduction number Rτ describes the average number of infections produced by each
infected individual in the population at time τ . In the standard SIR model without mitigation
measures,

Rτ = sR0. (7)

Herd immunity occurs when the number of those susceptible in the population is reduced either
by natural infection or vaccination such that the effective reproduction number is less than 1.
Therefore, the maximum proportion of susceptible individuals in a population with herd immunity
is

sH =
1

R0
. (8)

1.2 Time-Dependent Transmission

In classic SIR models, β and R0 are constant parameters. This paper considers the case where the
transmission rate, β, is dynamic and influenced by behavioral changes. We will use the notation
that β is a dynamic variable and β0 is the transmission rate without any behavioral mitigation.
Similarly, we define RD(τ) as the dynamic reproduction number, which is a function of social
distancing behavior. R0 is the reproduction number in the absence of any behavioral mitigation.
In a dynamic framework, the dimensionless SIR model, Equations 5 become:

d

dτ
s = −RDsi,

d

dτ
i = RDsi− i,

d

dτ
r = i.

(9)

In the framework with a dynamic transmission rate, the effective reproduction number becomes:

Rτ = sRD. (10)

1.3 Cost Functions

We want to find the social distancing policy that minimizes a total cost, which includes the cost
of social distancing and the cost of infections over a pre-specified time horizon ranging from time
t = 0 to t = tfinal. The social distancing policy is described by β(t), the transmission rate, that
depends on social distancing behavior at time t. We further define β0 to be the infection rate for
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the disease in the absence of any behavioral change. Therefore, β(t) is restricted to the interval
(0, β0] The total cost is:

Total cost = (Social distancing cost) + (Cost of infections) (11)∫ tfinal

t=0
Htotal(t)dt =

∫ tfinal

t=0
[Hsd(t) +Hinfect(t)] dt, (12)

where Hsd(t) is the cost of social distancing per unit time, and Hinfect is the cost of infections. As
the transmission rate β(t) decreases, the cost of social distancing per unit time, Hsd(t), increases,
but the cost of infections per unit time Hinfect(t) decreases.

1.3.1 Cost of Infections

The number of new infections per unit time is βSI
N , which comes from the SIR equations. If we

define D to be the average cost of infection per infected individual. Then, the cost per unit time
of infections is:

Hinfect(t) = D
β(t)S(t)I(t)

N
. (13)

Note that the total cost of infections is:

Cost of infections = D[R(tfinal) + I(tfinal)]. (14)

1.3.2 Cost of social distancing

We assume that the total cost of social distancing is proportional to the size of the population N ,
and a cost parameter C, which has units cost per person per unit time. Therefore, we define the
cost per unit time of social distancing to be:

Hsd(t) = NCg(β(t)/β0). (15)

Here, g(x) is the function that defines the relationship between the relative cost of social distancing
and relative reduction in the transmission parameter. The function g(x) should have the following
properties:

1. g(x) is a monotonically decreasing function on the interval [0, 1]. The theoretical
setup of the problem determines this property. The cost of social distancing should increase
as the transmission rate is further decreased.

2. limx→0+ g(x) = ∞. In theoretical terms, it is not possible to stop all transmission completely;
therefore, the cost of decreasing transmission rates to zero should be infinite. From a practical
perspective, this restriction will prevent optimal solutions to β(t) from passing through β(t) =
0, and if the initial condition for β(t) is positive, the solution will remain positive.

3. d
dxg(x)|x=1 = 0. Theoretically, if there is no cost of infections, the optimal β(t) = β0. There-

fore, the cost of social distancing should be minimized when β(t)
β0

= 1. From a practical
perspective, combined with condition 2, this condition ensures that solutions to β(t) will be
bounded to the interval (0, β0] if correctly initialized to the interval.

4. g(1)=0. When β(t)
β0

= 1, there are no behavioral changes so the cost of social distancing
should be zero.
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Based on these three required properties, we choose the function to have the form

g(x) = − ln(x) + x− 1, (16)

and thus, substituting this into equation 15, the cost per unit time of social distancing is

Hsd(t) = −NC ln

(
β

β0

)
+NC

β

β0
−NC. (17)

1.3.3 Dimensionless Cost Equations

We now derive the dimensionless form of the cost equation. We define a dimensionless cost of social
distancing, c to be:

c =
C

Dγ
. (18)

Effectively, c compares the cost of social distancing to the cost of infection. Recall that C has
dimensions of cost per individual per unit time, D has dimensions of cost per individual, and γ has
units of inverse time. Therefore, c is dimensionless. When c is small, people will more willingly
social-distance as they feel that the cost of becoming ill outweighs the benefits of mixing socially.
Their preference favors their lives and health compared to livelihoods and non-health-related well-
being. When c is large, people’s preferences are switched. We define the dimensionless cost:

h =
H

DN
. (19)

We can make the following substitutions in all equations:

β0
γ

= R0,

β

γ
= RD.

(20)

Then, the dimensionless cost of infection, Equation 13, becomes:

hinfect = RDsi. (21)

The dimensionless cost of social distancing, Equation 15, becomes:

hSD = cg(RD/R0). (22)

We denote the cost function as h(s, i, RD) which can be expressed as:

h(s, i, RD) = cg(RD/R0) +RDsi. (23)

By setting τ final = γTfinal, the total cost in its dimensionless form is

Total Cost =

∫ τ final

0
[cg(RD/R0) +RDsi] dτ. (24)
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1.4 Full Optimization

Calculus of variations is used to find the functions yj(τ) that maximize or minimize∫ τ final

0
L(y1(τ), y2(τ), ..., yn(τ))dτ. (25)

The functions yj [Weinstock(1974)] that satisfy the following conditions are extrema of the integral
in Equation 25:

∂L
∂yj

− d

dτ

(
∂L
∂y′i

)
= 0, (26)

where y′j indicated the derivative
dyj
dτ .

Our main objective is to solve for RD that minimizes Equation 23. Because the integrand is a
function not only of RD, but of s and i as well, we introduce the functional Lagrange multipliers λi

and λs to ensure that the conditions of the differential equations governing the infection dynamics
(Equations 5) are met. Then, based on the constraints provided by the SIR dynamics, the full
Lagrangian becomes:

L(s, i, RD, λi, λs) = h(s, i, RD) + λs

(
s′ +RDsi

)
+ λi

(
i′ −RDsi+ i

)
(27)

Note that we do not need to include a differential equation constraint for r since the equations for
s and i ensure that r = 1− s− i.

We can now apply Equation 26 to all yj ∈ {s, i, RD, λi, λs}.
yj = s yields:

λ′
s = RDi(1 + λs − λi) (28)

yj = i yields:
λ′
i = RDs(1 + λs − λi) + λi (29)

yj = RD yields:

RD =
R0c

c+R0si(1 + λs − λi)
(30)

Note that applying yj = λs and yj = λi to Equation 26 returns the constraint differential equations
for s and i from Equation 5. Note that applying yj = λs and yj = λi to Equation 26 returns the
constraint differential equations for s and i from Equation 5.

The differential equations can then be solved as a two-point boundary value problem. For all
cases presented in this paper, we set i(0) = i0, s(0) = 1 − i0, λs(τ final) = 0, and λi(τ final) = 0.
[rv]the τ is not being displayed correctly - anyone know why? We set λs and λi to be equal to zero at
the end point of the interval because s(τ final) and i(τ final) are unconstrained. We solved the 2-point
boundary value problems in R using the bvpSolve package.[Mazzia et al.(2014)Mazzia, Cash, and Soetaert]

1.4.1 Multi-Objective Formulation

So far, we have framed our problem as a single-objective optimization. In other words, we optimized
the sum of a social distancing and infection costs, where the parameter c defines how a level of social
distancing should be weighed against a level of infections. In a Pareto-optimization formulation,
we find the solutions RD(τ) for which the total social distancing cannot be decreased without
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increasing infections and infections cannot be decreased without increasing the social distancing.
Mathematically, the total social distancing, which we call kSD is:

kSD =

∫ τ final

0
g(RD/R0)dτ (31)

and the cost of infections, kinfect is given by:

kinfect =

∫ τ final

0
RDsidτ. (32)

We recover the total cost defined in Eq. 24 though the equation

Totalcost = ckSD + kinfect (33)

We know that kinfect is the total number of new infections that occur between time τ = 0 and time
τ = τ final, which means that kinfect can be defined as:

kinfect = 1− [s(τ final)− s(0)] (34)

The only term in Eq. 34 that depends on RD(τ) is −s(τ final). We can therefore formulate the
set of Pareto-optimal solutions as those that minimize kSD for each possible value of s(τ final).

The Lagrangian in this formulation is then given by:

L(s, i, RD, µi, µs) = g(RD/R0) + µs(s
′ +RDsi) + µi(i

′ −RDsi+ i) (35)

The variables µs and µi are Lagrange multipliers in the multi-objective formulation.
We can now apply equation 26 to the variables in Equation 35. Applying yj = s yields:

µ′
s = RDi(µs − µi) (36)

yj = i yields:
µ′
i = RDs(µs − µi) + µi (37)

yj = RD yields:

− 1

RD
+

1

R0
+ µssi− µisi = 0 (38)

− R0

RD
+ 1 +R0si(µs − µi) = 0 (39)

RD =
R0

1 +R0si(µs − µi)
(40)

Now, we show that the formulations are equivalent if λs = cµs − 1 and λi = cµi

Starting from Equation 28, we have:

cµ′
s = RDi(1 + cµs − 1− cµi) (41)

Which becomes:
µ′
s = RDi(µs − µi) (42)

Starting from Equation 29, we have:

cµ′
i = RDs(1 + cµs − 1− cµi) + cµi (43)
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which becomes
µ′
i = RDs(µs − µi) + µi (44)

Starting from Equation 30, we have:

RD =
R0c

c+R0si(1 + cµs − 1− cµi)
(45)

which becomes

RD =
R0

1 +R0si(µs − µi)
(46)

In the alternative formulation, s(τ final) = sfinal. In this formulation, because s is fixed at the
final endpoint, only µi = 0. We know that

λs(τ final) = cµs(τ final)− 1 (47)

We know that λs(τ final) = 0. We can therefore calculate c if we solve the equations in our second
formulation as follows:

µs(τ final) =
1

c
(48)
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