Supplementary Information file

Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer

Lulu Sun^{1,6}, Yi Zhang^{2,6}, Jie Cai¹, Bipin Rimal³, Edson R. Rocha⁴, James P. Coleman⁴, Chenran Zhang⁵, Robert

G. Nichols³, Yuhong Luo¹, Bora Kim¹, Yaozong Chen¹, Kristopher W. Krausz¹, Curtis C. Harris⁵, Andrew D.

Patterson^{3*}, Zhipeng Zhang^{2*}, Shogo Takahashi^{1*}, Frank J. Gonzalez^{1*}

¹Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.

²Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing 100191, China.

³Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.

⁴Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University,

Greenville, NC 27834, USA.

⁵Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.

⁶These authors contributed equally.

*Correspondence: F.J.G. (gonzalef@mail.nih.gov); S.T. (shogo.takahashi@nih.gov); Z.Z. (zhangzhipeng06@126.com); A.D.P. (adp117@psu.edu)

Supplementary Figure 1: BSH-producing *Bacteroides* were enriched in CRC patients with overweight, refers to Fig. 1

a-h Stool samples were collected from 45 individuals [14 for control lean group (Ctrl-L); 11 for CRC lean group (CRC-L); 11 for control overweight group (Ctrl-O); 9 for CRC overweight group (CRC-O)] for shotgun metagenomics and bile acid analysis. **a-c** α -diversity of the gut microbiota among four groups, as indicated by the ACE (**a**), Chao1 (**b**) and Shannon indices (**c**). One-way ANOVA with Tukey's post hoc test. **d** Partial least squares discriminant analysis (PLS-DA) using the Bray-Curtis distance. **e**, **f** Correlative analysis of *B. fragilis* with stool LCA (**e**) and total unconjugated bile acid levels (**f**) in subjects with overweight. Correlations between variables were assessed by linear regression analysis. Linear correction index R and *P* values were calculated with two-sided. **g** Heatmap of the correlation between variable gut microbiota and stool unconjugated bile acid levels in lean subjects. Correlation analysis were determined by Spearman's rank test with two-sided. **P* < 0.05, ***P* < 0.01. **h** Relative abundance of variable gut microbiota at species levels in lean subjects. Mann-Whitney *U* test with two-sided. Data are presented as mean values +/- SEM in a-c, h. Source data are provided as a Source Data file for Supplementary Figure 1.

Supplementary Figure 2: BSH-producing *Bacteroides* species are enriched in CRC mouse model, refers to Fig. 2

a-c C57BL/6J (WT) or $Apc^{\min/+}$ mice were fed a HFD for 8 weeks (n = 6 mice for WT; n = 5 mice for $Apc^{\min/+}$). **a**, Representative pictures of intestinal segments, indicating the tumor burden. **b** Tumor numbers in different segments of intestine from 5 $Apc^{\min/+}$ mice. **c** Length of small intestine and colon. **d-h** $Apc^{f/w}$ and $Cdx2Apc^{f/w}$ mice were fed with HFD for 12 weeks, feces were collected for shotgun metagenomics (n = 6 mice/group). **d-f** α -diversity of the gut microbiota among four groups, as indicated by the ACE (**d**), Chao1 (**e**) and Shannon indices (**f**). **g** Partial least squares discriminant analysis (PLS-DA) using the Bray-Curtis distance. **h** Total unconjugated bile acid levels in the colon contents. Two-tailed Student's *t* test. **i** Relative abundance of *B. xylanisolvens*, *B. vulgatus* and *B. fragilis* after colonization with each species (n = 4 mice for *B. xylanisolvens* colonization; n = 4 mice for *B. vulgatus* colonization; n = 5 mice for *B. fragilis* colonization). Data are presented as mean values +/-SEM in b-f, h, i. Source data are provided as a Source Data file for Supplementary Figure 2.

Supplementary Figure 3: *B. vulgatus* (BV) colonization aggreavtes CRC progression, refers to Fig. 3 **a-h** HFD-fed $Cdx2Apc^{f/w}$ mice were colonized with heat-killed HBV or BV for 12 weeks (n = 10 mice for HBV; n = 9 mice for BV). **a** Length of colon. **b**, **c** The ileum (**b**) and (**c**) colon tumor incidence, and tumor numbers with different sizes (<4 mm², >4 mm² and the sum of both). Mann-Whitney U test with two-sided. **d** Total tumor number in the intestine. Two-tailed Student's t test. **e**, **f** Representative pictures of colon (left), gross images of tumor (top right) in the colon and H&E staining (bottom right) of colon tumor sections. Scale bars: 1.5 mm (top right) and 100 µm (bottom right). **g** Unconjugated bile acid profiles in the colon contents. Mann-Whitney U test with two-sided. **h** Total unconjugated bile acid levels in the colon content. Two-tailed Student's t test. **i** Relative mRNA levels of WNT target genes in colon non-tumor (NT) and tumor (T) tissues (n = 10 for HBV-NT; n = 9for BV-NT; n = 7 for HBV-T; n = 7 for BV-T;). Kruskal-Wallis test with Dunn's post hoc test. **j** WB data of proteins encoded by WNT target genes in colon non-tumor and tumor tissues (n = 3 independent samples/group). **k** Representative IHC staining of Ki-67, a proliferation marker (n = 7 independent slides for HBV; n = 9 independent slides for BV). Scale bars: 100 µm. Data are presented as mean values +/- SEM in a-d, g-i. Source data are provided as a Source Data file for Supplementary Figure 3.

Supplementary Figure 4: Microbial BSH overexpression in *B. fragilis 638R* (BF638R), refers to Fig. 4 and

a Hydrolysis efficiency of conjugated bile acids in the culture medium of blank, WT *B. fragilis 638R* (BF BSH^{low}) or BSH-overexpressing *B. fragilis 638R* (BF BSH^{high}) (n = 5 technical replicates/group). Kruskal-Wallis test with Dunn's post hoc test. TCA: taurocholic acid; T β MCA: tauro- β -muricholic acid; TCDCA: taurochenodeoxycholic acid; THDCA: taurohyodeoxycholic acid; TDCA: taurodeoxycholic acid; TLCA: taurolithocholic acid. **b** HFD-fed *Cdx2Apc^{f/w}* mice were transplanted with BF BSH^{low} or BF BSH^{high} for 2 weeks (n = 7 mice for HBF; n = 7 mice for BF BSH^{low}; n = 8 mice for BF BSH^{high}). Relative abundance of *B. fragilis* after colonization. One-way ANOVA with Tukey's post hoc test. **c** HFD-fed *Cdx2Apc^{f/w}* mice were transplanted with BF BSH^{low} or BF BSH^{high} for 12 weeks (n = 11 mice for BF BSH^{low}; n = 12 mice for BF BSH^{high}). **c**, The length of colon. Data are presented as mean values +/- SEM in a-c. Source data are provided as a Source Data file for Supplementary Figure 4.

Supplementary Figure 5: Microbial BSH overexpression in *B. fragilis* change the gene expression profiles in colon cancer tissues, refers to Fig. 6

a-c HFD-fed $Cdx2Apc^{f/w}$ mice were transplanted with BF BSH^{low} or BF BSH^{high} for 12 weeks, from which nontumor (T) and tumor (T) colon tissues were subjected for mRNA sequencing (pooled sample sizes: n = 4independent samples for BF BSH^{low}_NT; n = 4 independent samples for BF BSH^{high}_NT; n = 4 independent samples for BF BSH^{low}_T; n = 3 independent samples for BF BSH^{high}_T). **a**, **b** Principal component analysis (PCA) for gene expression in NT (**a**) or T (**b**) tissues from BF BSH^{low} or BF BSH^{high} groups. **c** Volcano plot showing the expression profiles of genes in NT tissues of BF BSH^{low} and BF BSH^{high} groups. Red dot (upregulated) was identified as significantly changed gene with an adjust *P* value<0.05 and |logFC| > 1. Twotailed Student's *t* test.

Supplementary Figure 6: CCL28-induced immunosuppressive effects contributed to *B. fragilis*-accelerated CRC progression, refers to Fig. 6 and 7

a Flow chart that establishes the flow cytometry procedures for analyzing immune properties in colon tumor tissues. Created with BioRender.com. **b** HFD-fed $Cdx2Apc^{t/w}$ mice were colonized with BF BSH^{low} or BF BSH^{high} for 12 weeks (n = 7 samples/group). TUNEL intensity. Two-tailed Student's t test. **c-f** $Cdx2Apc^{t/w}$ wince were fed with HFD for 10 weeks, and then the mice were colonized with BF BSH^{high} and injected with IgG or mCD25 Ab for another 2 weeks (n = 4 mice/group). The colon tumor tissues were harvested for flow cytometry analysis. **c** The portion of FOXP⁺CD25⁺ T_{reg} cells in CD4⁺ T cells. Two-tailed Student's t test. **d**, **e** CD25 (**d**) and FOXP3 (**e**) intensity in FOXP⁺CD25⁺ T_{reg} cells. **f** The portion of CD8⁺ T cells in total T cells. Two-tailed Student's t test. **g-k** HFD-fed $Cdx2Apc^{t/w}$ mice were fed with HFD for 6 weeks, and then colonized with BF BSH^{high} and injected (i.p.) with IgG, mCCL28 Ab or mCD25 Ab neutralizing antibody for another 6 weeks (n = 13 mice for IgG Ab; n = 8 mice for mCCL28 Ab (**j**) or mCD25 Ab (**h**)-treated mice. **i**, **j** Total unconjugated bile acid profiles in the colon contents of mCCL28 Ab (**i**) or mCD25 Ab (**j**)-treated mice. **k** Representative IHC staining of Ki-67, a proliferation marker (n = 10 independent slides for IgG Ab; n = 7 independent slides for mCD25 Ab). Scale bars: 100 µm. Data are presented as mean values +/- SEM in b, c, f-j. Source data are provided as a Source Data file for Supplementary Figure 6.

Supplementary Figure 7: Compound 7 (C7) postpones CRC progression by inhibiting microbial BSH activity, refers to Fig. 8

a *B. fragilis* 9343 (BF9343) were cultured with or without BSH inhibitor, C7 (10 μ M), for overnight under conjugated bile acid administration (n = 4 technical replicates/group). Hydrolysis efficiency. Kruskal-Wallis test with Dunn's post hoc test. **b-g** Under BF BSH^{high} colonization, $Cdx2Apc^{f/w}$ mice were fed with HFD or HFD with C7 (10 mg/kg) for 12 weeks (n = 13 mice for Vehicle; n = 11 mice for C7). **b**, **c** Serum ALT (**b**) and AST (**c**) levels. **d** Total unconjugated bile acids in the colon contents. Two-tailed Student's *t* test. **e** Total tumor numbers in the intestine. Two-tailed Student's *t* test. **f** The length of colon. **g** TUNEL intensity. Two-tailed Student's *t* test. **h** $Cdx2Apc^{f/w}$ mice were fed with HFD for over 10 weeks, and then the colon tumors

were used for colon organoids isolation and further culture. Relative expression of β -catenin target genes and Ccl28 under different concentrations of C7 treatment for overnight (n = 3 technical replicates/group). Data are presented as mean values +/- SEM in a-h. Source data are provided as a Source Data file for Supplementary Figure 7.

Supplementary Figure 8: Uncropped gels with markers, refers to Supplementary Fig. 3j

Patient ID	Group	BMI	TG (mmol/L)	TC (mmol/L)	ALT (U/L)	AST (U/L)	Tumor Primary Site
A1	Control-Lean	24.46	1.00	5.09	11.00	14.00	/
A2	Control-Lean	22.31	0.71	6.22	12.00	17.00	/
A3	Control-Lean	23.31	1.47	6.09	14.00	19.00	/
A4	Control-Lean	21.51	0.87	4.88	19.00	20.00	/
A5	Control-Lean	22.86	0.86	4.66	15.00	19.00	/
A6	Control-Lean	24.97	0.82	4.97	10.00	17.00	/
A7	Control-Lean	22.89	2.44	5.18	7.00	17.00	/
A8	Control-Lean	22.49	1.06	4.92	10.00	13.00	/
A9	Control-Lean	24.84	1.50	4.75	17.00	17.00	/
A10	Control-Lean	19.82	0.49	4.47	9.00	16.00	/
A11	Control-Lean	22.06	1.03	4.49	25.00	21.00	/
A12	Control-Lean	21.85	0.98	4.33	12.00	19.00	/
A13	Control-Lean	23.59	0.53	4.51	22.00	19.00	/
A14	Control-Lean	18.07	0.61	5.04	14.00	23.00	/
B1	Control-Overweight	25.01	1.21	4.53	16.00	17.00	/
B2	Control-Overweight	30.48	1.39	4.67	28.00	35.00	/
B3	Control-Overweight	25.69	1.18	5.23	20.00	25.00	/
B4	Control-Overweight	27.47	1.39	4.68	18.00	34.00	/
B5	Control-Overweight	27.64	1.27	4.67	16.00	17.00	/
B6	Control-Overweight	26.04	2.15	5.39	15.00	17.00	/
B7	Control-Overweight	31.24	2.87	5.52	17.00	21.00	/
B8	Control-Overweight	33.06	1.23	5.32	33.00	34.00	/
B9	Control-Overweight	32.76	1.21	5.28	22.00	29.00	/
B10	Control-Overweight	33.03	2.02	4.46	29.00	42.00	/
B11	Control-Overweight	29.71	4.16	7.64	40.00	63.00	/
C1	CRC-Lean	22.65	3.84	5.53	27.00	22.00	Left Colon
C2	CRC-Lean	24.77	1.48	4.73	15.00	19.00	Left Colon
C3	CRC-Lean	19.56	0.76	3.37	6.00	12.00	Right Colon
C4	CRC-Lean	21.88	1.35	3.85	8.00	10.00	Rectum
C5	CRC-Lean	23.46	3.56	6.23	19.00	19.00	Left Colon
C6	CRC-Lean	22.86	1.62	3.24	20.00	19.00	Rectum
C7	CRC-Lean	24.09	0.99	4.41	9.70	11.80	Right Colon
C8	CRC-Lean	19.90	0.59	4.70	16.00	18.00	Rectum
C9	CRC-Lean	20.96	0.78	2.95	10.00	14.00	Left Colon
C10	CRC-Lean	22.99	1.17	5.10	11.00	15.00	Left Colon
C11	CRC-Lean	19.78	0.58	3.71	19.00	28.00	Right Colon

Supplementary Table 1: Demographic characteristics for human subjects

D1	CRC-Overweight	26.04	1.09	7.13	15.00	17.00	Left Colon
D2	CRC-Overweight	27.06	1.80	3.71	9.00	14.00	Right Colon
D3	CRC-Overweight	28.51	0.85	5.55	17.00	24.00	Right Colon
D4	CRC-Overweight	26.73	2.38	4.31	18.00	33.00	Left Colon
D5	CRC-Overweight	25.91	1.44	4.07	14.00	25.00	Left Colon
D6	CRC-Overweight	32.51	1.68	6.61	18.00	18.00	Left Colon
D7	CRC-Overweight	25.95	1.41	4.93	13.00	13.00	Left Colon
D8	CRC-Overweight	30.07	1.40	4.31	13.00	16.00	Rectum
D9	CRC-Overweight	32.84	1.09	5.72	10.00	15.00	Left Colon

Primers	Forward	Reverse
Mouse		
Ccnd1	GCGTACCCTGACACCAATCTC	CTCCTCTTCGCACTTCTGCTC
с-Мус	ATGCCCCTCAACGTGAACTTC	CGCAACATAGGATGGAGAGCA
Mmp7	CTTACCTCGGATCGTAGTGGA	CCCCAACTAACCCTCTTGAAGT
Axin2	ATGAGTAGCGCCGTGTTAGTG	GGGCATAGGTTTGGTGGACT
Ccl28	GTGTGTGGCTTTTCAAACCTCA	TGCATGAACTCACTCTTTCCAG
Actin	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
Bacteria		
Universal	TGGAGAGTTTGATCCTGGCTCAG	TACCGCGGCTGCTGGCAC
B. fragilis	CGGATGCCATTGATAAAGTAGG	CTGGAAGCAAGCACATTAGC
B. vulgatus	CGGGCTTAAATTGCAGATGA	CATGCAGCACCTTCACAGAT
BF9343_1433	GAGTGGTCTATTCCTTGGGG	GGATCGCTGCAGGTGCAC
(Bsh)		
B. xylanisolvens	GTGAAGGTGCTGCATGGTTG	TGGGATTAGCATCCTGTCGC

Supplementary Table 2: Sequences of the real time PCR primers

Strains	Genotype			
B. vulgatus	appendix abscess			
B. fragilis 638R	clinical isolate, Rif ^r			
<i>B. fragilis</i> ATCC 25285 (NCTC9343)	appendix abscess			
BER-154	638R carrying pNBU2-bla- <i>ermGb</i> , Rif ^r Erm ^r			
BER-182	638R carrying pER-300 Rif ^r Erm ^r			
<i>E. coli</i> S17-1 λpir	Strain with the RK2 <i>tra</i> genes for conjugative transfer integrated in the chromosome (<i>RP4-2-Tc::Mu-Km::Tn7, pro, res-mod+</i> , Tp ^r Sm ^r) λ <i>pir</i> lysogen)			
Plasmids				
pNBU2-bla-ermGb	NBU2 integrase (<i>intN2</i>) based genomic insertion vector derived from pKNOCK- <i>bla-ermGb</i> inserts into NBU2 <i>att1</i> or <i>att2</i> sites of tRNA ^{ser} , (Amp ^r) Erm ^r			
pER-300	A 1,569 bp DNA fragment containing entire <i>bsh</i> operon (BF9343_1433) was cloned into the XbaI/PstI sites of pNBU2- <i>bla-ermGb</i> , (Amp ^r) Erm ^r			
Erm ^r : erythromycin resistance; Rif ^r : rifampicin resistance; Amp ^r : Ampicillin resistance. Parenthesis indicates				

Supplementary Table 3: Bacterial strains and plasmids used in this study

Erm^r: erythromycin resistance; Rif^r: rifampicin resistance; Amp^r: Ampicillin resistance. Parenthesis indicate antibiotic resistance expression in *E. coli*. ATCC: American Type Culture Collection. NCTC: National Collection of Type Cultures, England.