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In this supplement we detail the underlying mathematical framework that defines the model dynamics
for vaccination, waning, infection and severe disease. Although much of this is described in the
Methods of the main paper, here we provide the differential equations that underpin the model and
describe in more detail the fitting of the model to the available epidemiological data.

1 Supplementary Methods

1.1 Vaccination and Waning

In the absence of infection, there is still a complex pattern of vaccination and waning which is de-
scribed here with the process of infection described below. The model replicates the action of:

• first and second doses of vaccine, at time-varying rates v1 and v2 respectively, that move suscep-
tible individuals through to vaccinated states (VS1 and VS2) but have no impact on infected or
recovered individuals - for model simplicity v1 and v2 correspond to the rate at which the impact
of the vaccine dose takes effect, which is around 10 days post vaccination;

• waning vaccine efficacy at rates ω1 and ω2, giving a two-step process from fully vaccinated to
waned efficacy - we also allow waning from state VS1 at rate ω̄ (where ω̄−1 = ω−11 + ω−12 ),
although for those that receive two doses within 3 and 12 weeks this is uncommon;

• waning immunity from past infection at rates Ω1 and Ω2 which are assumed to be slower than
the waning of vaccine efficacy.

The model also needs to capture the total number of individuals who have been given a first or second
dose of vaccine (V1 or V2 out of a total population size of N) to ensure that only individuals that have
not been vaccinated are offered a first dose, and only individuals that have been vaccinated once are
offered a second dose.

Adding subscripts that signify age (a) and region (r), when concentrating on vaccination and waning
immunity (i.e. ignoring infection and variants) the underlying equations become:
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dt

= −v1,a,r
Sa,r
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= ω2WS1,a,r + ω̄VS1,a,r

(1)

dRa,r
dt

= −Ω1Ra,r + v1,a,r
WR1,a,r +WR2,a,r
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dWR1,a,r

dt
= Ω1Ra,r − Ω2WR1,a,r − v1,a,r

WR1,a,r

Na,r − V1,a,r
dWR2,a,r

dt
= Ω2WR1,a,r − v1,a,r

WR2,a,r

Na,r − V1,a,r

V1,a,r(t) =

∫ t

0
v1,a,rdt

V2,a,r(t) =

∫ t

0
v2,a,rdt

where Na,r is the size of the population in age-group a and region r. Parameters for vaccine waning
ω1 = 100−1 per day, ω2 = 320−1 per day, Ω1 = 360−1 per day and Ω2 = 1500−1 per day are chosen to
fit the recorded changes in efficacy over time (see Figure 4 of main Methods).

1.2 Infection Dynamics

Within this section we detail the infection dynamics, including multiple exposed classes to generate
an appropriate distribution for the generation time, the status of individuals with respect to their
household, as well as variant and age-structure.

One of the key characteristics of the COVID-19 pandemic in the UK has been the use of self-isolation
and household quarantining to reduce transmission. We approximate this process by distinguishing
between first infections (caused by infection related to any non-household mixing) and subsequent
household infections (caused by infection due to household mixing). We note that first infection
really applies to any new infection brought into an infection free household. The first symptomatic
case within a household has a probability (Ht) of leading to household quarantining at time t; this
curtails the non-household mixing of the individual and all subsequent infections generated by this
individual. We use superscripts to denote the status of an infection with respect to this household
structure: superscript F refers to the first infection in a household that has not been quarantined; SI
and SA refer to subsequent infections that are generated by a first infection that is symptomatic or
asymptomatic respectively, again in a household that has not been quarantined; QF refers to the first
detected case in the household that leads to quarantining and QS is all of their subsequent household
infections.

We then use subscripts to denote the multiple stages withing the exposed class, the age-group a of the
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infected individual, the region r and the variant θ:

dEF1,a,r,θ
dt

= λFa,r,θSa,r − 3αr,θE
F
1,a,r,θ

dESI1,a,r,θ
dt

= λSIa,r,θSa,r − 3αr,θE
SI
1,a,r,θ

dESA1,a,r,θ
dt

= λSAa,r,θSa,r − 3αr,θE
SA
1,a,r,θ

dEQS1,a,r,θ

dt
= λQa,r,θSa,r − 3αEQS1,a,r,θ

dEX2,a,r,θ
dt

= 3αr,θE
X
1,a,r,θ − 3αr,θE

X
2,a,r,θ

dEX3,a,r,θ
dt

= 3αr,θE
X
2,a,r,θ − 3αr,θE

X
3,a,r,θ (2)

dIFa,r,θ
dt

= 3da(1−Ht)αr,θE
F
3,a,r,θ − γθIFa,r,θ

dISIa,r,θ
dt

= 3daαr,θE
SI
3,a,r,θ − γθISIa,r,θ

dISAa,r,θ
dt

= 3da(1−Ht)αr,θE
SA
3,a,r,θ − γθISAa,r,θ

dIQFa,r,θ
dt

= 3daHtαr,θE
F
3,a,r,θ − γθI

QF
a,r,θ

dIQSa,r,θ
dt

= 3daαr,θE
QS
3,a,r,θ + 3da,θHtαr,θE

SA
3,a,r,θ − γθI

QS
a,r,θ

dAXa,r,θ
dt

= 3(1− da)αr,θEX3,a,r,θ − γθAXa,r,θ
dRa,r
dt

= γθ
∑
X,θ

(IXa,r,θ +AXa,r,θ)

where X ∈ {F, SI, SA,QF,QS}

where λFa,r,θ = σaβ̂θ
∑
b

(βSb,a,t + βWb,a,t + βOb,a,t)(I
F
b,r,θ + ISIb,r,θ + ISAb,r,θ + τAFb,r,θ + τASIb,r,θ + τASAb,r,θ)

λSIa,r,θ = σaβ̂θ
∑
b

βHb,a,tI
F
b,r,θ,

λSAa,r,θ = σaβ̂θ
∑
b

βHb,a,tτA
F
b,r,θ,

λQa,r,θ = σaβ̂θ
∑
b

βHb,a,tI
QF
b,r,θ

Here S is a measure of the susceptible population (including both naive, vaccinated and waned individ-
uals); λ refers to the force of infection generating first infections (superscript F ), secondary infections
within the home from a symptomatic or asymptomatic first infection (superscript SI or SA) or from
quarantined individuals (superscript Q); α is the rate of movement from exposed to infectious and γ is
the recovery rate; τ is the reduced level of transmission from asymptomatic infection relative to symp-
tomatic infection; d̄ is the probability of that an infection will be symptomatic (which is dependent
on the vaccine status of infected individuals), and Ht is the probably that a symptomatic infection
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will lead to household quarantining. The dependence of these parameters on age (a), region (r) and
variant (θ) is explicitly shown; only Ht is time-dependent and is assumed to be related to the level of
precautionary behaviour φt.

The force of infection, λ, is again partitioned by whether the individual getting infected is the first,
subsequent or from a quarantined household. This risk of infection is driven by the age-dependent
mixing matrices for home, school, work and other contacts (βH , βS , βW and βO respectively) which
scale with the estimated time-dependent precautionary behaviour. The risk of infection also varies
with the variant (as captured by β̂θ) and the age-dependent risk of infection (σa).

1.3 Generic behaviour of the household quarantine model

Using this formation (equation 2) it has been shown that quarantining is able to reduce the repro-
ductive ratio, R, below one even when there is strong within household transmission, as infection
from quarantined individuals cannot escape the household [1]. Given the novelty of this additional
household structure, we now clarify in more detail the action of this formulation. We give a simpler set
of equations (based on a standard SIR model) that contains a similar household structure including
household quarantining reducing transmission between households by a factor q. In particular, we
take the standard SIR model and split the infected class into those first infected within a household
(IF ) and subsequent infections (IS):

dS

dt
= −[βHIF + βO(IF + qIS)]S

dIF
dt

= βO(IF + qIS)S − γIF
dIS
dt

= βHIFS − γIS
dR

dt
= γ(IF + IS)

Again, the transmission rate is split into within household transmission βH and all other transmission
βO (i.e out-of-household transmission, which includes transmission at work or school). As in the full
equations we assume that all within-household infection is generated by the first case, which allows
us to greatly simplify the unfolding dynamics. Here for even greater simplicity we ignore the action
of household quarantining (by setting q = 1) and instead focus on the dynamics as βO is reduced. We
compare this new formulation to the standard SIR model without this additional structure:

dS

dt
= −β̂HIS − β̂OIS

dI

dt
= β̂HIS + β̂OIS − γI

dR

dt
= γI

where we retain the split in transmission type for ease of comparison.

The early growth rate of the two models are r̂ = β̂H + β̂O − γ for the simple SIR model, and r =

1
2

[
βO − 2γ +

√
βO2 + 4βOβH

]
for the household structured version. From this simple comparison,

it is clear that for the simple model the growth rate can remain positive even when control measures
substantially reduce transmission outside the home (β̂O gets reduced); the growth rate will remain
positive so long as β̂H > r. In contrast for the structured version there is always a threshold level of
transmission outside the household (βOc = γ2/(βH+γ)) that is needed to maintain positive growth. As
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such the structured model is better able to capture the actions of quarantining and isolation, reducing
the growth rate even when there is substantial within-household transmission.

For both the simple model given here and the full COVID-19 model, the inclusion of this additional
household structure reduces the amount of within-household transmission compared to a model with-
out this structure — as only the initial infection in each household (IF ) generates secondary within-
household cases. It is therefore necessary to rescale the household transmission rate βH , compared to
the simple model, to obtain the appropriate average within-household attack rate. For the full COVID-
19 model, we find that a simple multiplicative scaling to the household transmission (βH ≈ zβ̂H , with
z = 1.3) generates a comparable match between the new model and a model without this household
structure – even when age structure is included.

1.4 Linking Infection, Vaccination Dynamics and Outcomes

To link together the previous two model sections, we need to focus on the status of those individuals
who get infected. We define a vector of potentially susceptible groups:

Ψa,r = (Sa,r, VS1,a,r, VS2,a,r,WS1,a,r,WS2,a,r, Ra,r,WR1,a,r,WR2,a,r)

The total susceptible variable that feeds into the infection equations (2) is then the dot product of
this susceptible vector with the vector of susceptibility to infection:

Sa,r = Ψa,r ·
(
1, sI1, s

I
2, s

I
2, s

I
W , 0, 0, s

I
R

)
noting that the susceptible in the first waned compartment (WS1) is the same as for those who have
received both doses of vaccine, and that the risk of infection to those in the recovered or first waned
compartment after recovery (WR1) is zero. The values of the susceptibility sI is one minus the pro-
tection against infection (as given in Table 2 of the Methods section), with the weighting between the
protection afforded by AstraZeneca and by mRNA vaccines (Pfizer or Moderna) given by the age and
region specific ratio of the vaccines delivered up to that point in time.
The risk of displaying symptoms (da) used in equation (2) is also based on the vector of susceptibli-
ties:

da = Da Ψa,r ·
(

1, sd1, s
d
2, s

d
2, s

d
W , 0, 0, s

d
R

)
where sd is the ratio of one minus the protection against symptoms relative to the one minus the
protection against infection, and Da is the age-dependent risk of developing symptoms (extracted
from the early case-reporting data [1]).

A similar approach is used to determine the number of hospital admission, the number of ICU admis-
sions, the number of deaths and the level of hospital and ICU occupancy. We first define the rate of
generating newly symptomatic infectious individuals as:

NIa,r,θ(t) = 3daαr,θ
∑
X

EX3,a,r,θ(t)

The modelled rate of admission to hospital or admission to ICU is then given by:

MHospAd
a,r,θ (t) =

∫ ∞
0

HaĤr,θT
H(τ)NIa,r,θ(t− τ)dτ

M ICUAd
a,r,θ (t) =

∫ ∞
0

IaÎr,θT
I(τ)NIa,r,θ(t− τ)dτ

where each term consists of an age-dependent risk (Ha and Ia, taken from the early data), a regional
and variant dependent scaling factor (Ĥr,θ and Îr,θ, estimated through our fitting procedures) and a
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delay between the onset of symptoms and the epidemiological event (TH(τ) and T I(τ), with these
distributions based on recorded data). The modelled death rate follows a similar form, but is amplified
by high levels of hospital occupancy in a region relative to the population size (MHospOcc

r /Nr):

MDeath
a,r,θ (t) =

(
1 + Fr

MHospOcc
r

Nr

)∫ ∞
0

DaD̂r,θT
D(τ)NIa,r,θ(t− τ)dτ

where Fr is estimated at 1600 (CI 770-2800), such that the death rate approximately doubles if 0.06%
of a region is in hospital - which is close to the levels observed at the peak of the Alpha wave.

Hospital and ICU occupancy are then computed based on the recorded distributions (D) of length of
stays [1]:

MHospOcc
a,r,θ (t) =

∫ ∞
0

DH
a (τκHr,θ)M

HospAd
a,r,θ (t− τ)dτ

M ICUOcc
a,r,θ (t) =

∫ ∞
0

DI
a(τκ

I
r,θ)M

ICUAd
a,r,θ (t− τ)dτ

These distributions are scaled for each age-group and variant (by a factor κ); We note that children
and young adults spending less average time in hospital and the average length of stay being longer
for Alpha and Delta variants than for the wildtype variant.

1.5 Precautionary Behaviour

One of the main parameters that drives much of the dynamics is the level of precautionary behaviour
φt,r. We view φt,r as slowly varying (except when there is an abrupt change in policy) and captures how
the risky interactions between susceptible and infectious individuals scale throughout the pandemic.
As such the precautionary behaviour captures the changes in social mixing (including working from
home) as well as behavioural changes such as mask-use and isolation. The level of precautionary
behaviour is estimated for each week and each region as part of our fitting procedure (see below) and
is a scalar parameter between zero and one; when φ = 0 we have returned to pre-pandemic mixing
whereas φ = 1 corresponds to a stringent lock-down. In particular, φt is used to regulate the home,
work, school and other transmission matrices:

βHb,a,t = β̃Ha,b
[
(1− φt) + φtq

H
]

βSb,a,t = β̃Sa,b
[
(1− φt) + φtq

S
]

βWb,a,t = (1− f)β̃Wa,b
[
(1− φt) + φtq

W
]

+ fβ̃Wa,b
(
(1− φt) + φtq

W
)

((1− φt) + φtq
O)

βOba = β̃Ob,a((1− φt) + φtq
O)2

Here, β̃ are the mixing matrices for home, school, work and other contacts during pre-pandemic
circumstances as given by [2]; and q acts to define the scaling during severe retardation of social
mixing (qH = 1.25 such that within household mixing increases during lockdown, qW = 0.2 such that
some work activities have to continue, qS = 0.05 and qO = 0.05). For work contacts we separate
industries that are public-facing (f = 0.3, such a leisure and retail) from other employment; contacts
in public-facing industries are assumed to scale with quadratically accounting for both the number of
individuals at work and the number of people accessing these activities.

While the level of precautionary behaviour is inferred by matching to epidemiological data, it is
interesting to compare the estimates to other more directly recorded measures of behaviour. In Figure
S1 we compare our estimated values to google-mobility data [3] (top two panels) and diary-based
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Fig. S1: Comparison between estimated measures of social mixing with the model (black) and
recorded observations from google mobility [3] and CoMix [4]. In the top two panels we directly
compare the level of precautionary behaviour φt,r with the reduction in movements (transit stations in blue,
workplaces in red and retail in green) as estimated from google mobility [3] observations. This is shown for
London and the North West; there is better qualitative agreement for London which may reflect the degree
to which recorded movements capture population-level mixing in the capital. In the lower four panels we
qualitatively compare the number of contacts recorded by CoMix [4] in four age-groups (0-4, 5-17, 18-59 and
60+) with the estimated mixing from our age-structured transmission matrices. Given the mixing matrices
are re-scaled to generated a transmission rate we would not expect a one-to-one agreement with the recorded
number of contacts.

records of contacts [4] (lower four panels). For the google mobility comparison, we consider the
estimated precautionary behaviour (φt) in comparison to the reduction in movements as measures by
google over this period. We focus on two regions, London and the North West, noting that while
both have similar features, the qualitative agreement for London is far stronger. When comparing to
the Co-Mix study [4], the available data is number of contacts per person in a given age-group, we
therefore compare this to the mixing matrices for those ages (e.g.

∑
b β

H
b,a,t + βSb,a,t + βWb,a,t + βOb,a,t for

age group a), noting that as these measure different things there will not be a one-to-one matching.
We again find that our estimated mixing agrees with the age-structured trends identified by Co-Mix.
A more thorough description of the Precautionary Behaviour and the different behavioural elements
is given in [5].

1.6 Parameter Inference

Key to the accuracy of any model are the parameters that underpin the dynamics. With a model of
this complexity, a large number of parameters are required. Some, such as vaccine efficacy and waning,
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are taken from current literature; while others are inferred from the epidemic dynamics.

Of the inferred parameters there are three basic classes; those, such as scalings of the case-hospitalisation
ratios, that are different between regions and variants; others such as age-dependent susceptiblity are
universal (the same for all regions and variants); while the level of precautionary behaviour over time
changes on a weekly time-scale. Bayesian inference, using an MCMC process, is applied to each of
the seven NHS regions in England to determine posterior distributions for each of the regional param-
eters (further details are given in [6]). The distribution of parameters leads to uncertainty in model
projections, which is represented by the 95% prediction interval in all graphs (this interval contains
95% of all predictions). We note that when we compare two scenarios (for example vaccination with
a 3-week interval, with vaccination using a 12-week interval) we compared simulations with the same
parameters chosen from the posterior distributions - and then calculated means and 95% prediction
intervals based on these results.

As the epidemic has progressed, new posterior distributions based on the latest data are initialised from
previous MCMC chains – ensuring a rapid fit to historical data. In general this refitting process has
been performed weekly (or twice weekly) throughout the pandemic. For the time period of relevance in
this paper (December 2020 - September 2021), we matched to seven observations: hospital admissions,
hospital occupancy, ICU occupancy (noting that data on ICU admissions is not available), deaths,
proportion of pillar 2 (community) test that are positive, the proportion of pillar 2 tests that are
S-gene negative (as a signal of the ratio of wild-type to Alpha variant, then a signal of the ratio of
Delta to Alpha variant), and the early REACT data as a measure of sero-prevalence [7]. As such our
log-likelihood function is given by:

LogLike(Datar|Θr) =
∑
t

lP (Hospital Admissionsr(t)|
∑
a,θ

MHospAd
a,r,θ (t)) +

lP (Deathsr(t)|
∑
a,θ

MDeath
a,r,θ (t)) +

lP (Hospital Occupancyr(t)|
∑
a,θ

MHospOcc
a,r,θ (t)) +

lP (ICU Occupancyr(t)|
∑
a,θ

M ICUOcc
a,r,θ (t)) +

lB(Positive Testsr(t)|Total Testsr(t),
∑
a,θ

FθNIa,r,θ(t)/
∑
a

Na,r) +

lB(S-gene Neg Testsr(t)|Total Testsr(t),
∑
a

NIa,r,Alpha(t)/
∑
a,θ

NIa,r,θ(t)) +

lB(REACT Seror(t)|REACT Testsr(t),
∑
a,θ

∫ t

0
NIa,r,θ(τ)dτ/

∑
a

Na,r)

where lP and lB are the logs of Poisson and Binomial probabilities, Na,r is the population size of
individuals in age-group a and region r, Fθ is a variant dependent level of reporting, and Θr is the
set of all model parameters for region r. We note that in [6], which was written in the early stages of
the pandemic, we did not fit to S-gene data as we had been dealing with a single variant. Although
not part of the underlying transmission dynamics, the seven quantities for each spatial region can be
generated from the number, age and type of infection within the model, as described above.

Figure S2 shows an example of one chain for the precautionary behaviour, φt,r, during the period
September 2020 to March 2021 that captures the bulk of the Alpha wave. The chain is 10,000
iterations of the MCMC process, and refers to the precautionary behaviour for the Midlands region; a
typical chain from the weekly re-fitting is around 3-5,000 iterations. The figure shows the individual
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Fig. S2: Example of an MCMC chain for φt in the Midlands from the main Alpha wave. Throughout,
the plotted data is colour-coded (from blue to red) corresponding to the date it represents. The top panel show
the behaviour of the 29 weekly values of φ across 10,000 iterations of the chain; the central panel shows the
mean φ values (line) together with the inter-quartile and 95% credible interval for each week, again taken from
10,000 iterations of the chain; while the lower panel shows the correlation between the value of φ against the
value the previous week.
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chains for the 29 weekly values of φt (top panel); the mean, inter-quartile range and 95% credible
intervals for each parameter through time; and the correlation between φt and the value the preceding
week.

2 Supplementary Methods

2.1 Peak Demand

In the main paper we have focused on the total number of hospital admissions and deaths as an
appropriate public health measure, with the applied aim of minimising both. However, the burden on
health services is often more closely related to the peak numbers. Here we compare the peak numbers
of deaths, hospital admissions and hospital occupancy, reporting values for the Alpha (December 2020
to May 2021) and Delta (May to September 2021) waves within our simulation intervals.

Table S1: Peak in deaths, hospital admissions and hospital occupancy in England in two periods corresponding
to the Alpha wave (from 8th December 2020 to 15th May 2021) and Delta waves (from 16th May 2021 to 1st
September 2021), as observed and from four model scenarios as described in the main text. For each model
scenario we give the mean and 95% prediction intervals from 400 samples of the posterior distribution. It should
be noted that all model results assume the same relaxation of control measures throughout 2021.

Alpha, December 2020 - May 2021

Deaths Hospital Admissions Hospital Occupancy

Observed 1250 3818 31,459

(i) Default 1170 (1120-1230) 3710 (3610-3810) 31,500 (30900-31900)

(ii) Prioritise youngest 1270 (1220-1340) 3900 (3790-4000) 33,100 (32,500-33,500)
(iii) 3-week interval, de-
fault efficacy

1170 (1120-1230) 3710 (3610-3810) 31,500 (30,900-31,900)

(iv) 3-week interval,
lower efficacy

1170 (1120-1230) 3710 (3610-3820) 31,500 (30,900-31,900)

Delta, May 2021 - September 2021

Deaths Hospital Admissions Hospital Occupancy

Observed 108 851 6057

(i) Default 120 (110-140) 820 (790-870) 6100 (5900-6300)

(ii) Prioritise youngest 220 (10-2040) 570 (20-4670) 4200 (400-34,400)
(iii) 3-week interval, de-
fault efficacy

220 (180-260) 1800 (1580-2080) 11,200 (9800-12,800)

(iv) 3-week interval,
lower efficacy

340 (250-450) 2360 (1990-2980) 14,700 (12,200-18,400)

As expected from the results of the main paper, changing to a three-week interval does not substantially
change the Alpha variant peak (which occurred shortly after vaccination had begun), but does lead
to an increase in the peaks for all three measures during the Delta waves. In contrast, vaccinating
the youngest first leads to a slightly larger Alpha variant peak and a larger peak in deaths during the
Delta wave; the mean hospital admissions and hospital occupancy peaks are reduced, although the
upper 95% prediction interval is larger due to greater variability between replicates.

2.2 Comparison between Model and Data for Age-structured Severe Disease

It has been clear throughout the pandemic that age-structure plays a major role in both the acquisition
of infection and the severity of disease - with the risk of hospital admission and death increasing rapidly
with age. In the main text we compare model results with data for the entire population, focusing on
the total daily number of hospital admissions (associated with a positive COVID-19 test) and the total
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number of daily deaths (within 28 days of a positive test). Here we extend this comparison, plotting
data and model results on the same figure for six different age ranges (Fig. S3 and Fig. S4). We note
that the age-groups for which hospital admissions are reported do not necessarily correspond with the
5-year age bins used within the model simulations. We assume homogeneity within an age-group in
the model (i.e. all individual aged 0 to 4 have the same mean risk of infection and hospital admission);
this means that when computing the expected number of daily admissions for those aged 6-17, for
example, we sum 80% of the second age-group in the model (age 5-9), 100% of the third age-group
(age 10-14) and 60% of the forth age-group (age 15-19). For deaths, from the empirical data we know
the age of each person in years and so are able to make a comparison to simulated outputs using an
amalgamation of 5-year age groups.

It should be noted, as described above, that the inference processes only use aggregate (non-age-
structured) data to determine the match between model and the unfolding epidemic. The exception
is the risk of hospital admission and death following infection, which for each variant of concern are
matched to the total reported for each age group. In general, we find that during the second wave
(December 2020 - March 2021) the model tends to slightly under-estimate hospital admissions and
over-estimate deaths in the 45-64 age group. However, it captures the bulk properties of the waves,
especially the dominance of severe disease in older age-groups.

Fig. S3: Comparison between models and data for age-structured hospital admissions. We depict
the data as blue dots and results from the model simulations in black - no attempt is made to add the appropriate
noise to these raw deterministic simulations. The solid lines corresponds to mean values and the shaded area
shows the 95% prediction interval (i.e. it contains 95% of all predictions at each point in time).
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Fig. S4: Comparison between models and data for age-structured deaths. We depict the data as red
dots and results from the model simulations in black - no attempt is made to add the appropriate noise to these
raw deterministic simulations. The solid lines corresponds to mean values and the shaded area shows the 95%
prediction interval (i.e. it contains 95% of all predictions at each point in time).
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2.3 Comparison between Model and Data for the Seven NHS Regions of Eng-
land

A similar comparison can be made against the model and data for the seven NHS regions (and England
as a whole).

Fig. S5: Comparison between models and data for regional hospital admissions. We depict the data
as blue dots and results from the model simulations in black - no attempt is made to add the appropriate noise
to these raw deterministic simulations. The solid lines corresponds to mean values and the shaded area shows
the 95% prediction interval (i.e. it contains 95% of all predictions at each point in time).

Fig. S6: Comparison between models and data for regional deaths. We depict the data as red dots
and results from the model simulations in blue - no attempt is made to add the appropriate noise to these
raw deterministic simulations. The solid lines corresponds to mean values and the shaded area shows the 95%
prediction interval (i.e. it contains 95% of all predictions at each point in time).
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2.4 Sensitivity to Vaccine Efficacy Parameters

Most of the model parameters are inferred by matching model output to available regional data.
The exception are the parameters governing vaccine efficacy, which generally require individual level
linked datasets that are able to compare levels of infection, severe disease and mortality between
vaccinated and unvaccinated individuals. Our efficacy values have been taken from a range of UKHSA
documents produced over the course of the pandemic [8]. Here we consider sensitivity to these vaccine
efficacy input parameters, noting that each alternative set of vaccine efficacy values requires that the
model is re-fit to the post-vaccination data. This refitting precludes an exhaustive sensitivity analysis.
Instead, we consider the point estimates, lower and upper confidence intervals as given in the SAGE
subcommittee consensus document [9]. (In this analysis we have not changed the level of onward
transmission following infection in vaccinated individuals.) We assume efficacies either take the lower
(or upper) confidence interval for all vaccine efficacy parameters, thereby generating extreme lower (or
upper) bounds on the impact of vaccination. For each set of vaccine efficacies, we refit the model and
generate the results shown in Fig. 1 of the main paper. We present the vaccine parameters used and
the model results in the same format as Fig. 1, before providing a tabulated set of results that allows
for a more direct comparison.
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2.5 Mid-Point Efficacy Estimates

Table S2: Vaccine efficacy parameters corresponding to midpoint estimates of the SAGE Vaccine Effectiveness
Expert Panel subgroup [9]. We display the assumed percentage protection from the two vaccine types against
the Alpha and Delta variants after one dose (D1), after two doses (D2, shown for the dose interval gaps of 12-
weeks/3-weeks), and after waning (W). These values correspond to relatively slow waning of vaccine protection
as in the main text (ω1 = 100−1 per day, ω2 = 320−1 per day, ω̄ = 420−1 per day) [10].

AstraZeneca Pfizer/Moderna
Protection Alpha Delta Alpha Delta
Against D1 D2 W D1 D2 W D1 D2 W D1 D2 W

Infection 60 80/65 0 40 65/48 0 60 85/77 0 55 90/80 0

Symptoms 60 80/66 0 45 65/49 0 60 90/82 0 55 90/85 0

Hospital 80 95 70 80 95 70 80 95 70 80 99 70

Mortality 80 95 70 80 95 70 80 95 70 80 99 70

Transmission 45 45 20 30 30 20 45 45 20 30 30 20
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Fig. S7: Projected changes in daily deaths and hospital admissions with differing vaccination
patterns using mid-point SAGE vaccine efficacy estimates. This is the equivalent of Fig. 1 in the
main text, but uses the mid-point estimates of vaccine efficacy from the SAGE Vaccine Effectiveness Expert
Panel subgroup [9], as give in Table S2. The model is re-fitted to the data using the parameters before the
counterfactual scenarios are simulated; all model results are from 400 samples of the posterior distribution.
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2.6 Lower Efficacy Estimates

Table S3: Vaccine efficacy parameters corresponding to the lower bounds of the SAGE Vaccine Effectiveness
Expert Panel subgroup [9]. We display the assumed percentage protection from the two vaccine types against
the Alpha and Delta variants after one dose (D1), after two doses (D2, shown for the dose interval gaps of 12-
weeks/3-weeks), and after waning (W). These values correspond to relatively slow waning of vaccine protection
as in the main text (ω1 = 100−1 per day, ω2 = 320−1 per day, ω̄ = 420−1 per day) [10].

AstraZeneca Pfizer/Moderna
Protection Alpha Delta Alpha Delta
Against D1 D2 W D1 D2 W D1 D2 W D1 D2 W

Infection 55 65/55 0 30 60/37 0 55 65/55 0 40 80/72 0

Symptoms 55 70/55 0 40 60/40 0 55 85/78 0 50 80/72 0

Hospital 75 80 70 75 90 70 75 90 70 75 90 70

Mortality 75 80 70 75 85 70 90 80 70 75 90 70

Transmission 45 45 20 30 30 20 45 45 20 30 30 20
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Fig. S8: Projected changes in daily deaths and hospital admissions with differing vaccination
patterns using lower-bound SAGE vaccine efficacy estimates. This is the equivalent of Fig. 1 in the
main text, but uses the lower-bound estimates of vaccine efficacy from the SAGE Vaccine Effectiveness Expert
Panel subgroup [9], as give in Table S3. The model is re-fitted to the data using the parameters before the
counterfactual scenarios are simulated; all model results are from 400 samples of the posterior distribution.
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2.7 Upper Efficacy Estimates

Table S4: Vaccine efficacy parameters corresponding to the upper bounds of the SAGE Vaccine Effectiveness
Expert Panel subgroup [9]. We display the assumed percentage protection from the two vaccine types against
the Alpha and Delta variants after one dose (D1), after two doses (D2, shown for the dose interval gaps of 12-
weeks/3-weeks), and after waning (W). These values correspond to relatively slow waning of vaccine protection
as in the main text (ω1 = 100−1 per day, ω2 = 320−1 per day, ω̄ = 420−1 per day) [10].

AstraZeneca Pfizer/Moderna
Protection Alpha Delta Alpha Delta
Against D1 D2 W D1 D2 W D1 D2 W D1 D2 W

Infection 70 90/77 0 50 75/55 0 70 90/84 0 70 95/92 0

Symptoms 70 90/77 0 55 75/55 0 70 95/92 0 65 95/92 0

Hospital 85 99 70 85 99 70 85 99 70 85 99 70

Mortality 85 99 70 85 99 70 85 99 70 85 99 70

Transmission 45 45 20 30 30 20 45 45 20 30 30 20
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Fig. S9: Projected changes in daily deaths and hospital admissions with differing vaccination
patterns using upper-bound SAGE vaccine efficacy estimates. This is the equivalent of Fig. 1 in the
main text, but uses the upper-bound estimates of vaccine efficacy from the SAGE Vaccine Effectiveness Expert
Panel subgroup [9], as give in Table S4. The model is re-fitted to the data using the parameters before the
counterfactual scenarios are simulated; all model results are from 400 samples of the posterior distribution.
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2.8 Comparison between vaccine efficacy assumptions.

We now compare the aggregate results for the three vaccine efficacy assumptions and four models
of alternative vaccination priorities (Table S5, Fig. S10). Although there are large and profound
differences between the assumptions for vaccine efficacy, by refitting each to match the observed
epidemic we considerably reduce the variability in our results.

Table S5: Deaths and hospital admissions in England from 8th December 2020 to 1st September 2021, as
observed (top row) and from four model scenarios and four sets of vaccine efficacy parameters (default as in
the main paper, and mid-point estimate, low and high confidence intervals as determined by [9]. We give the
mean and 95% prediction intervals for each measure. All model results are from 400 samples of the posterior
distribution.

Model VE Deaths Hospital Admissions

Observed 62163 243573

(i) Default

default 61,200 (59,900-62,400) 245,800 (243,500-247,900)
mid 61,100 (60,200-62,000) 242,600 (240,000-244,600)
low 61,300 (59,200-62,600) 243,000 (239,000-247,200)
high 61,100 (58,900-63,000) 238,000 (230,600-242,400)

(ii) Prioritise youngest

default 84,500 (71,200-163,600) 261,400 (223,600-487,100)
mid 82,400 (71,900-140,200) 256,600 (223,900-380,900)
low 81,400 (71,500-122,700) 259,300 (226,800-375,600)
high 81,600 (70,300-155,200) 245,900 (215,500-404,900)

(iii) 3-week interval, de-
fault efficacy

default 69,300 (67,000-71,100) 314,100 (302,800-329,300)
mid 69,000 (67,300-71,100) 304,800 (294,100-319,900)
low 68,900 (66,400-71,300) 293,800 (283,500-303,800)
high 70,600 (66,900-74,400) 313,800 (297,300-334,700)

(iv) 3-week interval,
lower efficacy

default 74,900 (70,700-79,900) 341,400 (322,400-368,600)
mid 72,100 (69,800-75,300) 324,500 (310,100-344,700)
low 72,100 (68,700-75,700) 314,300 (300,000-327,900)
high 74,700 (70,200-79,700) 336,900 (315,900-363,500)
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Fig. S10: Deaths and hospital admissions in England from 8th December 2020 to 1st September 2021. The
four models for vaccine priority are clustered on the x-axis, while colours represent the four vaccine efficacy
papers; the horizontal line shows the observed value. Bar heights correspond to the mean and the whiskers to
the 95% prediction interval (spanning the 2.5th to 97.5th percentiles) for each measure. These results reflect
the values in Table S5, and come from simulations using 400 samples from the appropriate parameter posterior
distributions.
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