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Analysis of Mutational Effects

a-Synuclein (aS) mutations were encoded into bit vectors of length 19, where the first three bits
correspond to the position of the mutation within the sequence of aS (N-terminus, NAC, and C-
terminus, defined below). The following sixteen bits correspond to the type of mutation. The exact
details of these encodings can be found in Tables S1-S2. Using the assigned class labels associated
with each mutation, simple correlation analysis was performed by averaging these labels to
determine the effect on each type of mutation (Table S3). These analyses were further segmented
by the three domains of aS to elucidate rough positional preferences for the varying types of
mutations studied (Tables S4-S6).

To further group and visualize the effects of these mutations, the aS mutation bit vectors
were then clustered using the unsupervised machine learning KMeans partitioning algorithm.
Clustering was performed into k=3 clusters to broadly represent the possible phenotypes of no
effect on aggregation, reduction in aggregation rate, and acceleration of aggregation rate. Once
cluster labels were assigned, the bit vectors were projected into two dimensions using principal
component analysis (PCA) for visualization (Figure 11, main text). Both KMeans clustering and
PCA were performed using the scikit-learn python library while visualization utilized matplotlib
[1,2]. While it is evident that these simple metrics demonstrate some preferential segregation of
aS aggregation phenotypes, more sophisticated machine learning approaches will be required for
effective prediction.

[1] Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:
2825-30.

[2] Hunter, JD Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9:90-95.

S2



Table S1. Amino Acid Classification

Type Members
Positive Charge (+) K, R, H
Negative Charge (-) D,E

Nonpolar (nP) A, V,LLILM, W F
Polar (P) C,S,Y, T,NQ, K. R H D,E,| Y
Small (Sm) G, A S, C
Large (Lg) R,N,D,E,Q H,LLLK, M,F, T, W, Y,V
Bulky (B) V,T,Y,F, W I,L,H

Non-bulky (nB)

A,R,N,D,CE QG K,M,S

-Branched (p) T,V, I
Non- 3-Branched (nf}) A,R,N,D,C,E,Q,H,L,K, M,F,S, W, Y
Proline (Pro) P
Glycine (Gly) G
Proline/Glycine (PG) P,G

All others (X)

All except noted amino acid

Table S2. Mutation Encoding

Bit Feature

0 N-Terminus: Position 1-60
1 NAC: Position 61-95

2 C-Terminus: Position 96-140
3 +> -

4 -2+

5 nP > P

6 P 2 nP

7 Sm > Lg

8 Lg 2 Sm

9 nB—>B

10 B 2> nB

11 np 2 p

12 B2 np

13 Pro 2 X

14 X = Pro

15 Gly > X

16 X 2> Gly

17 PG 2> X

18 X =2 PG
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Table S3. Aggregation Scores Averaged Over Entire Protein for Mutation Types

Type Average SD Support
+ > — -0.500 0.866 4
- >+ 1.000 0.000 6
nP > P -0.300 0.900 20
P > nP -0.368 0.666 19
Sm > Lg -0.125 0.857 16
Lg 2 Sm -0.429 0.660 21
nB > B 0.000 0913 12
B > nB -0.633 0.706 30
np 2 p 0.429 0.904 7
B2 np -0.588 0.600 17
Pro > X 1.000 0.000 5
X = Pro -0.879 0.326 33
Gly > X -0.286 0.700 7
X 2> Gly -0.750 0.433 4
PG> X 0.250 0.829 12
X 2> PG -0.853 0.354 34
+ Cntrl -0.500 0.500 2
— Cntrl 0
nP Cntrl -0.333 0.667 9
P Cntrl -0.107 0.900 28
Sm Chntrl 0.600 0.490 5
Lg Cntrl -0.356 0.821 45
nB Cntrl 0.000 0.771 37
B Cntrl -0.625 0.484 8
nf3 Cntrl -0.216 0.824 51
B Cntrl -1.000 0.000 1
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Table S4. Aggregation Scores Averaged Over N-Terminus for Mutation Types

Type Average SD Support
+ > - -0.500 0.866 4
- >+ 1.000 0.000 4
nP > P 0.111 0.994 9
P > nP 0.000 1.000 2
Sm > Lg 0.200 0.872 10
Lg 2> Sm 0.000 1.000 2
nB > B 0.667 0.745 6
B > nB -0.143 0.990 7
np 2 p 1.000 0.000 5
B2 np -0.667 0471 3
Pro > X 0
X = Pro -0.813 0.390 16
Gly > X -0.333 0471 3
X =2 Gly 0
PG> X -0.333 0471 3
X 2> PG -0.813 0.390 16
+ Cntrl -0.500 0.500 2
— Cntrl 0
nP Cntrl 0.000 0.816 3
P Cntrl 0.118 0.900 17
Sm Cntrl 1.000 0.000 1
Lg Cntrl -0.048 0.898 21
nB Cntrl -0.050 0.865 20
B Cntrl 0.000 0.000 1
nf3 Cntrl 0.000 0.933 23
B Cntrl 0
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Table S5. Aggregation Scores Averaged Over NAC for Mutation Types

Type Average SD Support
+ > — 0
-2+ 1.000 0.000 2
nP > P -0.800 0.400 10
P > nP 0.000 1.000 2
Sm > Lg -1.000 0.000 4
Lg 2> Sm -0.571 0.728 7
nB > B -1.000 0.000 2
B > nB -0.688 0.583 16
np 2 p -1.000 0.000 2
B> np -0.571 0.623 14
Pro > X 0
X = Pro -0.941 0.235 17
Gly > X -0.250 0.829 4
X 2> Gly -0.750 0.433 4
PG> X -0.250 0.829 4
X 2> PG -0.889 0.314 18
+ Cntrl 0
— Cntrl 0
nP Cntrl -0.500 0.500 2
P Cntrl -0.167 0.898 6
Sm Cntrl 0.333 0.471 3
Lg Cntrl -0.500 0.732 14
nB Cntrl 0.000 0.866 8
B Cntrl -0.500 0.500 2
nf3 Cntrl 0.333 0.943 3
B Cntrl -1.000 0.000 1
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Table S6. Aggregation Scores Averaged Over C-Terminus for Mutation Types

Type Average SD Support
+ > — 0
-2+ 0
nP > P 1.000 0.000 1
P > nP -0.467 0.499 15
Sm > Lg 0.000 0.000 2
Lg 2> Sm -0.417 0.493 12
nB > B -0.500 0.500 4
B > nB -1.000 0.000 7
np 2> p 0
B> np 0
Pro > X 1.000 0.000 5
X = Pro 0
Gly 2> X 0
X =2 Gly 0
PG> X 1.000 0.000 5
X 2> PG 0
+ Cntrl 0
— Cntrl 0
nP Cntrl -0.500 0.500 4
P Cntrl -0.800 0.400 5
Sm Cntrl 1.000 0.000 1
Lg Cntrl -0.800 0.400 10
nB Cntrl 0.111 0.314 9
B Cntrl -0.800 0.400 5
nf3 Cntrl -0.480 0.574 25
B Cntrl 0
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Analysis of Aggregation Conditions

It is widely known that aggregation conditions can significantly influence fibril formation kinetics
and the assortment of fibril cryo-EM structures published in recent years make it clear that this
also influences fibril structure (see Figure 8 and accompanying discussion). Given the scope of
our data set, we took the opportunity to analyze the effects of buffer, salt, shaking speed, and aS
concentration on aggregation rate. We did this only among the familial mutations, where there are
multiple experiments to compare for the same mutation, performed in different laboratories.
Specifically, we categorized the conditions in the following ways:

Buffer — Tris, PBS, or Other

Salt — High, Low, or None (Other not included)

Shaking Speed — Fast, Medium, Slow, or None (Other not included)
aS Concentration — High, Normal, or Low (N/A not included)

We removed the Other and N/A categories as noted since these could not easily be interpreted.
For each familial mutant, then aggregation scores were averaged within these categories using a
simple NumPy program [3]. Those data are shown in Tables S7, S8, S9, and S10. To examine
the effects of switching from one condition to another for a given mutant and between two mutants,
we created the heat maps (Figures S1, S2, S3, and S4) that accompany each table in seaborn [4].
The heat map color code indicates whether the change indicated in a given box (from the condition
on the abscissa to the condition on the ordinate) results in an increase (red) or decrease (blue) in
the aggregation score. The diagonal boxes have been colored black since these are identity
operations.

Since the mutational effects are already normalized to the corresponding WT aggregation, our
analysis shows that a mutational effect can be exaggerated or decreased in a different buffer. For
example, while A3oP has a score of -0.75 in PBS, it has a score of -0.31 in Tris, so the slowing of
aggregation is muted somewhat in Tris buffer, with a net increase of +0.44. However, if one
attempts to generalize this by averaging across all PBS-to-Tris changes, one obtains an average
value of -0.12 with a standard deviation of 0.31; the variation is larger than the effect size. This
shows that there is no generalizable PBS-to-Tris effect. More generally, when one examines
changes to aggregation conditions for a given mutant (within boxed regions near the diagonal on
the heat maps) one can see that the effects are typically smaller (colors less intense) than changes
between mutants. Collectively, we interpret these data to show that while one must be careful to
consider the effects of buffer and have a matched WT experiment to use in normalization, one can
safely compare normalized aggregation scores across a set of mutants.

[3] Harris CR, Millman K1J, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, et al. Array programming with NumPy. Nature. 2020;585:357-62.

[4] seaborn: https://doi.org/10.5281/zenodo.883859
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Table S7. Aggregation Scores Averaged Over Each Familial Mutant and Buffer Condition

Type Average Support
A30P PBS -0.75 4
A30P Tris -0.31 13
A30P Other -0.67 6
E46K PBS 1.00 3
E46K Tris 0.75 8
E46K Other 0.60 5
H50Q PBS 1.00 1
H50Q Tris 0.83 6
H50Q Other 0.80 5
G51D PBS 0.00 0
G51D Tris -0.20 5
G51D Other -1.00 4
AS53E PBS 0.00 0
AS53E Tris -0.50 2
AS53E Other -1.00 3
AS53T PBS 1.00 5
AS53T Tris 0.94 16
AS53T Other 0.86 7
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Figure S1. Effects of Buffer Conditions on Aggregation Score
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Table S8. Aggregation Scores Averaged Over Each Familial Mutant and Salt Condition

Type Average Support
A30P High -0.58 12
A30P Low 0.67 3
A30P None -0.75 8
E46K High 1.00 4
E46K Low 1.00 3
E46K None 0.56 9
H50Q High 0.80 5
H50Q Low 0.00 0
H50Q None 1.00 4
G51D High -0.33 3
G51D Low 0.00 0
G51D None -0.33 3
AS53E High 0.00 0
AS53E Low 0.00 0
AS53E None -0.80 5
A53T High 0.85 13
AS53T Low 1.00 4
A53T None 1.00 11
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Figure S2. Effects of Salt Conditions on Aggregation Score
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Table S9. Aggregation Scores Averaged Over Each Familial Mutant and Shaking Speed

Type Average Support
A30P Fast -0.50 2
A30P Medium -0.50 2
A30P Slow -0.75 8
A30P None -1.00 2
E46K Fast 0.00 0
E46K Medium 0.00 4
E46K Slow 1.00 7
E46K None 0.00 0
H50Q Fast 0.71 7
H50Q Medium 1.00 1
H50Q Slow 1.00 3
H50Q None 0.00 0
G51D Fast -1.00 4
G51D Medium 0.50 2
G51D Slow -1.00 2
G51D None 0.00 0
AS53E Fast -1.00 1
AS53E Medium 0.00 1
AS53E Slow -1.00 3
AS3E None 0.00 0
AS53T Fast 1.00 1
A53T Medium 1.00 4
AS53T Slow 0.83 12
AS53T None 1.00 2
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Figure S3. Effects of Shaking Speed on Aggregation Score
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Type Average Support
A30P High -0.86 7
A30P Normal -0.40 5
A30P Low -1.00 2
E46K High 1.00 5
E46K Normal 0.20 5
E46K Low 1.00 1
H50Q High 1.00 1
H50Q Normal 1.00 2
H50Q Low 0.80 5
G51D High -1.00 1
G51D Normal 0.50 2
G51D Low -1.00 2
AS53E Normal -0.50 2
AS53E Low -1.00 1
AS53E High -1.00 2
AS53T Normal 0.75 8
AS53T Low 1.00 2

'

Table S10. Aggregation Scores Averaged Over Each Familial Mutant and aS Concentration
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Figure S4. Effects of aS Concentration on Aggregation Score
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