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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Elbasir and colleagues introduce viRNAtrap a pipeline that uses a deep learning model to identify 

viral reads and assembles them into contigs. The pipeline is then applied on the non-human reads 

from tcga samples. The authors than do descriptive analysis on virus occurrence and well as clinical 

progression and survival analyses on selected viral families. While the manuscript covers a highly 

important question and provides a nice connection of method development and large data analysis, 

it leaves several questions unanswered. 

 

Major: 

A1) Methodological Novelty 

Vineet Bafna’s lab recently introduced a closely related tool DeepViFi 

(https://dl.acm.org/doi/pdf/10.1145/3535508.3545551) and compared it to ViraMiner, 

DeepVirFinder, ViFi, and an off-the-shelf seq2seq mode. 

Such a comparison, e.g. on the data of the benchmark provided in that paper would be very helpful 

to judge whether there is indeed a substantial in performance. 

Further, it should be acknowledged that not only bacteria infecting viral reads have been classified 

using deep learning, but also human infecting viral reads have been classified using machine learning 

models earlier, e.g HIVF (https://doi.org/10.1111/tbed.13314) or DeePac ( 

https://doi.org/10.1093/nargab/lqab004). 

 

A2) nfluence of contaminants / false positive viral identifications 

It can by no means be expected that the non-human and PhiX reads are all of viral origin, but many 

will be bacterial reads (and their phages), fungi etc. same as possible index swapping artefacts or run 

carryovers of Illumina machines. There are multiple approaches available to account for that on 

methodological level in the learning approaches, e.g., deepViFi has an open set approach, DeePac 

uses multiclass learning to distinguish them, but even more so quick a kraken (or similar) analysis of 

these reads to filter out non-likely viral reads appears appropriate before actually running viRNAtrap 

to ensure that no reads of other origin contaminate the viral assembly and lead to potential false 

positive viral identifications. 

Further, I could not find sufficient information on the quality standards for the viral assembly and 

blast analysis. What was the minimal contig length considered? How homogeneous was the 

coverage on the contigs? What were the standards of the blast analysis? Why were non-reference 

 



viruses only deeper investigated when occurring in more than one sample? It would be very helpful 

if the authors provided quality information on the assembly for each identified virus. 

 

 

 

A3) The analysis of the clinical outcome is interesting, but not entirely novel, e.g. 

https://doi.org/10.3390/v12090956 studied HERV expression in tcga and their impact on survival. 

Surprisingly, this manuscript is cited with regard to the ancestry of HERV, but not in the context of 

survival (while it basically addresses the same question as the authors do, the authors claim that the 

impact of HERVs on cancer progression and clinical outcomes is not well understood). It would be 

helpful if the authors clarified these similarities 

 

 

Minor: 

B1) The software is not available as claimed by the authors in the Code and Software Submission 

Checklist. There was no demo on the authors’ data available and scripts for reproduction which are 

claimed to be available in the submission checklist, are not given, rather the manuscript states they 

will be made available after publication (why not for review now?). Typical installation or run times 

are not given as stated. 

 

B2) Similarly, it needs to be clarified how viral databases will be accessible (without restrictions) as 

they are currently not provided. 

 

B3) I could not find the word document specifying the primer design in the submission 

 

B4) Multiple Testing. The statistical methods section does not state that any multiple testing 

correction was performed. Although the manuscript (e.g. in figure 2) only shows a limited number of 

tests, these include some rare choices of viruses (e.g. torquevirus) making me assume that the 

authors tested all viruses on all cancer types (or later on all HERVs etc.). Most p-values shown in 

figure 2 for instance are not significant any longer after Bonferroni correction for the roughly 50 

observed (and 140 theoretically possible) combinations of cancer tissues and viral families. There are 

smarter ways to do multiplicity correction than Bonferroni and maybe the authors have some 

(unstated) assumptions to reduce the hypothesis space, but with the current information provided 

these findings should not be considered statistically significant. Further, there should be a full 

reporting of all results (e.g. in the supplement) not only those chosen for discussion. 

 



 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors present a novel pipeline to analyse viral reads in human RNA sequencing data sets. 

Based on a two step approach they first use a deep learning model trained on human and viral reads 

to identify potential viral reads. In a second step these reads are assembled using a simple overlap 

based approach. The resulting contigs are then analysed with blastn to identify viral sequences. 

Based on the data presented it is difficult to assess the performance of their approach as a 

description of the read support for the individual viral detections is missing. 

 

Major 

- The authors seem to only present virus positivity (1) or negativity (0) in the supplementary tables 

3,4 and 9. For an evaluation of virus positivity the number of supporting reads would be very helpful. 

- The authors could compare their approach to a simple assembly of the extracted reads and analysis 

of the resulting contigs. This would enable to evaluate whether they loose virus supporting reads 

and thereby sensitivity by their approach and enable to evaluate the speed improvement achieved. 

- The authors restrict their analysis to the reads not mapped to the human reference genome. It is 

unclear to me how this affects the detection of HERVs that are present in the human reference 

genome and should therefore not be detected in an optimal way. 

 

Minor 

- Did the authors correct for multiple testing throughout the manuscript when testing for 

associations e.g. across entities or mutated genes 
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We thank the two reviewers for their insightful comments and suggestions on our manuscript 

(NCOMMS-22-33903). We have addressed all comments and believe the revisions have 

substantially improved this work and helped further support the utility of our tool viRNAtrap. 

Please see below a point-by-point response describing how we have revised and improved our 

manuscript. References cited in the response to either reviewer appear together after the 

responses to reviewer 2. If a reference is cited in text that also appears in the manuscript, the 

citation number in this document corresponds to the reference list in this document and the 

citation number is different in the manuscript. All text changes related to any reviewer comment 

are in red font, even minor changes. Some minor rewording and reformatting changes unrelated 

to the reviewer comments remain in black font. 

 

Reviewer #1 (Remarks to the Author): 

 

Elbasir and colleagues introduce viRNAtrap a pipeline that uses a deep learning model to 

identify viral reads and assembles them into contigs. The pipeline is then applied on the non-

human reads from tcga samples. The authors than do descriptive analysis on virus occurrence 

and well as clinical progression and survival analyses on selected viral families. While the 

manuscript covers a highly important question and provides a nice connection of method 

development and large data analysis, it leaves several questions unanswered. 

 

Major:  

A1) Methodological Novelty 

Vineet Bafna’s lab recently introduced a closely related tool DeepViFi 

(https://dl.acm.org/doi/pdf/10.1145/3535508.3545551) and compared it to ViraMiner, 

DeepVirFinder, ViFi, and an off-the-shelf seq2seq mode. 

Such a comparison, e.g. on the data of the benchmark provided in that paper would be very 

helpful to judge whether there is indeed a substantial in performance. 

 

We thank reviewer for this comment. We completely agree that a comprehensive 

benchmarking comparison would further support the need for our viRNAtrap method. To this 
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end, we compared the performance of viRNAtrap to existing methods as the reviewer 

suggested. The methods to which we compared against are: DeepViFi, ViraMiner, 

DeepVirFinder and what was named ‘off-the-shelf seq2seq’ in the DeepViFi paper.  The other 

methods were retrained using our training set and evaluated using our test set. Importantly, 

viRNAtrap outperforms all trained predictors in distinguishing viral from human reads, based 

on accuracy, ROC AUC, AUPR, recall and F1 score. DeepVirFinder outperformed all methods 

only on precision. viRNAtrap is trained to optimize the recall, because the true viruses 

captured are most important when searching for viruses in cancer, and when alignment-based 

methods are used to further validate any positives   

We now report the results of this analysis in the revised Results section and describe 

how we did the comparison in the revised Methods subsection entitled “Model performance 

evaluation and comparison to existing methods” 

“We evaluated the performance of the model using the Area Under the Receiver 

Operating Characteristic Curve (AUROC), the Area Under the Precision Recall 

Curve (AUPRC), as well as accuracy, precision, recall, and F1-score, for the test 

dataset. We trained multiple models with different architectures and 

hyperparameters and then selected the model with highest average between the 

validation-set AUROC and recall. The model was trained using TensorFlow 2.6.0 

and Keras1. We compared the performance of our model to models from 

DeepViFi2, DeepVirFinder3, ViraMiner4 and off-the-shelf Seq2Seq model. Because 

this is the first approach trained to predict viruses from RNA sequencing reads of 

length 48bp, we used our training data to retrain each of these models, following 

the instructions provided by each method, and evaluated the AUROC, AUPRC, 

accuracy, precision, recall, and F1-score using our test set.“ 

We believe that one reason that viRNAtrap model outperforms these leading approaches is 

that it is the only model that was designed and optimized for short RNAseq reads of length 

48bp in model selection and hyper-parameter optimization. The other methods, which the 

reviewer suggested to compare against, were originally designed for other sequencing 

technologies that are not associated with such short reads. This is now mentioned where these 

findings are described in the revised results section: 
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“We compared the performance of this model to previous models trained to 

identify viruses, namely DeepViFi2, DeepVirFinder3, ViraMiner4, as well as a 

method called ‘off-the-shelf Seq2Seq’ compared through DeepViFi2, that does not 

use  much domain-specific knowledge about viruses (Methods). Importantly, our 

model outperformed other methods in all measures, except for precision, for which 

DeepVirFinder outperformed all other methods (Figure 1b-c). However, precision 

is less critical for this framework because alignment steps are used to further filter 

out negatives. Importantly, DeepViFi2, DeepVirFinder3, and ViraMiner4 were 

previously not trained or evaluated for RNA sequencing or 48bp reads, which is 

likely the reason that these methods are less appropriate in that context.” 

 

Further, it should be acknowledged that not only bacteria infecting viral reads have been 

classified using deep learning, but also human infecting viral reads have been classified using 

machine learning models earlier, e.g HIVF (https://doi.org/10.1111/tbed.13314) or DeePac 

( https://doi.org/10.1093/nargab/lqab004). 

We agree with the reviewer, and now refer to methods that classify human infecting viral 

reads in the revised Introduction section:  

“More recently, methods have been developed to identify viruses that have potential to 

cause humans infections5,6“ 

 

 

A2) influence of contaminants / false positive viral identifications 

It can by no means be expected that the non-human and PhiX reads are all of viral origin, but 

many will be bacterial reads (and their phages), fungi etc. same as possible index swapping 

artefacts or run carryovers of Illumina machines. There are multiple approaches available to 

account for that on methodological level in the learning approaches, e.g., deepViFi has an 

open set approach, DeePac uses multiclass learning to distinguish them, but even more so 

quick a kraken (or similar) analysis of these reads to filter out non-likely viral reads appears 
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appropriate before actually running viRNAtrap to ensure that no reads of other origin 

contaminate the viral assembly and lead to potential false positive viral identifications. 

  

We appreciate this comment. In this context, there at least two relevant meanings of 

‘contaminant’. We delineate two points addressing contamination: 

 

1. One relevant meaning of ‘contaminant’ refers to contamination by many vectors of 

which phiX is but one example. For this purpose, we used vecscreen7 which does 

recognize numerous vectors that are partly of viral origin. We describe this in the 

revised Methods section: 

 

“Filtering contaminants 

To filter vector contaminants, we applied VeScreen7 to the assembled contigs that 

have been mapped to viruses through our databases, where virus accessions 

associated with vector contaminants were entirely removed from the search 

(Supplementary Dataset 11).“  

We acknowledge that one can perform the vector contamination screen before the main 

steps of virRNAtrap instead of after, as in the current design. However, earlier vector 

contamination screening may lead to false negative vector contamination reads that 

could have been identified if assembled into longer sequences.  

 

2. Another relevant meaning of ‘contaminant’ is sample contamination in which microbes 

that were not really in the cancer patient entered the sample while it was being 

processed in the laboratory. Unfortunately, it is not possible to model such 

contamination, as is also clearly mentioned in the deepViFi paper2: 

“it is not possible currently to model all the contaminants”  

We acknowledge this limitation in the revised Discussion section:  

“However, it is not possible to model all contaminant of viruses that may have 

infected the samples during laboratory procedures2” 
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In addition to filtering such contaminators, it is implied that application of other software, such as 

Kraken, can filter out reads that are of non-viral origin. To evaluate this possibility, we applied 

Kraken2 to the LIHC (hepatocellular carcinoma) reads which were unmapped to human and the 

phiX phage in our pre-processing. We found that more than 83% of the reads were unclassified 

or mapped to ‘unspecified taxonomy’. 13% of the reads were mapped to human, which are likely 

mutated and high complexity regions, that include the HERV sequences. 2% and 0.08% of the 

reads were mapped to root and cellular organisms, which include both viral and non-viral 

species. Therefore, more 99% of the reads would not be filtered with Kraken2 (Supplementary 

Figure 5). Furthermore, a quick search within the Kraken2 results has proven that many of the 

reads are incorrectly mapped to viral origin, for example, 17% of the samples have reads that 

are incorrectly mapped to the taxon Alphabaculovirus, a mapping that is not verified when using 

blastn. Therefore, we conclude that Kraken2 is not appropriate for filtering short reads of non-

likely viral origin.  

It is possible that the read length of 48bp is a problem for application of Kraken2, which was 

evaluated with a minimum read length of 100bp8. Indeed, longer sequences are known to be 

more accurately mapped9. Therefore, our current framework, which maps the assembled 

contigs, is likely to be more accurate in removing non-viral sequences.   

We describe the Kraken2 computational experiment in the revised Methods section: 

"In addition, we examined the application of software such as Kraken28 to the RNAseq 

reads for filtering reads that are not likely of viral origin, by applying Kraken2 to reads of 

LIHC samples. However, we found that 99% of the reads would not be filtered using this 

approach (Supplementary Figure 5), likely due to the short reads (48bp) for which Kraken 

has not been designed or evaluated, as longer sequences are known to be more 

accurately mapped9.“ 

 

Further, I could not find sufficient information on the quality standards for the viral assembly 

and blast analysis. What was the minimal contig length considered? How homogeneous was 

the coverage on the contigs? What were the standards of the blast analysis? Why were non-

reference viruses only deeper investigated when occurring in more than one sample? It would 
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be very helpful if the authors provided quality information on the assembly for each identified 

virus. 

 

We thank the reviewer for this comment. We comprehensively describe the parameters 

used for these analyses in the revised Methods section. The filtering we applied to minimize 

potential false positives is now described in detail. Of note, however, with this strict filtering, short 

contigs of divergent viruses may not be captured using Blastn. Therefore, as we now explain, 

non-reference viruses identified in multiple samples were further searched using STAR aligner 

because we reason that these are less likely to be contaminant or isolated events, but samples 

with fewer reads may be dismissed due to strict filtering.  

The revised Methods section describing this now reads: 

“Quality standards for virus identification 

For all viruses, blastn was applied with E-value cutoff of 0.01 and any sequences with a 

match to contaminant accessions (that were associated with vector contamination) were 

filtered out. 

a. Reference viruses. For every sample, contigs mapped to each accession were 

extracted. Identified accessions with maximum qcov across contigs more that 

90%, average qcov more than 50%, and average similarity more than 90% were 

considered. Accessions with maximal contig length under 100bp were manually 

inspected and verified against nr. 

b. Human endogenous viruses. For every sample, contigs mapped to each HERV 

were extracted. HERVs with contigs longer that 200bp, and with average qcov and 

similarity more than 95% were considered. 

c. Divergent viruses. For every sample, contigs mapped to each accession were 

extracted. Viruses already identified through the reference database were 

removed. Identified accessions with maximal contig length more than 300bp and 

qcov more than 40%, or with maximal contig length more than 100bp and qcov 

more than 75% and average similarity more than 75% were considered for manual 

inspection. 
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All instances of divergent viruses identified in TCGA samples were verified using 

blastn against nr, to support that the virus strain is indeed the best match to a viral 

contig generated by viRNAtrap. We reason that non-reference viruses (divergent 

viruses and viruses of non-human hosts) that were identified and verified in more 

than one sample were less likely to be contaminant or isolated events, whereas 

sample with fewer reads from such viruses may be filtered due to the strict filtering. 

We therefore additionally searched using the STAR aligner10 across tumor types 

where these viruses were identified through viRNAtrap (Supplementary Dataset 3). 

The following accessions were additionally searched using STAR to increase 

sample coverage (as these were the most interesting divergent strains found across 

multiple samples): Bermuda grass latent virus (NC_032405), Armadillidium vulgare 

iridescent virus IIV31 (NC_024451), Geobacillus virus (NC_009552) and the Human 

lung-associated vientovirus (NC_055523) “ 

 

 

A3) The analysis of the clinical outcome is interesting, but not entirely novel, 

e.g. https://doi.org/10.3390/v12090956 studied HERV expression in tcga and their impact on 

survival. Surprisingly, this manuscript is cited with regard to the ancestry of HERV, but not in 

the context of survival (while it basically addresses the same question as the authors do, the 

authors claim that the impact of HERVs on cancer progression and clinical outcomes is not 

well understood). It would be helpful if the authors clarified these similarities 

We agree with the reviewer. Thanks for pointing this out. In the revised manuscript, we 

clarify that HERV expression has been associated with poor survival in previous studies, and 

refer to several studies that reported such an association when discussing HERV in the 

Results section: 

“Moreover, recent findings reported association between HERV expression and poor 

survival rates11-15” 

And: 
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“In agreement with previous studies11-15, we find that patients with HERV-K- and HERV-

H-positive cancer samples have significantly lower overall survival compared to HERV-

K- and HERV-H-negative patients in COAD, LUSC, LUAD and LIHC”. 

 

 

Minor:  

B1) The software is not available as claimed by the authors in the Code and Software 

Submission Checklist. There was no demo on the authors’ data available and scripts for 

reproduction which are claimed to be available in the submission checklist, are not given, 

rather the manuscript states they will be made available after publication (why not for review 

now?). Typical installation or run times are not given as stated.  

 

We appreciate this comment. As part of this revision we: 

1. We clearly provide a demo to test the software after installation, that is described in the 

main README.md of the GitHub page, as copied below: 
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2. We now provide all pre and post processing scripts, with clear instructions for how to 

download and process the data at every step, provided that dbGaP permission is 

granted. This is described in 

(https://github.com/AuslanderLab/virnatrap/tree/main/scripts) as copied below: 
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B2) Similarly, it needs to be clarified how viral databases will be accessible (without 

restrictions) as they are currently not provided. 

The viral databases are made available without restriction through the GitHub repository: 

https://github.com/AuslanderLab/virnatrap/tree/main/databases 

with a README.MD file documenting each of these databases, copied below.  
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B3) I could not find the word document specifying the primer design in the submission 

Thank you. We now provide the primer design as part of the supplementary text. In 

addition, we added a section “Cells and culture conditions” to the Methods section, which now 

reads: 

 

“Cells and culture conditions 

Human ovarian cancer cell lines COV318 and OVISE were cultured in RPMI1640 medium 

containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin under 5% CO2. 

All of the cell lines were authenticated at The Wistar Institute’s Genomics Facility using 

short-tandem-repeat DNA profiling. Regular mycoplasma testing was performed using a 

LookOut mycoplasma PCR detection kit (Sigma, cat. no. MP0035). 

 

Experimental validation of the Geobacillus virus E2 in ovarian cancer cell lines.   
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Reverse-transcriptase qPCR (RT-qPCR) RNA was extracted using TRIzol reagent 

(Invitrogen, cat. no. 15596026). Extracted RNA was used for reverse-transcriptase PCR 

using a High-capacity cDNA reverse transcription kit (Thermo Fisher, cat. no. 4368814). 

Quantitative PCR was performed using a QuantStudio 3 real-time PCR system. GAPDH 

was used as an internal control. The fold change was calculated using the 2-ΔΔCt 

method. The primers used for reverse-transcriptase qPCR are: GAPDH forward, 

GTCTCCTCTGACTTCAACAGCG and reverse, ACCACCCTGTTGCTGTAGTAGCCAA; 

Geobacillus virus E2 terminase forward, TTGCGATGCGTACTCAGACT and reverse, 

CTCTTTTTGGTCAGCAGCGG Primers were obtained using NCBI primer design tool as 

shown in the attached word document. The primers were synthesized by Integrated DNA 

Technologies IDT. The document specifying the primer design is provided in the 

Supplementary Information.  

 

 

B4) Multiple Testing. The statistical methods section does not state that any multiple testing 

correction was performed. Although the manuscript (e.g. in figure 2) only shows a limited number 

of tests, these include some rare choices of viruses (e.g. torquevirus) making me assume that 

the authors tested all viruses on all cancer types (or later on all HERVs etc.). Most p-values 

shown in figure 2 for instance are not significant any longer after Bonferroni correction for the 

roughly 50 observed (and 140 theoretically possible) combinations of cancer tissues and viral 

families. There are smarter ways to do multiplicity correction than Bonferroni and maybe the 

authors have some (unstated) assumptions to reduce the hypothesis space, but with the current 

information provided these findings should not be considered statistically significant. Further, 

there should be a full reporting of all results (e.g. in the supplement) not only those chosen for 

discussion.  

 

We agree with the reviewer and now revise this analysis to correct for multiple testing. 

We indeed focus on a subset comparison with at least 5 positive cases and focus on known 

oncoviruses for the reference viruses survival analysis. We perform correction within each 

cancer type (which retains the known association between HPV and improved HNSC survival, 
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as well as seven HERVs that are significantly associate with survival), and a global correction 

across all cancer types (which retains three HERVs that are significantly associated with 

survival). We additionally provide the results for all tested associations in Supplementary Table 

1 and in Supplementary Dataset 12. The revised Methods section reads: 

“Viruses with significant log-rank p-values are reported as significantly associated with 

survival. We tested associations for each cancer type and evaluated those with at least 5 

cases in each group. We applied FDR correction within each cancer type and additionally 

applied a global FDR correction for all comparisons across cancer types.  

For reference viruses in Figure 2, we focused on known oncoviruses, HR-HPV, HCV, and 

HBV, thus testing at most one hypothesis for each cancer type except for LIHC where 

two hypotheses were tested (Supplementary Table 1 and Supplementary Figure 2). 

Therefore, none of the reference viruses were significantly associated with survival after 

global FDR correction, whereas only HR-HPV was significant for HNSC specific 

correction.  

HERVs that were identified in least 5 TCGA samples (Supplementary Dataset 4) we 

correlated with survival (Figure 3 and Supplementary Dataset 12), and p-values were 

corrected in a cancer-type specific manner (yielding seven significant associations) and 

globally across all comparison (yielding three significant associations, Figure 3).“ 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors present a novel pipeline to analyse viral reads in human RNA sequencing data 

sets. Based on a two step approach they first use a deep learning model trained on human 

and viral reads to identify potential viral reads. In a second step these reads are assembled 

using a simple overlap based approach. The resulting contigs are then analysed with blastn to 

identify viral sequences. 

Based on the data presented it is difficult to assess the performance of their approach as a 

description of the read support for the individual viral detections is missing. 
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Major 

- The authors seem to only present virus positivity (1) or negativity (0) in the supplementary 

tables 3,4 and 9. For an evaluation of virus positivity the number of supporting reads would be 

very helpful. 

We thank the reviewer for this comment. In the revised manuscript we: 

(1) Provide a dataset with the complete information and statistics for identified viruses reported 

in the original supplementary tables 3,4 and 9, in Supplementary Dataset 3. This dataset 

provides the accession of the virus, full name of the virus, the average blastn similarity score 

and coverage for contigs mapped to the virus, and a list with contigs lengths. Because our 

method assembles reads into contigs and removes reads that are overlapping with contigs that 

have been assembled, it is difficult to quantify the number of reads through viRNAtrap. However, 

we provide the number of reads for viruses that have been verified using STAR in Supplementary 

Dataset 3 as well.  

(2) comprehensively describe the parameters used for these analyses and the filtering we 

applied to remove contaminants and to minimize potential false positive. 

The revised Methods section describing this now reads: 

“Quality standards for virus identification 

For all viruses, blastn was applied with E-value cutoff of 0.01 and any sequences with a 

match to contaminant accessions (that were associated with vector contamination) were 

filtered out. 

a. Reference viruses. For every sample, contigs mapped to each accession were 

extracted. Identified accessions with maximum qcov across contigs more that 

90%, average qcov more than 50%, and average similarity more than 90% were 

considered. Accessions with maximal contig length under 100bp were manually 

inspected and verified against nr. 

 



15 
 

b. Human endogenous viruses. For every sample, contigs mapped to each HERV 

were extracted. HERVs with contigs longer that 200bp, and with average qcov and 

similarity more than 95% were considered. 

c. Divergent viruses. For every sample, contigs mapped to each accession were 

extracted. Viruses already identified through the reference database were 

removed. Identified accessions with maximal contig length more than 300bp and 

qcov more than 40%, or with maximal contig length more than 100bp and qcov 

more than 75% and average similarity more than 75% were considered for manual 

inspection. 

All instances of divergent viruses identified in TCGA samples were verified using blastn 

against nr, to support that the virus strain is indeed the best match to a viral contig 

generated by viRNAtrap. We reason that non-reference viruses (divergent viruses and 

viruses of non-human hosts) that were identified and verified in more than one sample 

were less likely to be contaminant or isolated events, whereas sample with fewer reads 

from such viruses may be filtered due to the strict filtering. We therefore additionally 

searched using the STAR aligner10 across tumor types where these viruses were 

identified through viRNAtrap (Supplementary Dataset 3). The following accessions were 

additionally searched using STAR to increase sample coverage (as these were the 

most interesting divergent strains found across multiple samples): Bermuda grass latent 

virus (NC_032405), Armadillidium vulgare iridescent virus IIV31 (NC_024451), 

Geobacillus virus (NC_009552) and the Human lung-associated vientovirus 

(NC_055523).“ 

 

- The authors could compare their approach to a simple assembly of the extracted reads and 

analysis of the resulting contigs. This would enable to evaluate whether they loose virus 

supporting reads and thereby sensitivity by their approach and enable to evaluate the speed 

improvement achieved. 

 

We thank the reviewer for this important comment. In the revised manuscript, we 

perform such comparison analysis for 10 LIHC samples (Supplementary Figure 4 and 
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Supplementary Table 2). We find that while the running time of the naïve assemble is 

substantially longer (up to 6 times longer, supplementary Figure 4), the same viruses are 

identified, albeit with different number of detected contigs (the model-based approach led to 

fewer contigs identified).  

To further evaluate the sensitivity of the pipeline based on the number of viral reads that are 

present in a sample, we additionally perform a simulated analysis. We empirically evaluate the 

number viral reads required for identification with the current seed threshold of 0.7, and find 

that in 93% of the cases, more than 5 reads are sufficient, and in 99% of the cases, 10 reads 

are sufficient (Supplementary Figure 4).  

These analyses are now described in the revised Methods section: 

“viRNAtrap performance evaluation 

To evaluate the contribution of the model to the viRNAtrap pipeline we re-ran viRNAtrap 

on 10 LIHC samples, and additionally ran a modified viRNAtrap pipeline not using the 

model, on the same system. We compared the viruses identified by the model-based 

approach to those that are identified when the pipeline is applied without using the model 

(Supplementary Table 2, showing similar viruses with different number of contigs). We 

additionally compared the running time of the two approaches (Supplementary Figure 4).  

To evaluate the sensitivity of the viRNAtrap pipeline based the number of viral reads 

present in a sample, we performed a simulated analysis. From the test dataset, we down 

sampled groups of viral reads with different group sizes (10,000 groups for each size, 

from one read up to 10 reads), and we evaluated the number of groups with at least one 

read that is scored above 0.7, which is the seed threshold used for the viRNAtrap 

assembly. Therefore, this analysis is estimating the probability of identifying viruses 

based on the number of reads present. We found 93% and 99% of the groups with more 

than 5 and 9 reads, respectively, would be identified.” 

 

And these results are mentioned in the revised Discussion section: 
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“We further show that using the deep learning model substantially 

improves the running time, while not compromising sensitivity if more than 5 viral 

reads are present (Supplementary Figure 4, see Methods).” 

 

 

- The authors restrict their analysis to the reads not mapped to the human reference genome. 

It is unclear to me how this affects the detection of HERVs that are present in the human 

reference genome and should therefore not be detected in an optimal way.  

Thank you for this comment. HERV are rarely captured by alignment to the human 

genome, because of their high complexity and high mutation rate (Bannert N et al, PNAS 2004, 

PMID: 15310846, which is reference 17 below). Therefore, alignment with 2 allowed mismatches 

per read performed in the pre-processing step, would not capture these genomic regions, that 

are usually handled independently15,16. We now explain this, and acknowledge that in rare cases, 

unmutated HERV sequences will not be identified by this pipeline.  

“Importantly, high mutation rate of HERV17 prohibits most HERV sequences from aligning 

to the human genome in pre-processing15,16, however, in rare cases, HERV regions that 

are conserved would not be identified by this approach.” 

 

Minor 

- Did the authors correct for multiple testing throughout the manuscript when testing for 

associations e.g. across entities or mutated genes 

Thank you. For associations with mutated genes (through Figure 3 and Supplementary 

Dataset 6) we only report negative results (insignificant associations) because no significant 

associations were identified after correction for multiple hypothesis testing. We now 

additionally revise the correction for multiple hypotheses for survival analyses. We perform 

correction within each cancer type (which retains the known association between HPV and 

better HNSC survival, as well as seven HERVs that are significantly associate with survival), 

and a global correction across all cancer types (which retains three HERVs that are 

significantly associated with survival). The revised Methods section reads: 
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“Viruses with significant log-rank p-values are reported as significantly associated with 

survival. We tested associations for each cancer type and evaluated those with at least 5 

cases in each group. We applied FDR correction within each cancer type and additionally 

applied a global FDR correction for all comparisons across cancer types.  

For reference viruses in Figure 2, we focused on known oncoviruses, HR-HPV, HCV, and 

HBV, thus testing at most one hypothesis for each cancer type except for LIHC where 

two hypotheses were tested (Supplementary Table 1 and Supplementary Figure 2). 

Therefore, none of the reference viruses were significantly associated with survival after 

global FDR correction, whereas only HR-HPV was significant for HNSC specific 

correction.  

HERVs that were identified in least 5 TCGA samples (Supplementary Dataset 4) we 

correlated with survival (Figure 3 and Supplementary Dataset 12), and p-values were 

corrected in a cancer-type specific manner (yielding seven significant associations) and 

globally across all comparison (yielding three significant associations, Figure 3).“ 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Overall, the authors have greatly improved the manuscript. Most of my points have been addressed, 

I have a minor question still regarding (A1), however, I do have significant worries regarding the 

answer to my minor aspect (B4) regarding multiplicity adjustment. Maybe I am missing something 

here (there were too few details reported in the original submission and still are too few details 

reported now): 

 

A1) 

 

The comparison with competing methods is very insightful. It lacks however details, in particular 

how hyperparametertuning was performed for the other methods and which parameters were 

selected in the end. It would be important to make this accessible to show that a fair comparison 

was conducted. 

 

B4) 

I have difficulties following and approving the statistical analysis. From my understanding, this may 

have a flavor of Texas barn shooting. The authors conducted an analysis in the originally submitted 

manuscript. They did not do any multiplicity correction. Now, posthoc they define exclusion criteria 

(which appear to contradict the original analysis performed) and redo the analysis, now finding 

significance which would not have been possible in the original design. The claim of statistical 

significance may not valid in this study design and may not be trustworthy. 

Further, why is the lowest p-value candidate in Fig 3b) and 4 in the current analysis not reported in 

the original analysis? 

The legend for 3b and 4 states that “The log rank and proportional hazards (PH) p-values are 

reported”, I can however only find one p-value in the plot. Which one is reported and why is the 

second one missing? Again, is there a reason in the study design not to report them any longer or 

may this be due to the fact that they are no longer significant? This again, would be cherry-picking. 

Why are results that have highly significant p-values now in figure 3b not appearing in the original 

submission (if testing standards are stricter now so that they are significant – why were they not 

significant before)? 

Overall, the reporting of the statistical procedures need to be more in detail and should be restricted 

to those cases where there were clear pre-analysis hypotheses to be tested. Ideally, the authors 

 



share their original statistical study design and a point-by-point explanation of changes made (and 

their respective statistical justification). 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors now included a comparison to other tools trained to identify viruses (DeepViFi, 

DeepVirFinder, ViraMiner and 'off-the-shelf Seq2Seq'. The supplementary information now includes 

a more detailed description of the blastn hits. They in addition improved the correction for multiple 

testing by applying FDR. Furthermore the documentation of the software tool on Github is 

substantially improved. 
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We thank both reviewers for the additional comments on our revised manuscript 

NCOMMS-22-33903A. We now address these comments in the revised manuscript and 

better describe the statistical analysis. All text changes related to any reviewer comment 

are in red font. 

 

 

Reviewer #1 (Remarks to the Author): 

 

Overall, the authors have greatly improved the manuscript. Most of my points have 

been addressed, I have a minor question still regarding (A1), however, I do have 

significant worries regarding the answer to my minor aspect (B4) regarding multiplicity 

adjustment. Maybe I am missing something here (there were too few details reported in 

the original submission and still are too few details reported now): 

 

A1) 

 

The comparison with competing methods is very insightful. It lacks however details, in 

particular how hyperparameter tuning was performed for the other methods and which 

parameters were selected in the end. It would be important to make this accessible to 

show that a fair comparison was conducted. 

 

We appreciate this comment. We now provide the complete information describing how 

other methods were implemented in the supplementary, which reads: 

 

“Training existing methods for virus identification 

 

1. DeepViFi. We trained DeepViFi as instructed in the method’s github repository, 

https://github.com/UCRajkumar/DeepViFi. A transformer was trained using the 

parameters defined in the configuration file, with embedding dimension of 128, 16 heads, 

8 layers, the feed forward dimension set to 256 and the batch size set to 256. The 

generated embedding by the transformer for each sequence read was used to train a 
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random forest classifier using the transformer representation (through sklearn.ensemble), 

with 500 trees as recommended by DeepViFi.  

2. DeepVirFinder. We followed the instructions of DeepVirFinder github repository:  

https://github.com/jessieren/DeepVirFinder to train a model and evaluate it using our 

data. Even though DeepVirFinder was developed to take various input sizes (300bps, 

500bps and 1000bps), there is an option to choose input size less than 300bps, which we 

used by setting the input size to 48. We used the parameters as defined by the authors 

to train the model as following: dropout convolutional neural network (CNN) of 0.1, 

dropout pool of 0.1, learning rate of 0.001 and number of filters of 500, of which each of 

length of 10.  

3. ViraMiner. The ViraMiner model was trained as end-to-end CNN model as instructed 

in its github repository, https://github.com/NeuroCSUT/ViraMiner. The model was trained 

with filter size 8, dropout of 0.1, learning rate of 0.001 and layer_size of 1000. Even though 

the input sequence length in the original method was defined to be 300bps, we modified 

the code (specifically, we modified helper_with_n.py line 73 from 300 to 48) to accept 

input sequences of size 48bps. 

4. Off-the-shelf seq2seq. We trained off-the-shelf seq2seq model using Keras (with LSTM 

components) on our data by configuring the model to take 48bp input sequences and the 

embedding size was defined to be of size 64 while the learning rate was set to 0.001. 

Then, to accommodate to DeepViFi, which also compared their representation against 

off-the-shelf seq2seq model, the seq2seq representation of viral sequences was given as 

input to a random forest classifier (using sklearn.ensemble) with the same parameter 

defined, the number of trees, to be 500.“ 

 

 

 

B4) 

I have difficulties following and approving the statistical analysis. From my 

understanding, this may have a flavor of Texas barn shooting. The authors conducted 

an analysis in the originally submitted manuscript. They did not do any multiplicity 

correction. Now, posthoc they define exclusion criteria (which appear to contradict the 
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original analysis performed) and redo the analysis, now finding significance which would 

not have been possible in the original design. The claim of statistical significance may 

not valid in this study design and may not be trustworthy. 

 

We thank the referee for this multi-part comment. We split the comment into its parts 

and interleaved our responses. 

 

We understand why the description of the revised analysis raised valid concerns. 

Reviewer 1 is correct in that in the original submission we reported the survival analysis 

p-values without correction for multiple hypotheses, but the reviewer comments should 

be about the revision. 

In the revised analysis, the exclusion criterion was not applied to increase the number of 

significant associations, in fact, we would be getting many more significant associations 

if not applying the criterion requiring 5 cases. When revising the analysis in our first 

revision to correct for multiple testing, we noticed the issue that many of the highly 

significant association had 1-3 positive samples, and therefore decided to apply the 

exclusion criterion. As the reviewer suggests, we now describe and provide both 

analyses (with and without the exclusion criterion) in Supplementary Dataset 12. 

 

Further, why is the lowest p-value candidate in Fig 3b) and 4 in the current analysis not 

reported in the original analysis? 

 

In the original analysis of Figure 3, where we did not apply correction for multiple 

hypotheses, many significant associations were identified (all with poor survival). We 

therefore selected a subset of HERV to present, not by the p-value (which seemed 

arbitrary), but some of those that appeared in cancer types where we found multiple 

significant (non-corrected) associations. In fact, all four LIHC association were also 

presented in the original figure 3. In the revised analysis, when applying the exclusion 

criteria and the FDR correction, we find many fewer significant associations that are 

reported in in the revised Figure 3.  
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Figure 4 panels are not changed from the original submission because correction for 

testing multiple hypotheses is not needed in Figure 4 where the examined associations 

are all for IIV31 presence. 

 

The legend for 3b and 4 states that “The log rank and proportional hazards (PH) p-

values are reported”, I can however only find one p-value in the plot. Which one is 

reported and why is the second one missing? Again, is there a reason in the study 

design not to report them any longer or may this be due to the fact that they are no 

longer significant? This again, would be cherry-picking. 

 

In the revised analysis we realized that using PH is less exact for some of the examined 

associations, specifically less fitting for comparisons with small sample sizes. The log-

rank is reported since it is nonparametric and more exact in small sample cases, which 

are a substantial subset of the cases evaluated. Given this, and since PH and log rank 

are approximately the same asymptotically, and thus redundant, (e.g., when sample 

size is large enough), we remove the PH p-value evaluation and report the log-rank gold 

standard for all survival analyses. The remaining mention of PH in the legends of our 

first revision was therefore a syntax error that has been corrected.  We thank the 

reviewer for catching this error. 

 

Why are results that have highly significant p-values now in figure 3b not appearing in 

the original submission (if testing standards are stricter now so that they are significant 

– why were they not significant before)? 

 

As explained above, In the original analysis of Figure 3, where we did not apply 

correction for multiple hypotheses, many significant associations were identified, all with 

poor survival. We therefore selected a subset of HERV to present, not by the p-value, 

but we presented a subset of those that appear in cancer types where we found multiple 

significant (non-corrected) associations. In the revised analysis, when applying the 

exclusion criteria and the FDR correction, we find many fewer significant associations 

which are reported in Figure 3. Overall, the reviewer is correct in that the significant 
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associations in the current figure 3 were also significant when not applying FDR 

correction. 

 

Overall, the reporting of the statistical procedures need to be more in detail and should 

be restricted to those cases where there were clear pre-analysis hypotheses to be 

tested. Ideally, the authors share their original statistical study design and a point-by-

point explanation of changes made (and their respective statistical justification). 

 

We appreciate and agree with this comment. In the second revision of the manuscript, 

we better describe the process leading to this analysis in the Methods section: 

 

“Viruses with significant log-rank p-values are reported as significantly 

associated with survival. Our examination led to multiple significant associations 

between survival and viral presence for cases where 1-3 virus-positive samples 

were found. We therefore revised our analysis and tested associations for each 

cancer type, evaluating those with at least 5 cases in each group; the decision to 

use 5 as the lower bound rather than 4 was made because 5 is considered a ‘round 

number’. We applied FDR correction within each cancer type and additionally 

applied a global FDR correction for all comparisons across cancer types.  

For reference viruses in Figure 2, none of the reference viruses were significantly 

associated with survival after global FDR correction, whereas only HR-HPV was 

significant for HNSC specific correction. While this significance is mild, we report 

this association because it is confirmatory of a known association between HR-

HPV and HNSC survival33,34. 

HERVs that were identified in at least 5 TCGA samples (Supplementary Dataset 

4) were correlated with survival (Figure 3 and Supplementary Dataset 12), and p-

values were corrected in a cancer-type specific manner (yielding seven significant 

associations) and globally across all comparison (yielding three significant 

associations, Figure 3). Importantly, our examination revealed multiple significant 

HERV-survival associations for cases with 1-4 HERV positive samples, which 

could be of interest, but did not seem sufficiently reliable, therefore leading us to 
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set the five sample cutoff. For completeness, we additionally report the FDR 

corrected p-values without applying this restriction in Supplementary Dataset 12.” 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors now included a comparison to other tools trained to identify viruses 

(DeepViFi, DeepVirFinder, ViraMiner and 'off-the-shelf Seq2Seq'. The supplementary 

information now includes a more detailed description of the blastn hits. They in addition 

improved the correction for multiple testing by applying FDR. Furthermore the 

documentation of the software tool on Github is substantially improved. 

  

We thank reviewer 2 for the first round comments and suggestions that helped us to 

greatly improve our manuscript. 

 



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have provided a detailed response to the two issues I raised. While I know better 

understand their reasoning, I do not necessarily agree with the conclusions drawn. 

 

Benchmarking: 

The authors now describe the training of competing tools. However, it becomes clear that even 

though they use tools on settings that they were not trained for (e.g. DeepVirFinder on 48bp reads) 

they did not do any hyperparameter optimization, but relied on default parameters. It is very likely 

that results for other tools will increase massively. 

 

Multiple Testing 

The authors need to decide what the goal of their study. Is this an exploratory data analysis or a 

hypothesis-driven significance test? 

In the first scenario, the way the authors proceed is absolutely valid, to look at results, to readjust 

hypothesis and to add exclusion criteria after looking at results to focus on the most relevant ones. 

But if the authors need to do this, this needs to be clearly labeled as an exploratory data analysis 

(and I think it still would be interesting). 

 

However, if the authors want to claim statistical significance for their findings in a hypothesis-driven 

setup, these hypotheses and filters cannot easily be adjusted post hoc if results had been significant 

before the filtering criteria were applied. Given the current reporting, this does not appear to be 

true for all cases. I have therefore doubts whether claims of statistical significance are correct. 
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We thank the reviewer for their additional comments on our revised manuscript, which we 

address in this revision.  

 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have provided a detailed response to the two issues I raised. While I know 

better understand their reasoning, I do not necessarily agree with the conclusions 

drawn. 

 

Benchmarking: 

The authors now describe the training of competing tools. However, it becomes clear 

that even though they use tools on settings that they were not trained for (e.g. 

DeepVirFinder on 48bp reads) they did not do any hyperparameter optimization, but 

relied on default parameters. It is very likely that results for other tools will increase 

massively. 

 

We respectfully point that the request of the referee to perform hyperparameter 

search for existing models is unreasonable.  

 

The referee originally requested that we compare against other methods 

DeepViFi1, DeepVirFinder2, ViraMiner3, as well as ‘off-the-shelf Seq2Seq’ compared 

through DeepViFi1. None of these methods was designed nor tested for RNAseq or 

reads shorter than 150bp. To avoid applying models to data they were not fit to process, 

we put substantial effort to retrain the models using our data, which is going beyond 
the standard practice when comparing to previous approaches, not done by 

DeepVirFinder2, or multiple other studies for phage identification that never retrained a 

published model4-6. Further, even a recent benchmarking study of these approaches did 

not retrain any published model7. 
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A provided model is considered representative of a published method for 

respective comparisons not only for virus identification, but throughout areas of 

biomedicine, where comparison to previously published machine and deep learning 

models are using the published model without retraining8-14. 

 

DeepViFi is the one study that retrained models it compared against, however, 

even DeepViFi did not perform hyperparameter search for published models. We quote 

from the DeepViFi publication: “We retrained DeepVirFinder and ViraMiner model on a 

custom training set before evaluation (Methods). Despite retraining, ViraMiner and 

DeepVirFinder both achieved an AUC value of less than 0.5 on all 4 test sets”. 

 

Performing a new hyperparameter search with a different training data will lead to 

entirely different model architectures. It is possible that some of such new architectures 

would be similar to and have performances close to the best model we found through 

our comprehensive hyper-parameter optimization, but such new architectures are 

distinct from and not representative of the original published method.   

 

 

 

Multiple Testing 

The authors need to decide what the goal of their study. Is this an exploratory data 

analysis or a hypothesis-driven significance test? 

In the first scenario, the way the authors proceed is absolutely valid, to look at results, to 

readjust hypothesis and to add exclusion criteria after looking at results to focus on the 

most relevant ones. But if the authors need to do this, this needs to be clearly labeled 

as an exploratory data analysis (and I think it still would be interesting). 

 

We appreciate this comment. Indeed, this study provides a new approach and 

generally performs an exploratory data analysis using this approach. We now explicitly 

mention this in the revised manuscript, in the abstract: 
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“We utilize viRNAtrap, which is based on a deep learning model trained to 

discriminate viral RNAseq reads, to explore viral expression in cancers and apply it to 

14 cancer types from The Cancer Genome Atlas (TCGA). 

 

In the introduction: 

 “We apply viRNAtrap to 14 cancer types from TCGA (selected based on potential 

viral relevance to oncogenesis), to perform an exploratory data analysis and characterize 

the landscape of viral infections in the human cancer transcriptome.”  

 

And in the discussion: 

“We employ viRNAtrap for an exploratory data analysis and characterize viruses 

that are expressed across 14 cancer tissues from TCGA and analyze their genomic and 

survival correlates.” 

 

For included hypothesis-driven analyses, we eliminate any exclusion criteria in 

the revised manuscript that were considered after the original submission, and consider 

the data completely. We report significant results only for unfiltered analyses that were 

originally considered, with correction for multiple testing. This is described in the next 

section with more detail. 

 

 

However, if the authors want to claim statistical significance for their findings in a 

hypothesis-driven setup, these hypotheses and filters cannot easily be adjusted post 

hoc if results had been significant before the filtering criteria were applied. Given the 

current reporting, this does not appear to be true for all cases. I have therefore doubts 

whether claims of statistical significance are correct. 

 

Our exploratory data analysis uncovered some significant associations even with 

the complete hypothesis testing and no filtering after correcting for testing multiple 

comparisons. While none of the survival associations originally in Figure 2 was 

significant without filtering, the seven associations provided in revised Figure 3 were 
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significant without the filtering. To resolve any confusion, in the revised manuscript we 

exclude any filtering criteria, and we report as significant only the associations that are 

significant with no filtering applied. Therefore, in the revised manuscript, all claims of 

statistical significance are correct and justified: 

 

1) We clearly mention that none of the associations with reference oncoviruses 

were significant after correction for multiple hypotheses, and that the 

association between HNSC and HR-HPV is reported with unadjusted p-value 

because it is confirmatory of a known association. This is clarified in the 

results section: 

 

“While none of the associations were significant after adjustment for 

multiple hypotheses (Supplementary Figure 2, Supplementary Table 1), we 

found that HR-ɑHPV-positive HNSC patients have better survival compared 

to HR-ɑHPV-negative patients (by the Kaplan Meier curves Figure 2c), which 

is confirmatory of previous studies15,16.” 

 

And in the methods section: 

“None of the reference viruses were significantly associated with survival 

after FDR correction, however, we report in Figure 2 the association between HR-

HPV with unadjusted p-value because it is confirmatory of a known association 

between HR-HPV and HNSC survival15,16.” 

 

2) We report significant associations between HERV and survival without any 

filtering, using two types of FDR-correction: once when correcting for each 

cancer type individually, and second when correcting for all cancer types 

together. All significant associations (FDR adjusted p-value < 0.05) are 

reported in Supplementary Dataset 12, and selected significant associations 

are displayed in Figure 3: 
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“For HERV analysis, we present in the main text selected associations with 

at least 5 cases in each group, where additional significant associations 

between survival and viral presence are reported in the Supplementary Dataset 

12 “ 
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