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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Li et al. Integrative Characterization of Adenocarcinoma of Esophagogastric Junction 

 

Li and colleagues perform a multi-omics analysis of junctional cancer from more than 100 cases that 

includes whole exome, RNAseq, and mass spectrometry of proteins and the phosphorylation sites. 

They show that the cases can be roughly divided into three subclasses (S-1, SII, and SIII) based on 

the aggregate molecular parameters they identify, and that there is clinical significance for each with 

respect to survival times, potential for certain therapeutic regimens, and perhaps immunotherapy. 

This work adds important dimensions to the earlier studies out of the Broad and Sanger that were 

largely focused on genomics and expression profiles of EAC, and suggests that much will be learned 

from expanding and correlating the multiple datasets. 

 

Comments: 

 

1. In the introduction there needs to be a clearer presentation of "gastric cancer" as distinct from the 

junctional cancer. Earlier genomic studies of upper GI cancer showed what many expected that so-

called "intestinal gastric cancer", the H. pylori-associated adenocarcinoma that initiates with GIM, is in 

fact closely related to EAC or junctional cancer. In contrast, diffuse gastric cancer is very different. As 

intestinal gastric cancer is so prevalent, especially in Asia, it needs to be highlighted in the 

introduction. 

 

2. From an informatics standpoint, one is concerned for the "pairwise" analysis used here though 

these concerns may be unfounded. Regardless, the source of "normal" tissue in the figures is said to 

be the gastric mucosa. However, the gastric mucosa is topologically (regionally) diverse suggesting 

that the reference point in these studies could be variable for each case. Has the team considered 

developing an amalgam 'normal' from all normals to be generically compared with each tumor sample 

to limit such variability? 

 

3. With the intense interest in immunotherapy for these difficult tumors, it was intriguing to see that 

the SIII subclass, with the longest survival time, was also the class that, by cell type deconvolution 

analysis, had the most lymphoid and myeloid cells and the fewest fibroblasts. Given the thoughts that 

fibroblasts, and particularly myofibroblasts, may limit access by immune cells, was this correlation 

evident in the H&E analysis across the subtypes.ss 

 

4. The focus on FOXO44 is interesting, and yet it seems to be a property of S-II class which 

apparently has a more complex survival profile that S-I and S-III. May have missed this, but given the 

link proposed with metastasis, is S-II cases, especially those with high FOXO44, more metastatic? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Please see attachment. 



Li et al. present a multi-omic characterization of adenocarcinoma of the esophagogastric junction 
(AEG). The results presented are impressive and represent a comprehensive overview of these tumors 
from a variety of omics standpoints. Unlike many multi-omic survey manuscripts, the authors included 
follow up experiments and mouse model work to help validate their findings. The reviewer believes 
these results are important, but some work is needed before these findings are suitable for publication. 
In particular, the results describing FBXO44 seem out of place. Next, the authors need to go beyond 
simply listing feature and pathway differences between their multi-omic subtypes. Each results section 
reads like its own long list of differences, seemingly without much thought given to how these 
differences relate to the other results. This work would be greatly strengthened if the authors defined 
the key phenotypic features of these multi-omic subtypes and how they may be clinically relevant. 
Further, too much time is spent on comparisons with normal samples. Not surprisingly the normal 
samples are very different from tumors, and nearly every comparison made by the authors resulted in 
many hits. The corresponding results have too many genes and/or pathways to easily interpret. A 
better use of the normal data may be to use it in a more targeted manner. For example, to help screen 
for cancer-specific targets that were enriched in a particular multi-omic subtype. Finally, the wording 
throughout the manuscript needs to be more specific, and the statistical tests utilized along with fold 
changes and p-values need to be provided. In addition to this, please find the major and minor 
comments to address below. 
 
Major comments 

• Page 6 
o 'Protein Database Searching' 

§ All of the proteomic findings seem to refer to single protein accessions/names. 
What happened to the protein group assignments from MaxQuant? The reviewer 
expects at least some of these protein groups to contain more than one protein 
accession. Protein group abundances as rows and samples as columns should be 
included in supplemental. 

§ The reviewer appreciates the data being deposited into various repositories, but 
as much as possible the data used to generate the figures presented in the 
manuscript should be included as supplemental materials. This includes raw gene 
counts, protein group intensities, called mutations, multi-omic subtyping, etc. at 
the sample level. Presently, the supplemental data only seems to contain 
summarized results and fold changes across conditions.  

• Page 7 
o 'Whole Exome Sequencing' ... 'mRNA Sequencing' 

§ The description of computational methods for WES and RNA-seq processing are 
severely deficient. Please provide detailed processing of the raw sequencing data 
including the alignment, reference genome, QC steps, variant callers, read 
counting, etc. to allow for reproduction of the presented results. Sample level 
RNA-seq counts should be included in supplemental. 

• Page 13 
o 'From the RNA-seq data, 23,131 genes were found to be expressed in 166 AEG tumor and NAT 

samples...' 
§ See the above comment on the RNA-seq processing. Include the 

expression/missingness thresholds used to filter the data (if any). Were there a 
large number of genes expressed in only the normal/only the tumor? 

o '...including proteomics profiling, phosphoproteomics profiling, WES, and RNA-seq (Figure 1A).' 
§ The reviewer had a hard time with the figures. The text in most of the figures is 

very small, and many, many protein names and/or pathways are listed. Non-key 
findings should be relegated to supplemental figures or even tables. The authors 
should take time to consider how their results are displayed and do a better job at 
distilling the key findings down to fewer, more interpretable figures.  

• Page 14 
o Proteomic Characteristics of AEG Tumors  



§ Please see the comment in the opening paragraph about repurposing the normal 
data and utilizing it to ask specific questions as opposed to showing numerous 
differences between normal and tumor in each omics type. 

o Proteomics-Based Subtyping of AEG Tumors  
§ The authors need to do a better job at characterizing these subtypes. Yes, they do 

the bookkeeping in the results and write the expected things about differentially 
expressed proteins and pathways, but what is the overarching story? What 
biology defines these subtypes from one another? Why do the authors think the 
S1 subtype has the worst survival? Did the immune infiltration later shed any light 
into this? What is the role of FBXO44, if any, in these subtypes? 

o '... whereas the "KRAS signaling up" hallmark was significantly down-regulated (P = 1.1E-3) in 
tumor samples (Figure 2D). ' 

§ There are not many KRAS mutations and KRAS does not appear to be a major 
driver in this cancer. Why is this showing up? Is it a red herring?  

o 'These observations implicate that flutamide might be effective in treating AHR-high AEG 
patients.' 

§ The authors should do a better job at supporting this claim. Just because this and 
other proteins are differentially expressed does not mean that they would make 
good drug targets. Not all of these will be drivers/critical to the survival of the 
tumor. Is there publicly available drug screening data that could be integrated 
here? Could a network analysis of proteomics findings using protein-protein 
interaction data identify bottlenecks/hub proteins that would make better drug 
targets? 

• Page 15 
o 'Of these, 12 signature proteins were targetable by FDA-approved drugs or candidate drugs 

currently in clinical trials (Figure 3G).' 
§ Same comment as above. The reviewer would like this idea developed more and 

have more supporting evidence shown (computational evidence would be 
acceptable).  

§ Since the authors bring both up, can they quantify what would be better based on 
their data: drug targets based on normal to tumor analysis, or drug targets based 
on proteomic subtypes? 

o 'For example, the activity of the "G2M checkpoint" hallmark in the S-III subtype was significantly 
higher than those in the other two subtypes (P = 1.7E-3 compared to S-I subtype, P = 1.2E-4 
compared to S-II subtype) (Figure 3E), while "pancreas beta cells" showed remarkably lower 
levels in the S-III subtype (P = 1.7E-2 compared to S-I subtype, P = 4.3E-2 compared to S-II 
subtype) (Figure 3F). ' 

§ The reviewer assumes that the authors mean the large degree of change of 
expression/abundance of "G2M checkpoint" proteins when they refer to activity. 
This is confusing because 1) there are activity-based protein profiling (ABPP) 
proteomic assays that measure activity directly and 2) the authors have 
phosphoproteomics data. Please reword this section and change the axes of 
figures that mention activity. Should the figures say fold change instead? 

§ What kind of pathway enrichment is being performed? The reviewer does not 
remember "pancreas beta cells" being one of the cancer hallmarks. If the type of 
pathway enrichment or the resource used for pathway enrichment is changing, 
then the authors should clarify. All pathway results, including non-significant 
ones, should be included in supplemental tables. 

§ Why were these particular pathway findings called out? Were these the most 
differentially expressed by p-value/FDR? Given the large number of changes, the 
authors should do a better job at prioritizing what they show and make it clear 
why they are showing it. Is there an empirical cut point at say the top 5 or 10 
pathways before the p-values drop off substantially? That would be one way to 
prioritize all of these significant findings.  

§ Do AEG tumors share similarities to pancreatic tissue or beta cells?  



o 'Patients in these three subtypes showed significantly distinct overall survival time (P = 1.1E-
3)...' 

§ What test is this p-value associated with? What is the hazard ratio? There appears 
to be no survival analysis details in the methods.  Has this been adjusted 
for  gender, smoking history, and stage?  

o Page 16 
§ 'FBXO44 Promotes AEG Tumor Progression and Metastasis ' 

§ Why was FBXO44 chosen out of all of the possible choices? Given the 
sheer volume of data, why were were there no better choices based on 
combining and integrating the findings? This protein does not look like it 
mentioned in the results until this page.  

§ Were these data generated independently of the multi-omic analyses being 
presented? These findings seem like they were shoehorned between 
several sections of global omics characterization as an afterthought to give 
the results some more clinical relevance.   

§ Please convince the reviewer that this was the best target and similar or 
better results could not have been obtained looking at the highest fold 
changes and pathways different across normal/tumor/tumor subtypes.  

§ Is the biological function of FBXO44 known? If so what pathway is it a part 
of? How does it relate to the immune findings further down? Is its 
expression highly correlated with anything interesting across the omics 
types? If little is known about this protein, then surely some hints about 
mechanism could be generated with the abundance of data. Even a simple 
co-expression analysis could shed some light on upstream/downstream 
targets. 

§ What are the exact fold changes from normal to tumor and across the 
proteomic subtypes? These values do not look like logged intensities. Why 
is relative abundance used instead of log2 intensities? Abundances 
relative to what? Is it not implied that these are relative abundances since 
the authors did not do absolute quantification?  

§ See above survival analysis comments. What is test is this p-value 
associated with? What is the hazard ratio? There appears to be no survival 
analysis details in the methods.  Has this been adjusted for  gender, 
smoking history, and stage? 

§ Is this simply a protein that is correlated with or involved in cell 
proliferation therefore explaining the survival curve and mouse model 
results?  

§ How targetable is this protein/pathway given the authors used shRNA as 
opposed to a drug? 

o 'The up-regulation of FBXO44 protein in tumor samples was further validated in an independent 
clinical cohort (P = 1.55E-4) (Figure 4B). ' 

§ What cohort? AEG patients? How many samples? How much up-regulation? The 
overall pattern of blue/brown is easy to see in the figure, but the images are too 
small to see individual features. Please enlarge these images significantly, or if 
they do not fit in the main figure please include  in supplemental. 

o '...FBXO44 KD remarkably suppressed cell proliferation...' 
§ Please quantify the amount of suppression instead of using words like 

remarkable, and please use more precise wording  throughout to quantify results 
when they are mentioned. 

• Page 19 
o 'Phosphoproteomic Characterization of AEG Tumors' 

§ How important is the phosphoproteomics data in relation to the multi-omics 
subtypes? Is it a defining feature? Since the phosphorylation data gives a 
measurement of signaling events in the tumors, is it wise to have these 
measurements weighted the same as the other omics types (e.g. RNA-seq) even 
though the phospho-data may be more relevant for activated signaling pathways 



and drug targets? Do any of these phosphoproteins or kinases relate back to 
FBXO44? 

 
Minor comments 

• Page 6 
o 'Tandem mass spectra were searched against the Homo_sapiens_9606 database (20,366 

entries) concatenated with a reverse decoy database. ' 
§ Is this from Uniprot or another database? Please provide a citation as well as the 

date accessed. 
o 'The limma package was also adopted to compute the difference of protein and phosphorylation 

abundances between tumor and paired NAT samples.  Specifically, the difference was 
statistically evaluated by employing a simple linear model and moderated t-statistics by the 
empirical Bayes shrinkage method. ' 

§ Do the authors think that limma might be too conservative here? The shrinkage 
method is certainly appropriate for large RNA-seq or microarray datasets, but will 
meaningful signal be lost applying here to proteomics data? 

§ Please cite the limma manuscript and provide the version of the package and the 
version of R used. 

• Page 11 
o 'The xCell scores (relative abundances) were calculated in each sample and were compared 

between different groups by using Student's t-test. ' 
§ In the reviewer's hands, xCell scores tend to not follow a normal distribution. Do 

the findings from xCell still hold if a non-parametric Wilcoxon rank sum test is 
used? 

• Page 13 
o 'In particular, proteomics and phosphoproteomics profiling were performed on 206 samples 

(Figure 1B).' 
§ The circos plot is difficult to read since most of the plot has the same pattern/is 

not different. This does not seem to convey much meaningful information Please 
consider a simple table or a different figure to convey the total amount of 
differentially expressed analytes. 

• Page 13 
o 'In the present AEG cohort, the most frequently mutated cancer-related genes (derived from 

COSMIC v95)37 were TP53 (62%), MUC16 (31%), FAT4 (22%), LRP1B (18%), ARID1A (16%), 
and FAT3 (16%) (Figure 1C).' 

§ Please add additional tick marks to the TMB barplot at the top of the heatmap to make it 
easier to read. 

o 'Overall, significantly larger number of proteins (P = 3.8E-15), phosphorylation sites (P = 1.6E-
4), and genes (P < 2.2E-16) were detected in AEG tumors than those in NAT samples 
(Supplemental Figure S2). ' 

§ What test was used here? T-test? Fisher's exact test? Please make sure to provide 
the name of the test along with the p-value, or alternatively make a list of the tests 
performed for the different data types in the methods. 

• Page 14 
o 'We next investigated the disturbance of proteins in AEG tumors. Differential protein analysis 

revealed 2,300 up-regulated and 1,667 down-regulated proteins in AEG tumor samples 
compared to paired NAT samples (Figure 2A and Supplemental Table S3). ' 

§ For 2A and all figures, the authors should use HUGO gene symbols instead of 
Uniprot accessions. Readers will be much more familiar with gene symbols and it 
will make results easier to interpret.  Uniprot provides mapping tables for this 
purpose 

• Page 18 



o 'Tumors in the S-II subtype showed the least number of changed cell types, while the S-III 
subtype exhibited the most altered cell types, especially the increase of lymphoid and myeloid 
cells.  ' 

§ Altered from what? Please reword. Is this not inherent representation of immune 
cells in a given proteomic subtype? Is this referring to "differential expression" of 
the xCell scores?  

o 'The xCell algorithm was employed to infer the relative cell abundance of 41 different cell types 
(see Methods).' 

§ Why only 41? The reviewer believes xCell can estimate more than this.  The table 
of xCell scores and p-values should be provided as supplemental. 

• Figure 2 
o A 

§ The reviewer had a hard time reading these volcano plots. The shading makes 
them almost uninterpretable. These do not need the sample frequency since 
presumably the authors did some type of filtering for missingness before the data 
was presented.  

§ Gene symbols should be used instead of Uniprot accessions. 
§ The reviewer was going to comment that the non-significant findings should be 

colored black or dark grey with the significant findings colored red/blue, but it 
now appears like this has already been done. Something needs to be done to help 
with the interpretability of these figures. Maybe only coloring the top fold-
change/FDR hits? A much more stringent cutoff?  

o C 
§  

• Figure 6 
o A, D 

§ The dots/bubbles are very small and hard to see/interpret. Please increase their 
size to aid in interpretability. There does not need to be so much empty space in 
between them. 

§ Do these have -logp and -logfdr abbreviated with the "o" taken out? Please write 
them out. 

§ Justify using p-values for one and FDR for the other. Why not be consistent? Do 
the results still hold with FDR? That would be acceptable as long as the results 
are clearly stated. 

• Figure 7 
o A 

§ Similar comments above about this volcano plot. 
o B 

§ If the pathway enrichment is shown in C, then are these nearly identical heatmaps 
really needed? 

o C 
§ The text direction is the opposite of other figures. Please be consistent. 
§ There are too many genes listed. 

o D-F 
§ What are readers supposed to gain from these? There is too much going on here. 

Please consider hiding the nodes that are not relevant or highlighting the key 
nodes. 

• Supplemental Figure S1 
§ Was the phosphoproteomics data normalized the same as the protein expression? 

The distribution of the boxplots look different. 
• Supplemental Figure S4 

§ Have all of the survival analyses been adjusted for clinical variables mentioned 
above? What about false discovery? Hazard ratios should always be reported. 

• Supplemental Figure S5 
o C, D 



§ These images are too small to see. Please make them larger and include scale 
bars on any other histology/ICC/IHC images throughout. 

 



Reviewer #3: 

Remarks to the Author: 

Considerable effort is appreciated. 

 

There are the following major issues: 

 

AEG subtype (Siewert type I, II, and III) have different biology and cannot be combined as such. 

Overall samples size is rather small. 

 

According to the Table s1. there are no Siewert type I patients in the cohort studied. ' 

 

Again, there are only 4 patients with Siewert type II (gastroesophageal junction). These should be 

removed. Therefore, what is left in the cohort are Siewert type III and some gastric cancer patients. 

Essentially, not a study of 3 types of upper GI tumors. 

 

The two cell lines studied (OE3 and Sk-GT-4) are Siewert type I cell lines and not relevant in this 

study. 

 

All tumors (almost) are of high localized stage and with varied survival. The overall, survival analysis 

fails to correlate molecular subtypes with phenotypes/histotypes. 

 

The manuscript claims that multiomics analysis has not been done, which is not true. TCGA STAD 

included 4 times more patients and was much more comprehensive. Similarly, the Samsung paper not 

quoted. The authors have not acknowledged TCGA subtypes and validated their findings. 

 

Figure 1. Remove AEG I and II (as there are no AEG 1 tumors in this study and there are only 4 AEG 

II and they should be removed from the analysis as they do not provide useful data). 

 

In the introduction, "surgical resection is most effective" cannot be generalized. It is acknowledged 

that surgery is essential for cure but multimodality is commonly practiced. Surgery first may be a 

Chines approach and should be qualified. 

 

In the introduction, there should be mention of novel studies with IO 

 

The normal tissue is seemingly appropriate for some comparisons but it is expected that once some 

proteins are differentially expressed in tumor/normal, repetitive analysis of tumor v normal (Figures 

1D, 1E, and 1F are not very informative). 

 

Similary, Figure 2A distracts from what we can learn about tumors. Same for Figures 2D and 2C. 

 

Proteomics did not provide the location of these proteins (cell surface, nuclear, cytoplasmic, or total). 

 

Figure 3 is interesting. 3 types (S-I, S-II, and S-III) are not correlated with phenotypes/histologies. 

Types S-I and S-II are similar in prognosis. It is not clear what may be promoting better survival in S-

III when one reviews Figure 3D (many oncogenes are up-MYC and cell cycle). Angiogenesis is down 

can make sense. OxPhos down can make sense but need better interpretation from the authors. and 

correlate with clinical variables. 

 

Figure 4G. why include normals here??? Why normals in different subtypes are different? Were they 

not obtained from a distant gastric location? If so, are the differences related to cancer? Very 

confusing. 

 

Figure 5A. again, inclusion of normals does not seem to add much here. Confusing for S-I. 

 



the finding that FBXO44 is associated with poor outcome in multiple cancer patients (their ref 38) is 

not novel. In ref 38, those authors have produced significant high quality data and the current 

manuscript provides no novelty. It would appear that it would be difficult to target FBXO44 but it could 

serve as a marker to use IO. these authors could have considered those studies. 

 

Integration of various platform remains elusive. Need better description and plan. Integration with 

clinical variables would be more meaningful. 

 

Subtypes I, II, and III were derived by proteomics data and by integrated analysis. The significance 

remains unclear. Subtypes not integrated with clinical variables. 

 

there is useful information on TME analysis. but again not correlated with clinical phenotypes. Not 

integrated. 

 

Genomics of subtypes is noted but not integrated to the extent it can be done. 

 

A lot of analyses are descriptive and correlative. Not highly informative. 

 

Discussion has many misstatements and unfocused emphasis. 

 

It is unclear if these data provide a step forward as prior studies were not placed in context. 



Point-by-point Response (NCOMMS-22-09290) 
 

Reviewer #1 (Remarks to the Author): Expert in gastric cancer 

Li et al. Integrative Characterization of Adenocarcinoma of Esophagogastric Junction 

Li and colleagues perform a multi-omics analysis of junctional cancer from more than 100 cases 

that includes whole exome, RNAseq, and mass spectrometry of proteins and the phosphorylation 

sites. They show that the cases can be roughly divided into three subclasses (S-1, SII, and SIII) 

based on the aggregate molecular parameters they identify, and that there is clinical significance 

for each with respect to survival times, potential for certain therapeutic regimens, and perhaps 

immunotherapy. This work adds important dimensions to the earlier studies out of the Broad and 

Sanger that were largely focused on genomics and expression profiles of EAC, and suggests that 

much will be learned from expanding and correlating the multiple datasets. 

Response: Thanks very much for the overall positive comment of our manuscript. We appreciate 

very much the valuable comments and suggestions raised by the Reviewer. We have carefully 

revised the manuscript according to these comments, which greatly improved our manuscript. 

Please see the detailed point-to-point response as follows: 

Comments: 

Q1: In the introduction there needs to be a clearer presentation of "gastric cancer" as distinct from 

the junctional cancer. Earlier genomic studies of upper GI cancer showed what many expected that 

so-called "intestinal gastric cancer", the H. pylori-associated adenocarcinoma that initiates with 

GIM, is in fact closely related to EAC or junctional cancer. In contrast, diffuse gastric cancer is 

very different. As intestinal gastric cancer is so prevalent, especially in Asia, it needs to be 

highlighted in the introduction. 

Response: Thanks very much for the professional comment and nice advice. In the revised 

manuscript, we described the relationship and differences between AEG and gastric cancer from 

aspects of epidemiology, etiology, pathological features, and the role of Helicobacter pylori 

infection. The detailed description is as follows: 



Line 7-19, Page 3: " AEG is obviously different from gastric cancer in epidemiology, etiology, 

and pathological characteristics. The incidence rate of AEG has increased year by year, while that 

of gastric antral carcinoma has decreased significantly1,2. According to the Lauren classification, 

the intestinal type was most common in AEG, and intestinal metaplasia led by gastroesophageal 

reflux disease (GERD) is the main risk factor for AEG3,4. However, there are more diffuse type 

cases of gastric antrum carcinoma, and chronic atrophic gastritis is an important precancerous 

lesion of gastric antrum carcinoma4. In addition, Helicobacter pylori (H. pylori) infection is a 

recognized carcinogenic factor of gastric antrum cancer. Cytotoxigenic associated gene A (CagA) 

in H. pylori may significantly increase the risk of atrophic gastritis and gastric antrum cancer, but 

its role in AEG is controversial5. Some studies have shown that H. pylori infection can prevent 

GERD, Barrett's esophagus and other reflux diseases, thus reducing the incidence of AEG to a 

certain extent6." 

Note: Related references were cited in the revised manuscript. 

Q2: From an informatics standpoint, one is concerned for the "pairwise" analysis used here though 

these concerns may be unfounded. Regardless, the source of "normal" tissue in the figures is said 

to be the gastric mucosa. However, the gastric mucosa is topologically (regionally) diverse 

suggesting that the reference point in these studies could be variable for each case. Has the team 

considered developing an amalgam 'normal' from all normals to be generically compared with each 

tumor sample to limit such variability? 

Response: Thanks very much for the Reviewer's comment. The NAT site marked in the original 

Figure 1A was misleading. We apologize for the confusion caused by the inaccurate schematic 

diagram, which should have been avoided. In our study, all NAT samples were collected from 

regions within ~2 cm around the corresponding AEG tumor sites. We revised the schematic 

diagram and added text of "~2cm around tumor" in revised Figure 1A (Figure R1-1). This has 

also been described in the revised manuscript (Line 21-22, Page 5). Pairwise comparisons of 

tumor and NAT around tumor sites are common in many multi-omics studies in gastric or colon 

cancer7–9. 



 
Figure R1-1. Schematic diagram of anatomical sites where AEG and NAT samples were 

collected. 

Q3: With the intense interest in immunotherapy for these difficult tumors, it was intriguing to see 

that the SIII subclass, with the longest survival time, was also the class that, by cell type 

deconvolution analysis, had the most lymphoid and myeloid cells and the fewest fibroblasts. Given 

the thoughts that fibroblasts, and particularly myofibroblasts, may limit access by immune cells, 

was this correlation evident in the H&E analysis across the subtypes. 

Response: Thanks very much for the professional comment. In this revision, we performed H&E 

analysis across these three subtypes. Compared to those in the S-I and S-II subtype, we observed 

decrease of fibroblasts and increase of lymphoid and myeloid cells in the S-III subtype (Figure 
R1-2, revised Figure 6E). This has also been described in the revised manuscript (Line 16-18, 

Page 23). 

 



Figure R1-2 (revised Figure 6E). H&E analysis of tumor cells, lymphoid cells, myeloid cells 
and fibroblasts across three AEG subtypes. 

Q4: The focus on FOXO44 is interesting, and yet it seems to be a property of S-II class which 

apparently has a more complex survival profile that S-I and S-III. May have missed this, but given 

the link proposed with metastasis, is S-II cases, especially those with high FOXO44, more 

metastatic? 

Response: Thanks very much for the comment and nice advice. In the AEG cohort of 103 patients, 

23 patients were classified into S-II subtype. To examine the association between FBXO44 and 

the metastasis of AEG, we verified FBXO44 in a larger AEG cohort of 251 patients. The 

expression of FBXO44 was assessed using the H-score system. The formula for the H-score was 

as follows:  

H-score = ∑ (IS × AP), 

where IS represents the staining intensity and AP represents the percentage of positively stained 

tumor cells. The H-score ranged between 0 and 12. An IS between 0 and 3 was assigned for the 

intensity of tumor cell staining (0 for no staining; 1 for weak staining; 2 for intermediate staining; 

3 for strong staining). AP depended on the percentage of positive-stained cells as follows: 0 (0%), 

1 (1-25%), 2 (26-50%), 3 (51-75%), and 4 (76-100%). The score was assigned using the estimated 

proportion of positively stained tumor cells. A score ≥ 6 is positive and < 6 is negative. Our analysis 

found that FBXO44 was significantly associated with distant metastasis (χ2 = 6.19, P = 0.013) and 

advanced TNM stage (χ2 =8.95, P = 0.030) of AEG tumor (Figure R1-3, revised Supplemental 

Figure S10). Furthermore, we also assessed the association between FBXO44 protein level and 

all other clinicopathological features of AEG patients (Table R1-1, revised Supplemental Table 
S8). In addition to distant metastasis and advanced TNM stage, FBXO44 was found to be highly 

associated with older age (χ2 =5.507, P = 0.019) and high AFP level (χ2 =14.489, P < 2.00E-16). 

These have also been described in the revised manuscript (Line 17-25, Page 20). 



 
Figure R1-3 (revised Supplemental Figure S10). Validation of FBXO44 in an independent 
cohort of 251 AEG patients. (A) The number of samples with different H-score ranges (0, 1-5, 

and 6-12). (B) FBXO44 protein was significantly enriched in AEG patients with M1 tumor stage. 
(C) FBXO44 protein was significantly enriched in AEG patients with advanced tumor stages. 

Table R1-1 (revised Supplemental Table S8).  The associations between FBXO44 protein 
level and clinicopathological features of AEG patients. 

Variables 
FBXO44 expression 

#Total Positive 
Rate χ2 p-value 

#Positive #Negative 
Age (year) 

≥ 65 43 94 137 31.39% 
5.507 0.019* 

＜65 21 93 114 18.42% 
Sex 

Female 18 36 54 33.33% 2.224 0.136 Male 46 151 197 23.35% 
Family history (gastric cancer) 

Yes 3 15 18 16.67% 0.000 1 No 19 83 102 18.62% 
Smoking 

Yes 4 31 35 11.43% 0.990 0.320 No 18 67 85 21.18 
Drinking 

Yes 4 18 22 18.18% 0.000 1 No 18 80 98 18.37% 
Borrmann type 

I/ II 9 34 43 20.93% 0.172 0.679 III/IV 13 60 73 17.81% 
Lauran type 

Intestinal 12 56 68 17.65% 0.360 0.835 



Diffuse 6 28 34 17.65% 
Mixed 3 9 12 0.25 

Tumor size (cm) 
≥5cm 43 109 152 28.29% 

1.264 0.261 
＜5cm 21 75 96 21.86% 

Grade of differentiation 
Well/ Moderate 10 47 57 17.54% 0.446 0.504 Poor/not 12 41 53 22.64% 

T stage 
T1/2 5 14 19 26.32% 0.001 0.975 T3/4 59 168 227 25.99% 

N stage 
N0/1 23 64 87 26.44% 0.048 0.826 N2/3 40 119 159 25.16% 

M stage 
M0 56 175 231 24.23% 6.193 0.013* M1 8 7 15 53.33% 

TNM stage 
Ι 4 9 15 30.77% 

8.953 0.030* II 13 22 35 37.14% 
III 40 143 183 21.86% 
IV 8 7 15 53.33% 

AFP (ng/ml) 
＞8.1 4 0 4 100% 

14.489 <2.00E
-16* ≤8.1 15 92 107 13.51% 

CEA (ng/ml) 
＞5 9 25 34 26.47% 

3.132 0.077 
≤5 10 68 78 12.82% 

CA199 (U/ml) 
＞37 9 29 38 23.68% 

2.471 0.116 
≤37 9 65 74 12.16% 

CA724 (U/ml) 
＞6.9 6 20 26 23.08% 

1.013 0.314 
≤6.9 12 70 82 14.63% 

CA125 (U/ml) 
＞35 2 5 7 28.57% 

0.080 0.778 
≤35 15 75 90 16.67% 

CA50 (U/ml) 
＞25 5 14 19 26.32% 1.382 0.240 



≤25 12 68 80 15.00% 
HER2 

Positive 2 20 22 9.09% 0.599 0.439 Negative 18 78 96 18.75% 
PD-L1 

Positive 4 18 22 18.18% 0.608 0.436 Negative 28 68 96 29.16% 

*Statistically significant (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer #2 (Remarks to the Author): Expert in multi-omics 

Li et al. present a multi-omic characterization of adenocarcinoma of the esophagogastric junction 

(AEG). The results presented are impressive and represent a comprehensive overview of these 

tumors from a variety of omics standpoints. Unlike many multi-omic survey manuscripts, the 

authors included follow up experiments and mouse model work to help validate their findings. The 

reviewer believes these results are important, but some work is needed before these findings are 

suitable for publication. In particular, the results describing FBXO44 seem out of place. Next, the 

authors need to go beyond simply listing feature and pathway differences between their multi-

omic subtypes. Each results section reads like its own long list of differences, seemingly without 

much thought given to how these differences relate to the other results. This work would be greatly 

strengthened if the authors defined the key phenotypic features of these multi-omic subtypes and 

how they may be clinically relevant. Further, too much time is spent on comparisons with normal 

samples. Not surprisingly the normal samples are very different from tumors, and nearly every 

comparison made by the authors resulted in many hits. The corresponding results have too many 

genes and/or pathways to easily interpret. A better use of the normal data may be to use it in a 

more targeted manner. For example, to help screen for cancer-specific targets that were enriched 

in a particular multi-omic subtype. Finally, the wording throughout the manuscript needs to be 

more specific, and the statistical tests utilized along with fold changes and p-values need to be 

provided. In addition to this, please find the major and minor comments to address below.  

Response: We appreciate very much for the Reviewer's efforts on reviewing our manuscript. The 

Reviewer raised many professional comments and valuable suggestions. Our manuscript has been 

much improved after the revision following these valuable comments and suggestions. Please see 

detailed revisions in the point-to-point response as follows: 

Major comments  

Page 6  'Protein Database Searching'  

Q1: All of the proteomic findings seem to refer to single protein accessions/names. What happened 

to the protein group assignments from MaxQuant? The reviewer expects at least some of these 

protein groups to contain more than one protein accession. Protein group abundances as rows and 

samples as columns should be included in supplemental. 



Response: Thanks very much for the nice suggestion. We have provided a supplemental table, 

wherein protein group abundances as rows and samples as columns, as Supplemental Table S2 in 

our revised submission. This has also been mentioned in the revised manuscript (Line 4-5, Page 
8). 

Q2: The reviewer appreciates the data being deposited into various repositories, but as much as 

possible the data used to generate the figures presented in the manuscript should be included as 

supplemental materials. This includes raw gene counts, protein group intensities, called mutations, 

multi-omic subtyping, etc. at the sample level. Presently, the supplemental data only seems to 

contain summarized results and fold changes across conditions.  

Response: Thanks very much for the nice suggestion. In the revised submission, we provided 

protein group intensities in Supplemental Table S2, called mutations with annotation information 

in Supplemental Table S3, raw gene counts in Supplemental Table S4, and subtyping information 

in Supplemental Table S9. 

Page 7 'Whole Exome Sequencing' ... 'mRNA Sequencing'  

Q3: The description of computational methods for WES and RNA-seq processing are severely 

deficient. Please provide detailed processing of the raw sequencing data including the alignment, 

reference genome, QC steps, variant callers, read counting, etc. to allow for reproduction of the 

presented results. Sample level RNA-seq counts should be included in supplemental.  

Response: Thanks for the nice advice. We have provided details of processing the raw WES and 

RNA-seq data as follows: 

Line 6-17, Page 9 (processing WES data): "Adaptors and low-quality reads (q quality score < 

20) were removed from raw WES reads by using fastp software (version 0.21.0)10. Then, BWA 

software (version 0.7.17)11 was utilized to align filtered reads to the human reference genome 

(GRCh38). Alignments were subjected to Picard tools (http://broadinstitute.github.io/picard/) to 

identify and mark duplicate reads. Next, local realignment was performed to correct potential 

alignment errors around indels. Prior to variant calling, base quality score recalibration was 

performed to reduce systematic biases. Then, somatic SNVs and InDels were jointly called by 

Mutect2 (version 4.1.9.0)12 and Strelka2 (version 2.9.10)13. Only variants that passed both quality 

filtering steps were used in the follow-up analysis. The Variant Effect Predictor (VEP) tool14 was 



utilized to fetch biological information of the variant set. Called mutations with annotation 

information are supplied in Supplemental Table S3." 

Line 28-29, Page 9; Line 1-7, Page 10 (processing RNA-seq): " Raw sequencing RNA reads 

were first trimmed to remove low-quality bases and reads by using Trimmomatic software (version 

0.39)15 with default parameters. The filtered reads were then aligned to the human reference 

genome (GRCh38) by using the splice-aware aligner HISAT2 (version 2.2.1)16. Alignment results 

were subjected to gene quantification with gene annotation from GENCODE (version 35)17 by 

adopting StringTie software (version 2.14)18. Gene expression levels were normalized in TPM 

(transcripts per million mapped reads). Genes with expression levels higher than 0.1 TPM in at 

least one sample remained for downstream analysis. Raw gene counts are provided in 

Supplemental Table S4." 

In addition, the sample-level RNA-seq counts has been provided in Supplemental Table S4. 

Note: Related references were cited in the revised manuscript. 

Page 13 'From the RNA-seq data, 23,131 genes were found to be expressed in 166 AEG tumor and 

NAT samples...'  

Q4: See the above comment on the RNA-seq processing. Include the expression/missingness 

thresholds used to filter the data (if any). Were there a large number of genes expressed in only 

the normal/only the tumor?  

Response: Thanks very much for the suggestion. We have provided details of processing RNA-

seq data in the revised manuscript (please see response to Q3). Genes with expression levels higher 

than 0.1 TPM in at least one sample were remained for downstream analysis. In total, there are 

1,500 (0.33% of all detected genes in normal samples) and 6,528 (14.32% of all detected genes in 

tumor samples) genes expressed in only normal and tumor samples, respectively. It seems that 

AEG tumor samples express more specific genes. 

 '...including proteomics profiling, phosphoproteomics profiling, WES, and RNA-seq (Figure 1A).'  

Q5: The reviewer had a hard time with the figures. The text in most of the figures is very small, 

and many, many protein names and/or pathways are listed. Non-key findings should be relegated 

to supplemental figures or even tables. The authors should take time to consider how their results 



are displayed and do a better job at distilling the key findings down to fewer, more interpretable 

figures. 

Response: Thanks very much for the comment and advice. We have enlarged the text font across 

all figures in the revision. In this revision, we only kept representative or top 

genes/proteins/pathways in figures. We have carefully revised the manuscript according to the 

Reviewer's following suggestions. We appreciate very much the Reviewer's valuable comments 

and suggestions, which have greatly improved our manuscript. Please see the detailed revisions in 

the following point-to-point response. 

Page 14 Proteomic Characteristics of AEG Tumors  

Q6: Please see the comment in the opening paragraph about repurposing the normal data and 

utilizing it to ask specific questions as opposed to showing numerous differences between normal 

and tumor in each omics type.  

Response: Thanks very much for the Reviewer's comment. Our original description may not be 

clear. It is known that molecular alterations occurred frequently in tumor samples, but the specific 

alterations of proteome in AEG tumor have not yet systematically investigated. By comparing to 

the normal samples, we identified differentially expressed proteins and altered biological processes 

in AEG tumor. Our analysis presented a comprehensive view of proteomic alterations in AEG 

tumors, and further investigation on their functions and molecular mechanisms in AEG may 

provide promising drug targets for this disease. 

The normal samples were also used to identify subtype-specific alterations. In our study, all 

NAT samples were collected from regions within ~2 cm around the corresponding AEG tumor 

sites. Paired tumor-NAT samples were derived from the same patients. To reduce the effect of 

inter-patient heterogeneity and identify subtype-specific tumor differences, we separately 

compared tumor with NAT samples in each AEG subtype. These have also been discussed in the 

revised manuscript (Line 10-21, Page 26). 

Proteomics-Based Subtyping of AEG Tumors  

Q7: The authors need to do a better job at characterizing these subtypes. Yes, they do the 

bookkeeping in the results and write the expected things about differentially expressed proteins 



and pathways, but what is the overarching story? What biology defines these subtypes from one 

another? Why do the authors think the S1 subtype has the worst survival? Did the immune 

infiltration later shed any light into this? What is the role of FBXO44, if any, in these subtypes?  

Response: Thanks very much for the Reviewer's comment. The molecular alterations of AEG, 

especially those in proteome, and its molecular subtypes have been obscure. In this study, we 

presented a comprehensive molecular atlas of AEG, characterizing multi-layer alterations in tumor 

samples. We identified three proteomic AEG subtypes with significant differences in clinical 

features and molecular alterations. AEG patients in the S-III subtype had better prognosis than 

those in the S-I and S-II subtype. We then dissected multi-layer differences between the three 

subtypes by comparing the genomics, immune infiltration, and phosphoproteomics. In genomics, 

The SBS1 signature was specifically identified in the S-I subtype, which showed spontaneous or 

enzymatic deamination of 5-methylcytosine. The S-II subtype exclusively exhibited the mutation 

signature of APOBEC cytidine deaminase (the SBS2 signature). The mutation signature of 

"deficiency in base excision repair due to inactivating mutations in NTHL1" (the SBS30 signature) 

was specifically detected in the S-III subtype. In the aspect of immune infiltration, the abundance 

of fibroblasts was significantly decreased in the S-III subtype (P = 2.2E-5, Student's t test) but 

showed no obvious changes in tumor samples from the S-I and S-II subtypes. Compared to samples 

in the S-I and S-II subtypes, our H&E analysis also revealed a decrease in fibroblast abundance of 

the S-III subtype. Given that fibroblasts may limit the immune cell infiltration to exert the 

immunosuppressive role in cancer19, this observation may partly explain that AEG patients in the 

S-I and S-II subtype had worse prognosis than those in the S-III subtype. In phosphoproteomics, 

The S-I subtype specifically showed enrichment of IKBKB and PRKDC. HIPK2 kinase was 

exclusively enriched in the S-II subtype, while CHEK2 and AURKB were specifically enriched in 

the S-III AEG subtype. 

The comparisons of cell abundances between tumor and NAT samples in each subtype revealed 

pervasive changes in cell abundances across various cell types. Compared to the corresponding 

NAT samples, tumors in the S-II subtype had the least number of cell types, while the S-III subtype 

had the most cell types that showed alterations in cell abundance, especially the increase in 

lymphoid and myeloid cells. Some types of cells exhibited dysregulated abundances in all AEG 

subtypes. For example, the abundance of activated dendritic cells (aDCs) showed a significant 



increase in tumor samples of all three AEG subtypes. The abundance of fibroblasts was 

significantly decreased in the S-III subtype (P = 2.2E-5, Student's t test) but showed no 
obvious changes in tumor samples from the S-I and S-II subtypes. Compared to samples in 
the S-I and S-II subtypes, our H&E analysis also revealed a decrease in fibroblast abundance 
of the S-III subtype. Given that fibroblasts may limit the immune cell infiltration to exert the 
immunosuppressive role in cancer19, this observation may partly explain that AEG patients 
in the S-I and S-II subtype had worse prognosis than those in the S-III subtype. These has 

also been described in the revised manuscript (Line 6-20, Page 23). 

The FBXO44 was identified as a signature protein of the S-II subtype, which showed specific 

high expression in the S-II subtype. FBXO44 was demonstrated to promote AEG tumor 

progression and metastasis in vitro and in vivo. It needs much more investigation to determine 

whether FBXO44 play roles in defining the AEG subtype. 

We have carefully revised our manuscript according to the valuable comments and suggestions 

raised by the Reviewer, which has greatly strengthened our manuscript. Please see the detailed 

revisions in point-to-point response. 

'... whereas the "KRAS signaling up" hallmark was significantly down-regulated (P = 1.1E-3) in 

tumor samples (Figure 2D). '  

Q8: There are not many KRAS mutations and KRAS does not appear to be a major driver in this 

cancer. Why is this showing up? Is it a red herring? 

Response: Thanks for the comment. The Reviewer is right that there are not many KRAS 

mutations in this cancer. Only 6 patients were observed with KRAS mutation in our AEG cohort 

(revised Figure 1B). Our original unclear description caused confusions. The "KRAS signaling 

up" hallmark is the gene set comprises genes up-regulated by KRAS activation20.  

'These observations implicate that flutamide might be effective in treating AHR-high AEG 

patients.'  

Q9: The authors should do a better job at supporting this claim. Just because this and other proteins 

are differentially expressed does not mean that they would make good drug targets. Not all of these 

will be drivers/critical to the survival of the tumor. Is there publicly available drug screening data 



that could be integrated here? Could a network analysis of proteomics findings using protein-

protein interaction data identify bottlenecks/hub proteins that would make better drug targets?  

Response: Thanks very much for the Reviewer's professional comment and suggestion. Our 

original description may not be clear. The Reviewer is right that differentially expressed proteins 

(DEPs) doesn't mean good drug targets. To examine whether these DEPs were targeted by FDA-

approved drugs or candidate anti-cancer compounds in clinical trials, we screened datasets of the 

GDSC21, CTRP22, and Broad Institute Drug Repurposing23 project. In total, 252 DEPs were found 

to be targets of 195 anti-cancer compounds, which was provided in revised Supplemental Table 
S6. The Reviewer is correct that not all DEPs are drivers/critical to the survival of the tumor. 

Further investigation on these DEPs that are targeted by known anti-cancer compounds may 

provide promising drug targets for AEG. These have also been re-worded and described to make 

the statements clearer in the revised manuscript (Line 2-8, Page 18). 

Furthermore, in this revision, we retrieved the human protein-protein interactions (PPIs) from 

the STRING database (v11.5)24. DEPs were then mapped to these PPI relations to generate the 

DEP PPI network in AEG. Single nodes were removed from the network. We obtained a PPI 

network of 3,923 nodes and 79,088 edges (Figure R1-4A, Supplemental Figure S5A). To identify 

the hub proteins of this PPI network, the network topology was then analyzed to calculate the 

degree, closeness, and betweenness of each node (Figure R1-4B-D, Supplemental Figure S5B-D, 

Supplemental Table S7). In this PPI network, the top 10 degree proteins are TP53, HSP90AA1, 

FN1, HDAC1, CD4, EP300, DHX15, CDK1, FBL, and STAT3 (Figure R1-4B), the top 10 

closeness proteins are TP53, HSP90AA1, FN1, EP300, CD4, HDAC1, STAT3, CDK1, SIRT1, 

and CDH1 (Figure R1-4C), and the top 10 betweenness proteins are TP53, HSP90AA1, FN1, 

CD4, CDH1, EP300, STAT3, APP, HDAC1, and SIRT1 (Figure R1-4D). Hub proteins of the PPI 

network may be drug target candidates that are worth of further investigation. These have also 

been described in the revised Supplemental methods and manuscript (Line 11-14, Page 18). 



 
Figure R1-4. Network analysis of differentially expressed proteins (DEPs). (A) Protein-

protein interactions (PPI) network of DEPs in AEG. The circle size indicates node degree. Red 
circle represents up-regulated protein, blue circle represents down-regulated protein, and grey 

circle represents non-change protein. (B) The distribution of network degree of each node. Top 
10 proteins with the largest degrees were highlighted. (C) The distribution of network closeness 
of each node. Top 10 proteins with the largest closeness were highlighted. (D) The distribution 

of network betweenness of each node. Top 10 proteins with the largest betweenness were 
highlighted. 

To further optimize the candidates that may play crucial roles in AEG, and are potential drug 

targets, we mapped the top 50 DEPs with the top 50 proteins with the largest degree, closeness, or 

betweenness. In total, 43 proteins were included in at least two sets of the top 50 DEPs, top 50 



proteins with the largest degree, closeness, or betweenness (Figure R1-5A). Some of these hub 

DEPs were found to be targeted by known compounds, such as HDAC1, HSP90AA1, and TP53 

(Figure R1-5B). This has also been described in the revised manuscript (Line 14-19, Page xx). 

 
Figure R1-5. Overlaps of the top 50 DEPs and top 50 proteins with the largest degree, 

closeness, and betweenness. (A) Venny plot showing the overlaps between the top 50 DEPs and 
the top 50 proteins with the largest degree, closeness, or betweenness. (B) Heatmap showing the 

difference in the proteins that are included in at least two sets of top 50 DEPs, top 50 proteins 
with the largest degree, closeness, or betweenness. Bubble plot on the right shows the degree, 

closeness, or betweenness of the corresponding proteins in the PPI network. 

Note: Related references were cited in the revised manuscript. 

Page 15 'Of these, 12 signature proteins were targetable by FDA-approved drugs or candidate 
drugs currently in clinical trials (Figure 3G).'  

Q10: Same comment as above. The reviewer would like this idea developed more and have more 

supporting evidence shown (computational evidence would be acceptable).  

Response: Thanks very much for the Reviewer's comment. Our original statement was not 

accurate nor clear. We apologize for the misstatement that caused confusions that should have 

been avoided.  These 12 signature proteins showed significant association with patient overall 



survival in the univariate Cox regression analysis.  The original statement that 12 signature proteins 

were targetable by FDA-approved drugs or candidate drugs currently in clinical trials was not 

correct. According to datasets of the GDSC21, CTRP22, and Broad Institute Drug Repurposing23 

project, only 1 of 12 proteins was targetable by known anti-tumor compounds. In particular, PKD2 

is a target of SKF-96365, which is currently investigated in preclinical phase. Therefore, these 

proteins are more likely used as prognosis or diagnosis markers for AEG patients in the near future. 

These proteins can also be target candidates for the development of effective anti-cancer drugs for 

AEG patients. This statement has also been corrected in the revised manuscript (Line 2-8, Page 

18). 

Note: Related references were cited in the revised manuscript. 

Q11: Since the authors bring both up, can they quantify what would be better based on their data: 

drug targets based on normal to tumor analysis, or drug targets based on proteomic subtypes? 

Response: Thanks very much for the comment. The drug targets based on tumor-to-normal 

analysis may target a wider population, while drug targets based on proteomic subtypes may be 

more specific and personalized. Due to the heterogeneity of tumors, precision therapy is the 

direction and trend of research. More and more studies have systematically described the 

molecular spectrum of tumors through multi-omics technology, and carried out accurate diagnosis 

and treatment research such as accurate classification of tumors, screening of drug targets and 

prognosis prediction according to molecular characteristics25–29. In our study, all NAT samples 

were collected from regions within ~2 cm around the corresponding AEG tumor sites. Paired 

tumor-NAT samples were derived from the same patients. To reduce the effect of inter-patient 

heterogeneity and identify subtype-specific tumor differences, we separately compared tumor with 

NAT samples in each AEG subtype. In total, 389, 731, and 630 DEPs in the S-I, S-II, and S-III 

subtype, respectively were not detected in the analysis of all samples. These results demonstrated 

that subtype analysis could reveal many subtype-specific candidates that may help personalized 

therapy of AEG patients. 



 
Figure R1-6. DEPs in different comparisons. (A) Venny plot shows the overlaps among DEPs 
identified in all AEG, S-I subtype, S-II subtype, S-III subtype samples. (B) Upset plot shows the 

statistics of DEPs in different comparisons. 

Note: Related references were cited in the revised manuscript. 

'For example, the activity of the "G2M checkpoint" hallmark in the S-III subtype was significantly 

higher than those in the other two subtypes (P = 1.7E-3 compared to S-I subtype, P = 1.2E-4 

compared to S-II subtype) (Figure 3E), while "pancreas beta cells" showed remarkably lower 

levels in the S-III subtype (P = 1.7E-2 compared to S-I subtype, P = 4.3E-2 compared to S-II 

subtype) (Figure 3F). '  

Q12: The reviewer assumes that the authors mean the large degree of change of 

expression/abundance of "G2M checkpoint" proteins when they refer to activity. This is confusing 

because 1) there are activity-based protein profiling (ABPP) proteomic assays that measure 

activity directly and 2) the authors have phosphoproteomics data. Please reword this section and 

change the axes of figures that mention activity. Should the figures say fold change instead?  

Response: Thanks very much for the professional advice. The original description was not 

appropriate or unclear. By saying "activity", we meant the integrated abundance of "G2M 

checkpoint" or "pancreas beta cells" proteins. The integrated abundance of hallmarks was 

calculated by utilizing the GSVA R package. These have also described in the revised manuscript 

as follows: 



Line 8-13, Page 10: "The hallmark gene sets were retrieved from the Molecular Signatures 

Database (MSigDB)20. These fifty gene sets were refined from a wide range of biological processes 

by reducing both variation and redundancy. The integrated abundance of proteins in these 

hallmarks were then calculated in each sample by utilizing the GSVA R package (version 1.38.2)30. 

A normalized protein expression matrix was used in the calculation." 

In addition, the axes of figures and text that mentioned "activity" have been changed to "integrated 

abundance" in the revised manuscript. 

Note: Related references were cited in the revised manuscript. 

Q13: What kind of pathway enrichment is being performed? The reviewer does not remember 

"pancreas beta cells" being one of the cancer hallmarks. If the type of pathway enrichment or the 

resource used for pathway enrichment is changing, then the authors should clarify. All pathway 

results, including non-significant ones, should be included in supplemental tables.  

Response: Thanks very much for the comment and suggestion. In this part, we used hallmark gene 

sets that were downloaded from the Molecular Signature Database20 (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/genesets.jsp?collection=H), which includes 50 gene sets. In each sample, 

we calculated the integrated abundance of all proteins for each hallmark. Then we compared the 

difference between tumor and normal samples in each subtype. The results of 50 gene sets were 

shown in Figure 3D (Figure R1-7). We have clarified this in the revised manuscript as follows: 

Line 8-13, Page 10: "The hallmark gene sets were retrieved from the Molecular Signatures 

Database (MSigDB)20. These fifty gene sets were refined from a wide range of biological processes 

by reducing both variation and redundancy. The integrated abundance of proteins in these 

hallmarks were then calculated in each sample by utilizing the GSVA R package (version 1.38.2)30. 

A normalized protein expression matrix was used in the calculation." 



 
Figure R1-7 (revised Figure 3D). The differences of integrated protein abundances of 

hallmarks comparing tumor and NAT samples in each subtype. 

Note: Related references were cited in the revised manuscript. 

Q14: Why were these particular pathway findings called out? Were these the most differentially 

expressed by p-value/FDR? Given the large number of changes, the authors should do a better job 

at prioritizing what they show and make it clear why they are showing it. Is there an empirical cut 

point at say the top 5 or 10 pathways before the p-values drop off substantially? That would be 

one way to prioritize all of these significant findings.  

Response: Thanks very much for the comment and nice suggestion. we used hallmark gene sets 

that were downloaded from the Molecular Signature Database20 (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/genesets.jsp?collection=H), which includes 50 gene sets. We showed 

results of all these 50 hallmarks in revised Figure 3D. These have also been described in the 

revised manuscript (Line 8-13, Page 10). 

Note: Related references were cited in the revised manuscript. 

Q15: Do AEG tumors share similarities to pancreatic tissue or beta cells?  

Response: Thanks for the question. The gastrointestinal (GI) epithelium is a highly regenerative 

tissue with the potential to provide a renewable source of insulin+ cells after undergoing cellular 

reprogramming. The stomach and intestine are unique among endodermal organs in that they 

harbor large numbers of adult stem/progenitor cells that constantly produce epithelial cells, 

including hormone-secreting enteroendocrine cells31,32. Both organs are developmentally related 

to the pancreas, arising in adjacent embryonic domains33. Native antral endocrine cells share a 

surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell 

reprogramming factors in vivo converts antral cells efficiently into insulin+ cells with close 



molecular and functional similarity to β cells. Reprogramming of antral stomach cells assembled 

into bioengineered mini-organs in vitro yielded transplantable units that also suppressed 

hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach 

tissues as a renewable source of functional β cells for glycemic control34. This has also been 

discussed in the revised manuscript (Line 22-29, Page 26; Line 1-6, Page 27). 

Note: Related references were cited in the revised manuscript. 

'Patients in these three subtypes showed significantly distinct overall survival time (P = 1.1E3)...'  

Q16: What test is this p-value associated with? What is the hazard ratio? There appears to be no 

survival analysis details in the methods. Has this been adjusted for gender, smoking history, and 

stage?  

Response: Thanks very much for the professional comment. The p value is generated from log-

rank test. The hazard ratio with 95% confidence interval is 0.27 (0.12-0.58), which is also provided 

in the revised Figure 3B (Figure R1-8). Clinical variables, including age, sex, smoking history, 

alcohol history, Siewert type, and tumor stage, were considered in the analysis. We also provided 

details in the revised manuscript as follows: 

Line 5-15, Page 11: "The overall survival time was compared between different groups by using 

the log-rank test implemented in the survival package (version 3.2.3, https://CRAN.R-

project.org/package=survival). The survival curves were generated by using the Kaplan-Meier 

method in the R package survminer (version 0.4.9, https://CRAN.R-

project.org/package=survminer). Except for the analysis of subtypes, tumor patients were divided 

into high- and low-abundance groups by using the median abundances of individual proteins, 

phosphorylation sites or genes. Hazard ratios with 95% confidence intervals were calculated from 

the Cox proportional hazards regression analysis. Clinical variables, including age, sex, smoking 

history, alcohol history, Siewert type, and tumor stage, were used in the Cox regression 

multivariate analysis." 



 
Figure R1-8. Kaplan-Meier survival curve comparing patients in different subtypes. 

Page 16 'FBXO44 Promotes AEG Tumor Progression and Metastasis '  

Q17: Why was FBXO44 chosen out of all of the possible choices? Given the sheer volume of data, 

why were were there no better choices based on combining and integrating the findings? This 

protein does not look like it mentioned in the results until this page.  

Response: Thanks very much for the comment. In the original manuscript, we didn't state this 

clearly. We would like to take this opportunity to clarify why FBXO44 was chosen out. In total, 

we identified 100 signature proteins in these three AEG subtypes. Of these, 12 signature proteins 

showed significant association with patient survival time in the univariate Cox regression analysis 

(as listed in revised Figure 3G). To further prioritize the risk factors independent of others, we 

performed multivariate Cox regression analysis of these 12 proteins. In the multivariate Cox 

regression analysis, FBXO44 showed a significantly high unfavorable risk score, while PKD2 and 

CD3D exhibited remarkably favorable scores (Figure R1-9). These results suggested that 

FBXO44 was a robust risk factor that indicated unfavorable prognosis of AEG patients. Therefore, 

we chose FBXO44 to further explore its functions in promoting AEG tumor. These has also been 

described in the revised manuscript (Line 1-6, Page 20). 



 
Figure R1-9. Forest plot shows the HR and p values of 12 signature proteins in multivariate 

Cox regression analysis.  

Q18: Were these data generated independently of the multi-omic analyses being presented? These 

findings seem like they were shoehorned between several sections of global omics characterization 

as an afterthought to give the results some more clinical relevance.  

Response: Thanks very much for the Reviewer's comment. The original manuscript may not state 

this clearly. We would like to take this opportunity to clarify the idea that we experimentally 

investigated the tumor promoting role of FBXO44. Following the identification of the three AEG 

subtypes, we detected signature proteins that showed specific high expression in separate subtypes, 

which aims to distinguish the three subtypes. We totally identify 100 signature proteins in the three 

subtypes, of which 12 proteins showed significant association with the overall survival. To further 

optimize the candidates that may play crucial roles in AEG tumor, we performed multivariate Cox 

regression analysis. In the multivariate Cox regression analysis, FBXO44 is the only protein that 

showed significantly unfavorable risk score, which indicated that FBXO44 was worthy of further 

investigation for its potential role in promoting AEG tumor. 

Q19: Please convince the reviewer that this was the best target and similar or better results could 

not have been obtained looking at the highest fold changes and pathways different across 

normal/tumor/tumor subtypes.  



Response: Thanks very much for the Reviewer's comment. In the original manuscript, we didn't 

state this clearly. We would like to take this opportunity to clarify why FBXO44 was chosen out. 

In total, we identified 100 signature proteins in these three AEG subtypes. Of these, 12 signature 

proteins showed significant association with patient survival time in the univariate Cox regression 

analysis (as listed in Figure 3G). To further prioritize the risk factors independent of others, we 

performed multivariate Cox regression analysis of these 12 proteins. In the multivariate Cox 

regression analysis, FBXO44 showed a significantly high unfavorable risk score, while PKD2 and 

CD3D exhibited remarkably favorable scores (Figure R1-9). These results suggested that 

FBXO44 was a robust risk factor that indicated unfavorable prognosis of AEG patients. Therefore, 

we chose FBXO44 to further explore its functions in promoting AEG tumor. These has also been 

described in the revised manuscript (Line 1-6, Page 20). 

 
Figure R1-9. Forest plot shows the HR and p values of 12 signature proteins in multivariate 

Cox regression analysis.  

Q20: Is the biological function of FBXO44 known? If so what pathway is it a part of? How does 

it relate to the immune findings further down? Is its expression highly correlated with anything 

interesting across the omics types? If little is known about this protein, then surely some hints 

about mechanism could be generated with the abundance of data. Even a simple co-expression 

analysis could shed some light on upstream/downstream targets.  



Response: Thanks very much for the professional comment. FBXO44 is a member of the ubiquitin 

ligase subunit family and contain a conserved G domain that mediates substrate binding35. Lu et 

al. found that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation, and 

FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 

degradation might contribute to sporadic breast tumor development36. Sjögren B, et al. identified 

a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) 

and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation37. Shen et al. Found that 

FBXO44/SUV39H1 are crucial repressors of repetitive elements transcription, and their inhibition 

selectively induces DNA replication stress and viral mimicry in cancer cells38. It can be seen that 

FBXO44 may play different roles in different tumors, which is worthy of further study in AEG. 

We evaluated the associations between FBXO44 and immune cells or checkpoints (Figure R1-
26). The high expression of FBXO44 was found associated with the low infiltration of Th2 cells 

and CD4+ Tem cells, and also correlated with the high expression of immune checkpoints 

TNFRSF14, TNFRSF25, CD40, and VTCN1. 

Q21: What are the exact fold changes from normal to tumor and across the proteomic subtypes? 

These values do not look like logged intensities. Why is relative abundance used instead of log2 

intensities? Abundances relative to what? Is it not implied that these are relative abundances since 

the authors did not do absolute quantification?  

Response: Thanks very much for the Reviewer's comment. Our original Y-axis name of the 

protein abundance was not appropriate. All the values were log2-transformation of the normalized 

iBAQ intensities (the normalization process was described in the Methods). We replaced "relative 

abundance" by "log2 (normalized iBAQ intensity)" in all revised figures. We also added the exact 

fold changes (FC) in the revised Figure 4A (Figure R1-10). 



 

Figure R1-10. Comparison of FBXO44 protein abundance between tumor and NAT 
samples in each subtype, and tumors from different subtypes. FC indicates fold change. 

Q22: See above survival analysis comments. What is test is this p-value associated with? What is 

the hazard ratio? There appears to be no survival analysis details in the methods. Has this been 

adjusted for gender, smoking history, and stage?  

Response: Thanks for the comment. The p value is generated from log-rank test. The hazard ratio 

with 95% confidence interval is 0.48 (0.26-0.88), which is also provided in the revised Figure 4C 

(Figure R1-11). Clinical variables, including age, sex, smoking history, alcohol history, Siewert 

type, and tumor stage, were considered in the analysis. We also provided details in the revised 

manuscript (Line 5-15, Page 11). 

 
Figure R1-11. Kaplan-Meier survival curve comparing FBXO44-high and -low abundance 

patients. 



Q23: Is this simply a protein that is correlated with or involved in cell proliferation therefore 

explaining the survival curve and mouse model results?  

Response: Thanks very much for the Reviewer's professional comment. FBXO44 is the only 

protein that showed significantly unfavorable risk score in the multivariate Cox regression analysis, 

which led our further investigation of its tumor promoting role in AEG. FBXO44 is a member of 

the ubiquitin ligase subunit family and contain a conserved G domain that mediates substrate 

binding35. Lu et al. found that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 

degradation, and FBXO44 expression pattern in breast carcinomas suggests that SCF(FBXO44)-

mediated BRCA1 degradation might contribute to sporadic breast tumor development36. Sjögren 

B, et al. identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding 

protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation37. 

Shen et al. Found that FBXO44/SUV39H1 are crucial repressors of repetitive elements 

transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in 

cancer cells38. It can be seen that FBXO44 may play different roles in different tumors, which is 

worthy of further study in AEG. 

Note: Related references were cited in the revised manuscript. 

Q24: How targetable is this protein/pathway given the authors used shRNA as opposed to a drug?  

Response: Thanks very much for the question. In the current study, we would like to investigate 

the biological function of FBXO44 in the occurrence and development of AEG. Therefore, we 

used shRNA to observe the changes in the growth, invasion and metastasis ability of cancer cells 

before and after knocking down FBXO44. We are also trying to optimize one or several drugs that 

effectively target FBXO44, which may take quite a long time. 

'The up-regulation of FBXO44 protein in tumor samples was further validated in an independent 

clinical cohort (P = 1.55E-4) (Figure 4B). '  

Q25: What cohort? AEG patients? How many samples? How much up-regulation? The overall 

pattern of blue/brown is easy to see in the figure, but the images are too small to see individual 

features. Please enlarge these images significantly, or if they do not fit in the main figure please 

include in supplemental. 



Response: Thanks very much for the comment and advice. We validated the expression and 

clinical significance in another AEG cohort of 251 patients. Our analysis found that FBXO44 was 

highly expressed (P = 1.55E-4) in AEG tumor tissues (Positive rate: 24.30%; 61/251), compared 

with corresponding NAT tissues (Positive rate: 10.36%; 26/251) (Figure R1-12). We enlarged 

these images and put them in the revised figures. These have also been described in the revised 

manuscript (Line 17-25, Page 20). 

 
Figure R1-12. The distribution of FBXO44 in an independent cohort of tumor and NAT 

samples from 251 AEG patients. 

 '...FBXO44 KD remarkably suppressed cell proliferation...'  

Q26: Please quantify the amount of suppression instead of using words like remarkable, and please 

use more precise wording throughout to quantify results when they are mentioned.  

Response: Thank very much for the Reviewer's nice suggestion. In this revision, we used 

quantitative words to replace the words like "remarkable". Please see the revision as follows: 

Line 1-14, Page 21: " In OE19 and SK-GT-4 cells, FBXO44 OE promoted cell proliferation by 

1.79-fold (P = 0.031) and 1.48-fold (P = 0.029) (Figure 4E and Supplemental Figure S9C), 

increased cell invasion by 1.68-fold (P = 0.032) and 2.18-fold (P = 0.035) (Figure 4F and 
Supplemental Figure S9D), and enhanced cell migration by 2.13-fold (P = 0.004) and 1.18-fold 

(P = 0.018) (Figure 4G and Supplemental Figure S9E), respectively, compared to control cells. 

In contrast, FBXO44 KD inhibited cell proliferation by 68.1% (P = 0.002) and by 49.1% (P = 

0.005) (Figure 4E and Supplemental Figure S9C), decreased cell invasion by 79.3% (P = 0.008) 

and 70.9% (P = 0.001) (Figure 4F and Supplemental Figure S9D), and reduced cell migration by 

71.8% (P = 0.005) and 54.7% (P = 0.003) (Figure 4G and Supplemental Figure S9E) in OE19 

and SK-GT-4, respectively. The oncogenic role of FBXO44 in AEG was further validated in the 



OE19 xenograft mouse model. We observed that FBXO44 OE increased the growth of AEG 

xenograft tumors by 2.54-fold (P = 0.004), whereas FBXO44 KD suppressed tumor growth by 

67.17% (P = 0.029) in vivo (Figure 4H and Supplemental Figure S9F-H)." 

Page 19 o 'Phosphoproteomic Characterization of AEG Tumors'  

Q27: How important is the phosphoproteomics data in relation to the multi-omics subtypes? Is it 

a defining feature? Since the phosphorylation data gives a measurement of signaling events in the 

tumors, is it wise to have these measurements weighted the same as the other omics types (e.g. 

RNA-seq) even though the phospho-data may be more relevant for activated signaling pathways 

and drug targets? Do any of these phosphoproteins or kinases relate back to FBXO44?  

Response: Thanks very much for the Reviewer's comment. The original description may not be 

clear. The Reviewer is correct that protein phosphorylation gives a measurement of signalling 

events in tumor. In our study, the phosphorylation data was not used to define AEG subtype. 

Actually, the phosphorylation data is not used as a defining feature of tumor subtyping in many 

proteomics-based tumor subtyping studies27,28,39. Phosphoproteomics, a large-scale analysis of 

protein phosphorylation sites, has emerged as a powerful tool to identify aberrant phosphorylation-

mediated singalling networks that play crucial roles in cancer40. In this study, we identified 

differentially phosphorylated proteins and dysregulated kinase-phosphosubstrate relationships in 

each AEG subtype, revealing subtype-specific protein phosphorylation. Our analysis revealed 

differences in kinase-phosphosubstrate regulatory networks between different subtypes and 

suggested potential personalized responses to clinical therapeutics for AEG patients. 

  As for the FBXO44, we didn't get any phosphorylated signal of FBXO44 protein in our 

phosphoproteomics data. 

Note: Related references were cited in the revised manuscript. 

Minor comments  

Page 6 o 'Tandem mass spectra were searched against the Homo_sapiens_9606 database (20,366 

entries) concatenated with a reverse decoy database. '  

Q28: Is this from Uniprot or another database? Please provide a citation as well as the date 

accessed.  



Response: Yes, it's from the UniProt database41. The original description was not clear, we have 

revised this as follows: 

Line 25-26, Page 7: "Tandem mass spectra were searched against the human UniProt database 

(20,366 entries, downloaded on May 9th, 2020)41 concatenated with a reverse decoy database" 

Note: Related references were cited in the revised manuscript. 

'The limma package was also adopted to compute the difference of protein and phosphorylation 

abundances between tumor and paired NAT samples. Specifically, the difference was statistically 

evaluated by employing a simple linear model and moderated t-statistics by the empirical Bayes 

shrinkage method. '  

Q29: Do the authors think that limma might be too conservative here? The shrinkage method is 

certainly appropriate for large RNA-seq or microarray datasets, but will meaningful signal be lost 

applying here to proteomics data?  

Response: Thanks for the comment. The Reviewer is right that the shrinkage method is certainly 

appropriate for large RNA-seq or microarray datasets. Recently, it has been also appropriately 

used in the analysis of proteomics data29. 

Q30: Please cite the limma manuscript and provide the version of the package and the version of 

R used. 

Response: Thanks for the suggestion. In the revised manuscript, we cited the limma manuscript 

(Ritchie et al., Nucleic Acids Res., 2015)42 and provided the version of limma package (version 

3.46.0) and R version (4.0.2) (Line 13, Page 8). 

Page 11 'The xCell scores (relative abundances) were calculated in each sample and were 

compared between different groups by using Student's t-test. '  

Q31: In the reviewer's hands, xCell scores tend to not follow a normal distribution. Do the findings 

from xCell still hold if a non-parametric Wilcoxon rank sum test is used?  

Response: Thanks very much for the Reviewer's comment. We re-computed the differences in 

relative abundance of infiltrating cells in the three AEG types by using Wilcoxon rank sum test. 

The vast majority of statistical results from these two tests were consistent (Figure R1-13). 



Findings in this part still hold in Wilcoxon rank sum test, such as the decreased abundance in 

fibroblast and the increased abundance in myeloid and lymphoid cells. In addition, Student's t test 

has also been applied to compare xCell scores in previous studies43,44. 

 
Figure R1-13. The difference in the relative abundance of different infiltrating cells in the 

three AEG subtypes calculated by Student's t test or Wilcoxon rank sum test. 

Page 13 o 'In particular, proteomics and phosphoproteomics profiling were performed on 206 

samples (Figure 1B).'  

Q32: The circos plot is difficult to read since most of the plot has the same pattern/is not different. 

This does not seem to convey much meaningful information Please consider a simple table or a 

different figure to convey the total amount of differentially expressed analytes.  

Response: Thanks for the comment and nice advice. We removed the circos plot (original Figure 

1B), and provided the corresponding information in revised Supplemental Table S1. 

Page 13 o 'In the present AEG cohort, the most frequently mutated cancer-related genes (derived 

from COSMIC v95)37 were TP53 (62%), MUC16 (31%), FAT4 (22%), LRP1B (18%), ARID1A 

(16%), and FAT3 (16%) (Figure 1C).'  

Q33: Please add additional tick marks to the TMB barplot at the top of the heatmap to make it 

easier to read.  



Response: Thanks for the suggestion. We add more tick marks to the TBM bar plot in the revised 

Figure 1B (Figure R1-14). 

 
Figure R1-14. Barplot shows the mutation burden (TMB) in each patient. 

'Overall, significantly larger number of proteins (P = 3.8E-15), phosphorylation sites (P = 1.6E4), 

and genes (P < 2.2E-16) were detected in AEG tumors than those in NAT samples (Supplemental 

Figure S2). '  

Q34: What test was used here? T-test? Fisher's exact test? Please make sure to provide the name 

of the test along with the p-value, or alternatively make a list of the tests performed for the different 

data types in the methods.  

Response: Thanks very much for the nice suggestion. These p values were generated from the 

Wilcoxon rank sum test. We have provided the test name along with the p value in the revised 

manuscript. 

Line 8-11, Page 17: "Overall, significantly more proteins (P = 3.8E-15, Wilcoxon rank sum test), 

phosphorylation sites (P = 1.6E-4, Wilcoxon rank sum test), and genes (P < 2.2E-16, Wilcoxon 

rank sum test) were detected in AEG tumors than in NAT samples" 

Page 14 'We next investigated the disturbance of proteins in AEG tumors. Differential protein 
analysis revealed 2,300 up-regulated and 1,667 down-regulated proteins in AEG tumor samples 
compared to paired NAT samples (Figure 2A and Supplemental Table S3). '  

Q35: For 2A and all figures, the authors should use HUGO gene symbols instead of Uniprot 

accessions. Readers will be much more familiar with gene symbols and it will make results easier 

to interpret. Uniprot provides mapping tables for this purpose  

Response: Thanks very much for the Reviewer's nice suggestion. In the revised submission, we 

have replaced the Uniprot accessions by HUGO gene symbols in Figure 2A and all other figures. 

Page 18  'Tumors in the S-II subtype showed the least number of changed cell types, while the S-

III subtype exhibited the most altered cell types, especially the increase of lymphoid and myeloid 

cells. ' 



Q36: Altered from what? Please reword. Is this not inherent representation of immune cells in a 

given proteomic subtype? Is this referring to "differential expression" of the xCell scores?  

Response: Thanks for the comment. The original description was not clear. By saying "changed 

cell types" or "altered cell types", we meant immune cell types that showed altered xCell scores 

(relative cell infiltrating abundance) in tumor samples compared to NAT samples. These have also 

been re-worded in the revised manuscript as follows: 

Line 8-11, Page 23: "Compared to the corresponding NAT samples, tumors in the S-II subtype 

had the least number of cell types, while the S-III subtype had the most cell types that showed 

alterations in cell abundance, especially the increase in lymphoid and myeloid cells" 

'The xCell algorithm was employed to infer the relative cell abundance of 41 different cell types 

(see Methods).' 

Q37: Why only 41? The reviewer believes xCell can estimate more than this. The table of xCell 

scores and p-values should be provided as supplemental.  

Response: Thanks for the comment and suggestion. The Reviewer is correct that xCell has more 

than 41 cell types. Our original description was not clear. The xCell method curated gene 

signatures of 64 different cell types. In our analysis, we removed those cell types that were not 

relevant in AEG tissue, such as hepatocytes, keratinocytes, and osteoblast. Cell types that had a 

xCell score of 0 across all samples were also removed. In total of 41 cell types were involved in 

subsequent analysis. The xCell raw scores, transformed scores, and p-values of these 41 cell types 

are provided in Supplemental Table S11. This has also been described in the revised manuscript 

as follows: 

Line 8-11, Page 14: "In the 64 cell types curated by the xCell method, we removed those that were 

not relevant in AEG tissues, such as hepatocytes, keratinocytes, and osteoblast. We then removed 

those cell types that had a xCell score of 0 across all samples. A total of 41 cell types were involved 

in subsequent analysis, …" 

Figure 2 A  



Q38: The reviewer had a hard time reading these volcano plots. The shading makes them almost 

uninterpretable. These do not need the sample frequency since presumably the authors did some 

type of filtering for missingness before the data was presented. 

Response: Thanks for the suggestion. We removed the circle size that represents the sample 

frequency in the revised Figure 2A (Figure R1-15). To make the figure more interpretable, we 

also set a more stringent cutoff (FDR < 0.01 and |log2(fold change)| > 1) for coloring, and replaced 

Uniport accessions by gene symbols. 

 
Figure R1-15. Volcano plot shows the difference of proteins between AEG tumor and 

paired NAT samples. Red circles represent up-regulated proteins (FDR < 0.01 and 
log2(fold change) > 1) and blue circles indicate down-regulated proteins (FDR < 0.01 and 

log2(fold change) < -1). 

Q39: Gene symbols should be used instead of Uniprot accessions.  

Response: Thanks for the nice advice. We have replaced the Uniprot accessions by gene symbols 

in the revised Figure 2A (Figure R1-15). 

Q40: The reviewer was going to comment that the non-significant findings should be colored black 

or dark grey with the significant findings colored red/blue, but it now appears like this has already 

been done. Something needs to be done to help with the interpretability of these figures. Maybe 

only coloring the top foldchange/FDR hits? A much more stringent cutoff?  



Response: Thanks very much for the nice advice. The original Figure 2A was hard to interpret. 

We made substantial revision according to the Reviewer's suggestion. We removed the circle size 

that represents the sample frequency, set a more stringent cutoff (FDR < 0.01 and |log2(fold 

change)| > 1) for coloring, and replaced Uniport accessions by gene symbols (Figure R1-15). The 

figure legend has also been revised accordingly. 

 

Figure R1-15. Volcano plot shows the difference of proteins between AEG tumor and 
paired NAT samples. Red circles represent up-regulated proteins (FDR < 0.01 and 

log2(fold change) > 1) and blue circles indicate down-regulated proteins (FDR < 0.01 and 
log2(fold change) < -1). 

Figure 6 A, D  

Q41: The dots/bubbles are very small and hard to see/interpret. Please increase their size to aid in 

interpretability. There does not need to be so much empty space in between them.  

Response: Thanks very much for the comment. In the revised Figure 6, we increased the bubble 

size and narrow down the empty space between them (Figure R1-16, revised Figure 6B and 6F). 



 
Figure R1-16. (A) The difference of relative abundances of different infiltrating cells in 
three AEG subtypes. (B) The differential significance of protein expression of immune 

checkpoints across three AEG subtypes. 

Q42: Do these have -logp and -logfdr abbreviated with the "o" taken out? Please write them out.  

Response: Thanks for the comment. We corrected those to "-logP" and "-logFDR" in the revised 

figures. 

Q43: Justify using p-values for one and FDR for the other. Why not be consistent? Do the results 

still hold with FDR? That would be acceptable as long as the results are clearly stated.  

Response: Thanks for the Reviewer's comment. The FDR values were not calculated in the 

original figure. In this revision, we calculated the FDR values. Most of the significance still hold 

when set the threshold of FDR as 0.05 (Figure R1-17). This result has been updated in the revised 

Figure 6B-D. 



 
Figure R1-17 (revised Figure 6B). The difference in the relative abundance of different 

infiltrating cells in the three AEG subtype. 

Figure 7A   

Q44: Similar comments above about this volcano plot. 

Response: Thanks very much for the advice. To make Figure 7A more interpretable, we removed 

the circle size that represents the sample frequency, set a more stringent cutoff (FDR < 0.01 and 

|log2(fold change)| > 1) for coloring, and replaced Uniport accessions by gene symbols (Figure 
R1-18). The figure legend has also been revised accordingly. 

 
Figure R1-18. Volcano plot shows the differential significance of phosphorylation sites. Red 
circles represent up-regulated phosphorylation sites (FDR < 0.01 and log2(fold change) > 1) 
and blue circles indicate down-regulated phosphorylation sites (FDR < 0.01 and log2(fold 

change) < -1). 



Figure 7B  

Q45: If the pathway enrichment is shown in C, then are these nearly identical heatmaps really 

needed? 

Response: Thanks for the Reviewer's comment. These heatmaps conveyed no additional 

information, we removed them in the revised Figure 7B. 

Figure 7C  

Q46: The text direction is the opposite of other figures. Please be consistent. 

Response: Thanks for the comment. The text direction of Figure 7C has been reversed to keep 

consistent with those in other figures, and only kept genes that had a p value < 0.05 (Figure R1-
19, revised Figure 7C). We also enlarged the text of genes. 

 
Figure R1-19 (revised Figure 7C). Kinase enrichment of differential phosphosites in each 

AEG tumor subtype. 

Q47: There are too many genes listed.  

Response: Thanks for the comment. We only kept genes that had a p value < 0.05, and reversed 

the text direction to keep consistent with those in other figures (Figure R1-19, revised Figure 7C). 

We also enlarged the text of genes. 



 
Figure R1-19 (revised Figure 7C). Kinase enrichment of differential phosphosites in each 

AEG tumor subtype. 

Figure 7D-F  

Q48: What are readers supposed to gain from these? There is too much going on here. Please 

consider hiding the nodes that are not relevant or highlighting the key nodes.  

Response: Thanks very much for the comment and nice advice. There were too many text in the 

original Figure 7D-E, which prevented a better interpretation. We only kept the text of significant 

nodes, and highlighted the nodes by black border (Figure R1-20, revised Figure 7D-F). Also, we 

replaced the protein accession by gene symbol. The full list of known kinase-phosphosubstrate 

correlations were provided in the revised Supplemental Table S11. 

 
Figure R1-20. Kinase-phosphosubstrate regulatory networks in tumors of the S-I (A), S-II 

(B), and S-III (C) subtype. 

Supplemental Figure S1  



Q49: Was the phosphoproteomics data normalized the same as the protein expression? The 

distribution of the boxplots look different. 

Response: Yes, the phospho-proteomic data was normalized the same as the protein expression 

by using the method described in a previous study29. The slight difference of distribution may be 

caused by the high variability of phosphorylation across samples. In our datasets, we identified 

3,967 differentially expressed proteins and 8,078 differentially phosphorylated sites. 

Note: Related references were cited in the revised manuscript. 

Supplemental Figure S4  

Q50: Have all of the survival analyses been adjusted for clinical variables mentioned above? What 

about false discovery? Hazard ratios should always be reported.  

Response: Thanks for the comment. The p value is generated from log-rank test. Clinical variables, 

including age, sex, smoking history, alcohol history, Siewert type, and tumor stage, were 

considered in the analysis. We provided details in the revised manuscript (Line 5-15, Page 11). 

We also provide hazard ratios with 95% CI values in the revised figure (Figure R1-21, revised 

Supplemental Figure 8). 



 
Figure R1-21. Kaplan-Meier survival curves of 11 druggable signature proteins between 

corresponding high- and low-abundance patient groups. 

Supplemental Figure S5 o C, D  



Q51: These images are too small to see. Please make them larger and include scale bars on any 

other histology/ICC/IHC images throughout. 

Response: Thanks for the comment. The original Supplemental Figure S5C and S5D were too 

small. In the revised submission, we adjusted the space of Supplemental Figure S5 to enlarge S5C 

and S5D (Figure R1-22, revised Supplemental Figure S9). 



 
Figure R1-22 (revised Supplemental Figure S9). FBXO44 promotes AEG tumor 

progression and metastasis. 

 

 



Reviewer #3 (Remarks to the Author): Expert in AEG subtypes 

Considerable effort is appreciated. There are the following major issues: 

Response: We appreciate very much for reviewing efforts of the Reviewer on our manuscript. We 

carefully revised the manuscript according to the valuable comments and suggestions raised by the 

Reviewer, which has largely improved our manuscript. Please see detailed revisions in the 

following point-to-point response. 

Q1: AEG subtype (Siewert type I, II, and III) have different biology and cannot be combined as 

such. Overall samples size is rather small. According to the Table s1. there are no Siewert type I 

patients in the cohort studied. 'Again, there are only 4 patients with Siewert type II 

(gastroesophageal junction). These should be removed. Therefore, what is left in the cohort are 

Siewert type III and some gastric cancer patients. Essentially, not a study of 3 types of upper GI 

tumors. 

Response: Thanks very much for Reviewer's professional comment. In the original Supplemental 

Table S1, we didn't accurately describe the distance/location from the tumor center to the 

esophagogastric junction. We apologize for this mistake that caused confusions that should have 

been avoided. In this revision, we provided the exact distance/location and corresponding Siewert 

types in revised Supplemental Table S1. Please see the location and Siewert type information of 

each patient in Table R1-2. We also collected and supplied the corresponding gastroscopy and 

pathology report of each patient for review. Please see one example report of each Siewert type in 

Figure R1-23. In total, we included 27 Siewert type I, 31 Siewert type II, and 45 Siewert type III 

patients in this study. 

Table R1-2. The location of primary tumor and Siewert type information of 103 AEG 
patients. 

Patient ID Primary tumor location Distance from the tumor 
center to the 

esophagogastric junction 
(cm) 

Siewert type 

AEG001 Cardia, gastric fundus 1.5 II 
AEG002 Cardia, gastric body 3.5 III 
AEG003 Cardia, lower esophageal 1.8 I 
AEG004 Cardia, gastric body 2.3 III 



AEG005 Cardia, lower esophageal 2.5 I 
AEG006 Cardia, gastric body 4.5 III 
AEG007 Cardia, gastric body 5 III 
AEG008 Cardia, lower esophageal 1.5 I 
AEG009 Cardia, lower esophageal 1.8 I 
AEG010 Cardia, lower esophageal 1.5 I 
AEG011 Cardia, gastric body 2.1 III 
AEG012 Cardia, lower esophageal 1.2 I 
AEG013 Cardia, gastric body 3 III 
AEG014 Cardia 1.5 II 
AEG015 Cardia, gastric fundus 2.5 III 
AEG016 Cardia, gastric fundus 1.5 II 
AEG017 Cardia, gastric fundus, 

partly gastric body 2.5 
III 

AEG018 Cardia, gastric body 3 III 
AEG019 Cardia, gastric body 3 III 
AEG020 Cardia, lower esophageal 1.2 I 
AEG021 Cardia, lower esophageal 2 I 
AEG022 Cardia, gastric fundus 1.5 II 
AEG023 Cardia, gastric fundus 1.5 II 
AEG024 Cardia, gastric fundus 2.5 III 
AEG025 Cardia, gastric fundus 1 II 
AEG026 Cardia, gastric fundus 2.2 III 
AEG027 Cardia, gastric fundus 1.5 II 
AEG028 Cardia, gastric fundus 1 II 
AEG029 Cardia, lower esophageal 1.8 I 
AEG030 Cardia, gastric fundus 1.5 II 
AEG031 Cardia, gastric body 3 III 
AEG032 Cardia, gastric fundus 2.2 III 
AEG033 Cardia, gastric body 2.5 III 
AEG034 Cardia, lower esophageal 1.1 I 
AEG035 Cardia, gastric body 3 III 
AEG036 Cardia, gastric body 4 III 
AEG037 Cardia, lower esophageal 1.4 I 
AEG038 Cardia, lower esophageal 2 I 
AEG039 Cardia, gastric fundus 1 II 
AEG040 Cardia, gastric body 3 III 
AEG041 Cardia, gastric body 3 III 
AEG042 Cardia, gastric fundus 2.5 III 
AEG043 Cardia, gastric body 3 III 



AEG044 Cardia, gastric body 2.5 III 
AEG045 Cardia, lower esophageal 2 I 
AEG046 Cardia, lower esophageal 1.6 I 
AEG047 Cardia, gastric body 5 III 
AEG048 Cardia, lower esophageal 2 I 
AEG049 Cardia, gastric body 2.5 III 
AEG050 Cardia, lower esophageal 2.5 I 
AEG051 Cardia, gastric fundus 3 III 
AEG052 Cardia, gastric body 3 III 
AEG053 Cardia, lower esophageal 1.8 I 
AEG054 Cardia, gastric body 3 III 
AEG055 Cardia, gastric body 3.5 III 
AEG056 Cardia, lower esophageal 2.5 I 
AEG057 Cardia, gastric body, 

gastric fundus 3 
III 

AEG058 Cardia, gastric body 2.5 III 
AEG059 Cardia, lesser curvature 

of stomach 1.5 
II 

AEG060 Cardia, gastric body 4.2 III 
AEG061 Cardia, gastric fundus 3.5 III 
AEG062 Cardia, lower esophageal 1.3 I 
AEG063 Cardia, gastric body 3 III 
AEG064 Cardia, gastric body 2.3 III 
AEG065 Cardia, gastric fundus 2.5 III 
AEG066 Cardia 1 II 
AEG067 Cardia, lesser curvature 

of stomach 1.5 
II 

AEG068 Cardia 1 II 
AEG069 Cardia, gastric body 2.5 III 
AEG070 Cardia, lower esophageal 1.2 I 
AEG071 Cardia, gastric fundus 1.5 II 
AEG072 Cardia lesser curvature of 

gastric body 2.5 
III 

AEG073 Cardia, lesser curvature 
of stomach 1.8 

II 

AEG074 Cardia, gastric fundus 2.3 III 
AEG075 Cardia, gastric fundus 1.7 II 
AEG076 Cardia, gastric fundus, 

lesser curvature of 
stomach 2.8 

III 



AEG077 Cardia, gastric fundus 1.8 II 
AEG078 Cardia, lesser curvature 

of stomach 1.4 
II 

AEG079 Cardia 1.5 II 
AEG080 Cardia, gastric fundus 2.2 III 
AEG081 Cardia, lower esophageal 1.7 I 
AEG082 Cardia, lesser curvature 

of stomach 1.7 
II 

AEG083 Cardia, lesser curvature 
of stomach, gastric body 1.5 

II 

AEG084 Cardia, gastric fundus 1.3 II 
AEG085 Cardia, gastric fundus 3 III 
AEG086 Cardia, lower esophageal 1.2 I 
AEG087 Cardia, gastric body 4 III 
AEG088 Cardia, gastric body 2.8 III 
AEG089 Esophagogastric junction 1.8 II 
AEG090 Cardia, lower esophageal 1.3 I 
AEG091 Cardia, lower esophageal 2.5 I 
AEG092 Cardia, gastric fundus 1 II 
AEG093 Cardia, lower esophageal 2 I 
AEG094 Cardia, gastric fundus 1.5 II 
AEG095 Esophagogastric junction 1.5 II 
AEG096 Cardia, gastric body 2.2 III 
AEG097 Cardia, gastric fundus 1.2 II 
AEG098 Cardia, gastric body 3 III 
AEG099 Cardia, lower esophageal 1.8 I 
AEG100 Esophagogastric junction 1.6 II 
AEG101 Esophagogastric junction 1 II 
AEG102 Esophagogastric junction 1.5 II 
AEG103 Cardia, lower esophageal 1.6 I 

 



 
Figure R1-23. The gastroscopic and pathological report of the Siewert type I, II, and III 

patient. 

Q2: The two cell lines studied (OE19 and Sk-GT-4) are Siewert type I cell lines and not relevant 

in this study. 

Response: Thanks very much for the comment. The original description about Siewert type in our 

AEG cohort was not accurate nor clear.  We apologize for this mistake that caused confusions that 

should have been avoided. Actually, we have 27 Siewert type I, 31 Siewert type II, and 45 Siewert 

type III AEG patients in our cohort (also see response to Q1). Currently, AEG cell lines mainly 

include OE19, SK-GT-4, OACP4, and OACM5.1C. Only OE19 and SK-GT-4 are available in 

China now. Obtaining other cell lines are now difficult because of COVID-19 epidemic prevention 

policies in different countries. Therefore, we used the OE19 (OE19 was established in 1993 from 

a 72-year-old male patient with gastric cardia adenocarcinoma45) and SK-GT-4 (SK-GT-4 was 

established in 1989 from the primary tumor of an 89-year-old Caucasian male with an 

adenocarcinoma of the distal esophagus46,47) cell line for validation, and obtained expected results 

that FBXO44 promotes AEG tumor progression and metastasis. 

Note: Related references were cited in the revised manuscript. 

Q3: All tumors (almost) are of high localized stage and with varied survival. The overall, survival 

analysis fails to correlate molecular subtypes with phenotypes/histotypes. 



Response: Thanks very much for the Reviewer's comment. Yes, the Reviewer is correct that most 

of the tumors in our study are of high localized stage. Briefly, we included 28 AEG patients with 

TNM stage I/II, and 75 AEG patients with TNM stage III/IV. In China, the early diagnosis rate of 

esophageal cancer, gastric cancer, and AEG is less than 20%48–50. Patients in these three 

proteomics-based subtypes showed significantly distinct overall survival time (revised Figure 3B, 

P = 0.0011, log-rank test). Clinical variables, including age, sex, smoking history, alcohol history, 

Siewert type, and tumor stage, were considered in the overall survival analysis. 

Note: Related references were cited in the revised manuscript. 

Q4: The manuscript claims that multiomics analysis has not been done, which is not true. TCGA 

STAD included 4 times more patients and was much more comprehensive. Similarly, the Samsung 

paper not quoted. The authors have not acknowledged TCGA subtypes and validated their findings. 

Response: Thanks very much for the Reviewer's comment. The original statement was not clear 

nor accurate. By saying "multi-omics analysis of AEG has not been done", we meant the 
proteomics-based multi-omics analysis of AEG. This has been corrected and discussed in the 

revised manuscript (Line 2-13, Page 3; Line 15, Page 25). In our study, we included proteomics, 

phosphoproteomics, genomics, and transcriptomics. Other studies that performed multi-omics 

analysis of AEG focused on genomics and transcriptomics. The TCGA Research Network 

analyzed 295 primary gastric adenocarcinomas using six molecular platforms, including array-

based somatic copy number analysis, whole-exome sequencing, array-based DNA methylation 

profiling, messenger RNA sequencing, microRNA (miRNA) sequencing, and reverse-phase 

protein array (RPPAR)51. They classified gastric cancer into for subtypes: tumors positive for 

Epstein-Barr virus; microsatellite unstable tumors; genomically stable tumors; tumors with 

chromosomal instability, which was mainly dependent on genomics data.  

Cristescu et al. (the Samsung paper) used transcriptomics data to describe four molecular 

subtypes of gastric cancer, including the mesenchymal-like type, microsatellite-unstable type, and 

the tumor protein 53 (TP53)-active and TP53-inactive types52.  The subtyping was primarily based 

on gene expression signatures. 



Other studies related to AEG subtyping based on omics data mainly including genomics and 

transcriptomics data7,51,53–56. These studies included no proteomics data, so we didn't validate our 

findings in these datasets. 

Note: Related references were cited in the revised manuscript. 

Q5: Figure 1. Remove AEG I and II (as there are no AEG 1 tumors in this study and there are only 

4 AEG II and they should be removed from the analysis as they do not provide useful data). 

Response: Thanks very much for the comment. In the original Supplemental Table S1, we didn't 

accurately describe the distance/location from the tumor center to the esophagogastric junction. 

We apologize for this mistake that caused confusions that should have been avoided. In this 

revision, we provided the exact distance/location and corresponding Siewert types in revised 

Supplemental Table S1. Please see the location and Siewert type information of each patient in 

Table R1-2 (please see response to Q1). We also collected and supplied the corresponding 

gastroscopy and pathology report of each patient for review. Please see one example report of each 

Siewert type in Figure R1-23 (please see response to Q1). In total, we included 27 Siewert type I, 

31 Siewert type II, and 45 Siewert type III patients in this study.  

Q6: In the introduction, "surgical resection is most effective" cannot be generalized. It is 

acknowledged that surgery is essential for cure but multimodality is commonly practiced. Surgery 

first may be a Chines approach and should be qualified. 

Response: Thanks very much for the professional comment. Our original statement was not 

accurate. We corrected this statement in the revised manuscript as follows: 

Line 19-20, Page 3: "Currently, comprehensive treatment, including surgical resection, 

chemotherapy, and immunotherapy, is the most effective treatment for AEG" 

Q7: In the introduction, there should be mention of novel studies with IO 

Response: Thanks very much for the Reviewer's professional advice. We introduced the current 

state of immunotherapy for AEG patients in the revised manuscript as follows: 

Line 23-26, Page 3: " With the use of PD1/PD-L1 inhibitors, the immunotherapy of AEG has 

made significant progress. However, due to the heterogeneity and complexity of immune 

microenvironment, immunotherapy still has many challenges, such as hyperprogression57." 



Note: Related references were cited in the revised manuscript. 

Q8: The normal tissue is seemingly appropriate for some comparisons but it is expected that once 

some proteins are differentially expressed in tumor/normal, repetitive analysis of tumor v normal 

(Figures 1D, 1E, and 1F are not very informative). 

Response: Thanks very much for the Reviewer's comment. The original description may not be 

clear enough. These figures presented the number distributions of detected proteins, 

phosphorylation sites, and genes in paired tumor and NAT samples. On average, 8,885 proteins 

(revised Figure 1C) and 8,445 phosphorylation sites (revised Figure 1D) were identified from the 

206 proteomes and phosphoproteomes of 103 AEG patients. From the RNA-seq data, 23,131 genes 

were found to be expressed in 166 AEG tumor and NAT samples on average (revised Figure 1E). 

Overall, significantly more proteins (P = 3.8E-15, Wilcoxon rank sum test), phosphorylation sites 

(P = 1.6E-4, Wilcoxon rank sum test), and genes (P < 2.2E-16, Wilcoxon rank sum test) were 

detected in AEG tumors than in NAT samples (revised Supplemental Figure S3). This observation 

indicates that compared with NATs, AEG tumors might show abnormally higher molecular 

activity. These have been described in the revised manuscript (Line 5-12, Page 17). 

Q9: Similary, Figure 2A distracts from what we can learn about tumors. Same for Figures 2D and 

2C. 

Response: Thanks very much for the Reviewer's comment. The original Figure 2A was hard to 

interpret. Figure 2A showed the results of differential protein analysis, which revealed 2,300 up-

regulated and 1,667 down-regulated proteins in AEG tumor samples compared to paired NAT 

samples (Figure 2A and Supplemental Table S3). To make it more interpretable, we made 

substantial revision of Figure 2A. We removed the circle size that represents the sample frequency, 

set a more stringent cutoff (FDR < 0.01 and |log2(fold change)| > 1) for coloring, and replaced 

Uniport accessions by gene symbols (Figure R1-15, revised Figure 2A). The figure legend has 

also been revised accordingly. To further examine the changes of key biological processes in AEG 

tumor, the overall protein-level integrated abundances of fifty hallmark biological processes were 

evaluated in each sample (see Methods). Figure 2C, 2D, and 2E showed the results and 

representative examples of the alterations and significance of hallmarks in AEG tumor. Most of 

the hallmarks (36 out of 50, 72%) showed significantly distinct integrated abundance between 

paired tumor and NAT samples (Figure 2C). For example, the "apical junction" hallmark gene set 



was remarkably up-regulated (P = 2.40E-16), whereas the "KRAS signaling up" hallmark gene set 

was significantly down-regulated (P = 1.1E-3) in tumor samples (Figure 2D). Higher integrated 

abundances of the "apical junction" hallmark gene set indicate a worse prognosis (P = 1.6E-2), 

while the higher integrated abundance of "KRAS signaling up" indicated a longer overall survival 

time in AEG patients (P = 3.3E-3) (Figure 2E). These results revealed extensive dysregulation of 

hallmark biological processes in AEG tumors, which also showed clinical significance. 

 
Figure R1-15 (revised Figure 2A). Volcano plot shows the difference of proteins between 

AEG tumor and paired NAT samples. Red circles represent up-regulated proteins (FDR < 
0.01 and log2(fold change) > 1) and blue circles indicate down-regulated proteins (FDR < 

0.01 and log2(fold change) < -1). 

Q10: Proteomics did not provide the location of these proteins (cell surface, nuclear, cytoplasmic, 

or total). 

Response: Thanks very much for the Reviewer's comment. In our study, total proteins were 

extracted from each sample to generate proteomics data. This has also been described in the revised 

manuscript (Line 4, Page 6). 

Q11: Figure 3 is interesting. 3 types (S-I, S-II, and S-III) are not correlated with 

phenotypes/histologies. Types S-I and S-II are similar in prognosis. It is not clear what may be 

promoting better survival in S-III when one reviews Figure 3D (many oncogenes are up-MYC and 



cell cycle). Angiogenesis is down can make sense. OxPhos down can make sense but need better 

interpretation from the authors. and correlate with clinical variables. 

Response: Thanks very much for the Reviewer's professional comment and nice suggestion. In 

this revision, we added clinicopathological characteristics, including age, sex, smoking, alcohol, 

Siewert type and tumor stage, to each AEG patient of the three subtypes (Figure R1-24, revised 

Figure 3A). The S-I subtype was significantly associated with older age (75% ≥ 65 years old, P = 

0.0093, Fisher's exact test). The Siewert type II patients were more enriched in the S-I subtype, 

while the S-III subtype had many more Siewert type III patients (P = 0.011, Fisher's exact test). 

The three AEG subtypes showed no differences in the other clinicopathological features. This has 

also been described in the revised manuscript (Line 28-29, Page 18; Line 1-4, Page 19). 

Patients in the S-III AEG subtype had the longest overall survival than those in the S-I and S-II 

subtype. The MYC-regulated and cell cycle-related genes were observed upregulation in all 

subtypes, which was not supposed to explain the survival differences. The exclusive 

downregulation of cancer-associated pathways, such as WNT/β-catenin signaling and Hedgehog 

signaling, may explain the better survival of AEG patients in the S-III subtype. In addition, the 

abundance of fibroblasts was significantly decreased in the S-III subtype (P = 2.2E-5, Student's t 

test) but showed no obvious changes in tumor samples from the S-I and S-II subtypes (revised 

Figure 6D). Compared to samples in the S-I and S-II subtypes, our H&E analysis also revealed a 

decrease in fibroblast abundance of the S-III subtype (revised Figure 6E). Given that fibroblasts 

may limit the immune cell infiltration to exert the immunosuppressive role in cancer19, this 

observation may partly explain that AEG patients in the S-I and S-II subtype had worse prognosis 

than those in the S-III subtype. 



 
Figure R1-24 (revised Figure 3A). Heatmap showing the differentially expressed proteins 

among the three subtypes. Tiling bars above the heatmap show the distribution of different 
clinicopathological characteristics among the three subtypes. 

Q12: Figure 4G. why include normals here??? Why normals in different subtypes are different? 

Were they not obtained from a distant gastric location? If so, are the differences related to cancer? 

Very confusing. 

Response: Thanks very much for the comment. Our original description may not be clear. In our 

study, all NAT samples were collected from regions within ~2 cm around the corresponding AEG 

tumor sites. Paired tumor-NAT samples were derived from the same patients. To reduce the effect 

of inter-patient heterogeneity and identify subtype-specific tumor differences, we separately 

compared tumor with NAT samples in each AEG subtype.  Only 27.2% of differentially expressed 

proteins that were identified in all AEG samples showed dysregulation in subtype comparisons 

(Figure R1-25A). In the subtype tumor-NAT comparison, 300, 636, and 523 differentially 

expressed proteins that showed no dysregulation in the comparison of all AEG samples were 

identified in the S-I, S-II, and S-III subtype, respectively (Figure R1-25B). 



Furthermore, to identify the specific molecular alterations in our proteomic subtypes, we 

compared the protein abundances between tumor samples in individual subtypes with those in 

tumor and NAT samples of the other subtypes. In each subtype, a protein that showed remarkably 

higher abundances than all NAT samples and tumor samples in the other subtypes was considered 

a signature protein.  

In light of above results, subtype tumor NAT comparison was applied to identify subtype-

specific alterations that might be negligible in the comparison of all AEG samples. 

 
Figure R1-25. Differential proteins in different comparisons. (A) Venny plot shows the overlaps 
among differential proteins in all AEG, S-I subtype, S-II subtype, and S-III subtype samples. (B) 

Upset plot shows the numbers of differential proteins in different comparisons. 

Q13: Figure 5A. again, inclusion of normals does not seem to add much here. Confusing for S-I. 

Response: Thanks very much for the Reviewer's comment. Our original description may not be 

clear. In our study, all NAT samples were collected from regions within ~2 cm around the 

corresponding AEG tumor sites. Paired tumor-NAT samples were derived from the same patients. 

To reduce the effect of inter-patient heterogeneity and identify subtype-specific tumor differences, 

we separately compared tumor with NAT samples in each AEG subtype. subtype tumor NAT 

comparison was applied to identify subtype-specific alterations that might be negligible in the 

comparison of all AEG samples (see more details in response to Q12). To identify signature 

proteins of each subtype, the tumor-NAT comparison was performed in each subtype. FBXO44 



was identified as a signature protein of the S-II AEG subtype. In particular, the FBXO44 protein 

exhibited significantly higher abundance in S-II AEG tumor samples than in S-II normal samples, 

S-I tumor samples, and S-III tumor samples. 

Q14: the finding that FBXO44 is associated with poor outcome in multiple cancer patients (their 

ref 38) is not novel. In ref 38, those authors have produced significant high quality data and the 

current manuscript provides no novelty. It would appear that it would be difficult to target FBXO44 

but it could serve as a marker to use IO. these authors could have considered those studies. 

Response: Thanks very much for the Reviewer's comment and advice. FBXO44 is a member of 

the ubiquitin ligase subunit family and contain a conserved G domain that mediates substrate 

binding35. The Reviewer is right that FBXO44 have been reported in some cancers. Lu et al. found 

that SCF(FBXO44) is an E3 ubiquitin ligase responsible for BRCA1 degradation, and FBXO44 

expression pattern in breast carcinomas suggests that SCF(FBXO44)-mediated BRCA1 

degradation might contribute to sporadic breast tumor development36. Sjögren B, et al. identified 

a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) 

and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation37. Shen et al. Found that 

FBXO44/SUV39H1 are crucial repressors of repetitive elements transcription, and their inhibition 

selectively induces DNA replication stress and viral mimicry in cancer cells38. It can be seen that 

FBXO44 may play different roles in different tumors, which is worthy of further study. In the 

original ref 38, the research systematically studied the role of FBXO44 in the development 
of cancer, but the article mainly verified the role of FBXO44 in breast cancer, lung cancer, 
colon cancer and brain glioma. There was no data related to AEG. In pan-cancer analysis, we 

found that the FBXO44 gene showed significant dysregulation in eight of 18 different tumor types 

wherein FBXO44 showed up-regulation in colon cancer but showed no significant expression 

change in stomach cancer (revised Supplemental Figure S9A). Considering the differences 

between AEG and other tumors, we verified the role of FXBO44 in the development of AEG. 

In this revision, we further calculated the correlations between FBXO44 and different immune 

cells, and immune checkpoint genes. In our AEG data, FBXO44 was found to be correlated to 

plasma cells, central memory CD4+ T cells (CD4+ Tcm), T helper type 2 cells (Th2 cells), and 

effector memory CD4+ T cells (CD4+ Tem) (Figure R1-26A, revised Supplemental Figure S12A). 

In particular, the high abundance of plasma cells, Th2 cells, and CD4+ Tem was significantly 



associated with low expression level of FBXO44 (Figure R1-26B). CD4+ Tcm was evaluated to 

have relative abundance > 0 in only 6 samples, so it was discarded. The immune checkpoint genes 

TNFRSF14, TNFRSF25, CD40, and VTCN1 were found to correlated with the expression of 

FBXO44 (Figure R1-26C). The high expression level of FBXO44 was significantly associated 

with the expression of TNFRSF14, TNFRSF25, CD40, and VTCN1 (Figure R1-26D). 

Collectively, these results suggested that FBXO44 could be a potential marker in the 

immunotherapy of AEG targeting or related to these immune cells or checkpoints. 



 
Figure R1-26 (Supplemental Figure S12). Associations of FBXO44 with immune cells and 
immune checkpoints. (A) The correlations between FBXO44 and different immune cells. (B) 

Box plots showing the relative abundance of plasma cells, CD4+ Tcm, Th2 cells, and CD4+ Tem 
between FBXO44-low and -high samples. (C) The correlations between FBXO44 and immune 

checkpoint genes. (D) Box plots showing the expression level of TNFRSF14, TNFRSF25, 
CD40, and VTCN1 between FBXO44-low and -high samples. 



Q15: Integration of various platform remains elusive. Need better description and plan. Integration 

with clinical variables would be more meaningful. 

Response: Thanks very much for the Reviewer's comment. In this study, we presented a 

proteomic-based multi-omics profiling for AEG tumors, including genomics, transcriptomics, 

proteomics, and phosphoproteomics. We characterized the proteogenomic alterations in AEG 

tumors and classified AEG into three different subtypes based on proteomics data. The three 

subtypes showed significant differences in clinical features and molecular alterations. We 

identified signature proteins in each subtype, and experimentally validated the tumor promoting 

role of FBXO44 that showed highly unfavorable risk score in multivariate Cox regression analysis. 

We then dissected multi-layer differences between subtypes by comparing the genomics, immune 

infiltrations, and phosphoprotoemics. In this revision, we integrated clinical variables in 

corresponding comparisons. 

Q16: Subtypes I, II, and III were derived by proteomics data and by integrated analysis. The 

significance remains unclear. Subtypes not integrated with clinical variables. 

Response: Thanks very much for the comment. In this submission, we performed integrated 

analysis of AEG subtypes and clinicopathologic characteristics, including age, sex, smoking, 

alcohol, Siewert type, and tumor stage (Figure R1-27, revised Figure 3A). These 

clinicopathologic characteristics exhibited no significant differences between these three AEG 

subtypes except for age and Siewert type. The S-I subtype had significantly more older patients (≥ 

65 years old, 75%, P = 0.0093, Fisher's exact test). The Siewert type II patients were more enriched 

in the S-I subtype, while the S-III subtype had remarkably more Siewert type III patients (P = 

0.011, Fisher's exact test). The proteomics-based subtyping remained an independent prognostic 

factor when adjusted for other clinicopathological characteristics in multivariate Cox regression 

analysis (P = 0.002). These were also described in the revised manuscript (Line 28-29, Page 18; 
Line 1-4, Page 19). 



 
Figure R1-27. (A) Heatmap shows the differential proteins among three subtypes. Tiling 
bars above heatmap show the distribution of different clinicopathological characteristics 

among three subtypes. (B) Multivariate Cox regression analysis of clinicopathological 
characteristics and the proteomics-based subtyping. 

Q17: there is useful information on TME analysis. but again not correlated with clinical 

phenotypes. Not integrated. 

Response: Thanks very much for the professional comment. In addition to the infiltration 

differences in separate subtypes, we compared the infiltration of different cells between the three 

AEG subtypes in this revision (Figure R1-28, revised Figure 6A and Supplemental Figure S12). 

The infiltration of some cell types showed significant differences between the three AEG subtypes, 

such as regulatory T cells and fibroblasts, but none of them have associations with 

clinicopathological features of AEG patients. For example, the S-II AEG tumor samples showed 

lower abundance of gamma delta T cells, regulatory T cells, and plasmacytoid dendritic cells, 

whereas they had higher infiltration of fibroblasts, lymphatic endothelial cells, and microvascular 

endothelial cells, compared to those of the S-I and S-II subtype (Figure R1-28B). 



 
Figure R1-28. (A) Heatmap shows the relative abundance of different cells across samples 
of the three AEG subtypes. The Kruskal-Wallis Rank Sum test was used to compare the 
differences between subtypes. (B) Box plots show the comparisons of different cell types 

between the three AEG subtypes. 

Q18: Genomics of subtypes is noted but not integrated to the extent it can be done. 

Response: Thanks very much for the Reviewer's comment. In this revision, we matched 

clinicopathological features of AEG patients with the genomic mutation (Figure R1-29A, revised 

Figure 1B). We then compared the differences in tumor mutation burdens (TMB) between patients 

with different clinicopathological features, including age, sex, smoking status, alcohol status, 

Siewert type, and tumor stage. AEG patients of older age were found to harbor higher TMB (P = 

0.045, Wilcoxon rank sum test), while other clinicopathological features showed no obvious 

association with the TMB (Figure R1-29B, revised Supplemental Figure S1). In addition, the three 

subtypes showed specific mutation signatures. The SBS1 signature was specifically identified in 

the S-I subtype, which showed spontaneous or enzymatic deamination of 5-methylcytosine 

(revised Figure 5A). The S-II subtype exclusively exhibited the mutation signature of APOBEC 

cytidine deaminase (the SBS2 signature) (revised Figure 5B). The mutation signature of 



"deficiency in base excision repair due to inactivating mutations in NTHL1" (the SBS30 signature) 

was specifically detected in the S-III subtype (revised Figure 5C). 

 
Figure R1-29. Genomic mutation landscape of AEG patients. (A) The genomic profiles of 
AEG patients. The top panel shows the mutation burden in each patient. The top bars show the 
clinicopathological features of AEG patients. The middle panel is the oncoplot generated with 

maftools depicting the top 20 mutated genes in the present AEG cohort. The bottom panel shows 
the proportion of different types of nucleotide substitutions in each patient. The right panel 

represents mutation types and frequencies for each gene. (B) Box plots showing the differences 
of TMB between patients with different clinicopathological features. 

Q19: A lot of analyses are descriptive and correlative. Not highly informative. 

Response: Thanks very much for the Reviewer's comment. Some descriptions in the original 

manuscript may be not accurate nor clear. In this study, we aimed to portray the molecular 

landscape and identify the molecular subtypes of AEG. We conducted proteomics and 



phosphoproteomics profiling of 103 AEG tumors with paired normal adjacent tissues (NATs), 

whole exome sequencing (WES) of 94 tumor-NAT pairs, and RNA sequencing (RNA-seq) in 83 

tumor-NAT pairs. Our proteomic analysis revealed an extensively altered proteome and identified 

252 potential druggable proteins in AEG tumors. We identified three proteomic subtypes with 

significant differences in clinical features and molecular alterations. One of the S-II subtype 

signature proteins, FBXO44, was demonstrated to promote AEG tumor progression and metastasis 

in vitro and in vivo. Our comparative analyses revealed distinct genomic features in AEG subtypes. 

Tumor microenvironment infiltration analysis revealed that the S-III subtype had a specific 

decrease of fibroblasts. Further phosphoproteomic comparisons revealed different kinase-

phosphosubstrate regulatory networks among the three subtypes, such as Occludin S408 

phosphorylation by CSNK2A1 in the S-II subtype. Our proteogenomics dataset provides a 

valuable resource for better understanding the molecular mechanisms of AEG and the 

development of precision treatment strategies for AEG patients. We have carefully revised the 

manuscript according to the valuable comments and suggestions raised by the Reviewer, which 

largely improved our manuscript. 

Q20: Discussion has many misstatements and unfocused emphasis. 

Response: Thanks very much for the Reviewer's comment. We corrected misstatements in the 

original discussion, such as the statement of "the first multi-omics profiling for AEG". We also 

added more discussion to clarify and discuss our findings, such as the pairwise tumor-NAT 

comparisons in subtypes and the hallmark gene set analysis. 

Q21: It is unclear if these data provide a step forward as prior studies were not placed in context. 

Response: Thanks very much for the Reviewer's perspective comment. In our study, we included 

proteomics, phosphoproteomics, genomics, and transcriptomics. Other studies that performed 
multi-omics analysis of AEG focused on genomics and transcriptomics. The TCGA Research 

Network analyzed 295 primary gastric adenocarcinomas using six molecular platforms, including 

array-based somatic copy number analysis, whole-exome sequencing, array-based DNA 

methylation profiling, messenger RNA sequencing, microRNA (miRNA) sequencing, and reverse-

phase protein array (RPPAR)51. They classified gastric cancer into for subtypes: tumors positive 

for Epstein-Barr virus; microsatellite unstable tumors; genomically stable tumors; tumors with 

chromosomal instability, which was mainly dependent on genomics data. Cristescu et al. (the 



Samsung paper) used transcriptomics data to describe four molecular subtypes of gastric cancer, 

including the mesenchymal-like type, microsatellite-unstable type, and the tumor protein 53 

(TP53)-active and TP53-inactive types52.  The subtyping was primarily based on gene expression 

signatures. Other studies related to AEG subtyping based on omics data mainly including 
genomics and transcriptomics data7,51,53–56. In our study, we determined three proteomic 
subtypes with significant differences in clinical features and molecular alterations.  

FBXO44 was identified as a signature protein in the S-II AEG subtype. Previous studies have 

demonstrated that FBXO44 may play different roles in different tumors36–38. There was no data 

related to AEG. In pan-cancer analysis, we found that the FBXO44 gene showed significant 

dysregulation in eight of 18 different tumor types wherein FBXO44 showed up-regulation in colon 

cancer but showed no significant expression change in stomach cancer. Considering the 

differences between AEG and other tumors, we verified the role of FXBO44 in the development 

of AEG. 

Tumor microenvironment infiltration analysis revealed that the abundance of fibroblasts was 

significantly decreased in the S-III subtype but showed no obvious changes in tumor samples from 

the S-I and S-II subtypes. Compared to samples in the S-I and S-II subtypes, our H&E analysis 

also revealed a decrease in fibroblast abundance of the S-III subtype. Given that fibroblasts may 

limit the immune cell infiltration to exert the immunosuppressive role in cancer19, this observation 

may partly explain that AEG patients in the S-I and S-II subtype had worse prognosis than those 

in the S-III subtype. 

Protein kinases, which modulate the phosphorylation of proteins, have been developed as 

operable drug targets in the treatment of cancer58,59. Phosphoproteomics, a large-scale analysis of 

protein phosphorylation sites, has emerged as a powerful tool to identify aberrant phosphorylation-

mediated singalling networks that play crucial roles in cancer40. Kinases and phosphorylation have 

not been systematically investigated in AEG. In this study, we identified differentially 

phosphorylated proteins and dysregulated kinase-phosphosubstrate relationships in each AEG 

subtype, revealing subtype-specific protein phosphorylation. Our analysis revealed differences in 

kinase-phosphosubstrate regulatory networks between different subtypes and suggested potential 

personalized responses to clinical therapeutics for AEG patients.  

These results of our study provide a step forward as prior studies. 



Note: Related references were cited in the revised manuscript. 
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regarding the gastroesophageal cancers. The depth of their responses reflects a control of the 

information that is simply beyond those presented in the field to date. I believe this work will set a 

new and enviable standard for the application of multiomics to tease out the complexities and perhaps 

vulnerabilities of this diverse set of cancers that so far are beyond our ability to treat. 
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The authors have done a great job addressing my concerns. The manuscript and figures are much 
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Reviewer #3: 

Remarks to the Author: 

Thank you for all your responses. 

 

I have the following comments and queries: 

 

Please review the AEG TCGA paper published in Nature in 2017 and review all the different subgroup 

identified and then compare (can validate your findings in those data or their findings in your data). I 

did not mention this last time because you had said you had very few or no AEG I and II. 

 

Essentially, through proteomics you identified S-I, S-II, and S-III. Then you make some correlations 

with WES. It is not a true integromics. 

 

Figure 3B (granted you have very small number of patients) S-I and S-II are about the same but S-III 

is surviving longer. 

 

Fig 3C. Mutation frequency per se may have no meaning at all. 

 

Figure 3G. remove normals to see what the heat map looks like 

 

FBXO44 is a known oncogene and Figure 4C is consistent with it but not really novel. Figure 4A. Hard 

to find distinction in S subtypes. No explanation 

 

Figures 5 ABC also don't explain why S-III are surviving longer 

 

DDRd should confer longer survival (but it is all over the place). Also APOBEC should be with longer 

survivors but it is not. 

 

Figure 5G is also not very instructive. Mostly oncogenes but distributions are not striking. 

 

Similarly, Figure 6D. not striking for S-I and S-III. FDR is very high 

 

Figure 6 F also not giving any clues why S-III should live longer. 
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most complete and compelling I have seen and addresses both the conceptual and informatics 

issues regarding the gastroesophageal cancers. The depth of their responses reflects a control 

of the information that is simply beyond those presented in the field to date. I believe this work 

will set a new and enviable standard for the application of multiomics to tease out the 

complexities and perhaps vulnerabilities of this diverse set of cancers that so far are beyond 

our ability to treat. 

Response: We are very delighted that our revision satisfied all the Reviewer's concerns. We 

greatly appreciate the Reviewer's recognition of our efforts in addressing all the comments. 

Thanks again for the valuable comments and suggestions that have helped much improved our 

original manuscript. 

 

Reviewer #2 (Remarks to the Author): 

The authors have done a great job addressing my concerns. The manuscript and figures are 

much improved. I recommend this for publication. 

Response: We are pleased to hear that all the Reviewer's concerns have been addressed. 

Thanks again for the valuable comments and suggestions that have helped much strengthened 

our manuscript. 

 

 

 

 



Reviewer #3 (Remarks to the Author): 

Thank you for all your responses. I have the following comments and queries: 

Response: Thanks again for the valuable comments and suggestions raised by the Reviewer in 

last revision, which has helped much improve our manuscript. We appreciate very much for 

the comments and advice raised in this version. We have carefully revised the manuscript 

according to these comments and suggestions, which strengthened our last version of 

manuscript. Please see the detailed point-by-point responses as follows: 

Q1: Please review the AEG TCGA paper published in Nature in 2017 and review all the 

different subgroup identified and then compare (can validate your findings in those data or their 

findings in your data). I did not mention this last time because you had said you had very few 

or no AEG I and II. 

Response: Thanks very much for the nice suggestion. In the Nature paper1, the TCGA group 

analyzed the molecular profiling of 559 oesophageal and gastric carcinoma. The major 

subdivision of these samples was based on anatomic data, i.e., oesophageal, gastric or 

indeterminate origins. Tumors were mainly categorized into oesophageal squamous cell 

carcinoma (ESCC), oesophageal adenocarcinoma (EAC), adenocarcinomas of 

gastroesophageal junction (GEJ), and gastric carcinomas. They compared the molecular 

differences between these subtypes, divided ESCC into three molecular subtypes based 

on multi-omics data, and related EAC to gastric cancer. By reviewing the gastroesophageal 

locations of cancer, we retrieved 129 samples that were regarded as AEG. The most frequent 

genomic alterations in the TCGA AEG cohort were captured in our cohort (Figure R2-1, 

revised Supplementary Fig. 1). In particular, 15 of top 30 mutated genes in our cohort were 

also among the top 30 in the TCGA cohort (Figure R2-1a). Of note, 9 of top 10 mutated genes 

in our cohort were among the top mutated genes of the TCGA cohort. Genes with top 20 

frequent CNVs in the TCGA cohort were also found to be frequently altered in our cohort 

(Figure R2-1b). Compared to other types, GEJ cancer is featured with TP53 mutations, 

ERBB2 and VEGFA amplification in the TCGA cohort1. Mutated TP53, amplified ERBB2 

and VEGFA were also frequent in our cohort. Compared to the TCGA study, our study was 



more specific to molecular subtypes among AEG tumors. These have also been described 

in the revised manuscript (Line 130-136). 

The TCGA study included whole-exome sequencing (WES), single-nucleotide 

polymorphism (SNP) array profiling to somatic copy-number alterations (SCNAs), DNA 

methylation profiling and mRNA and microRNA sequencing. We performed proteomics, 

phosphoproteomics, WES, and RNA sequencing in Chinese AEG cohort. In addition to the 

genomic findings, our study provided proteomic insights into AEG molecular subtypes. 

 
Figure R2-1. Frequency genomic alterations in the TCGA and our AEG cohorts. a Top 

30 mutated genes in the TCGA and our AEG cohorts. b Top 20 CNV genes in the TCGA 
AEG cohort and their frequency in our cohort. 

Q2: Essentially, through proteomics you identified S-I, S-II, and S-III. Then you make some 

correlations with WES. It is not a true integromics. 

Response: Thanks very much for the Reviewer's comment. In the last version of manuscript, 

we compared the genomic differences between the three proteomic subtypes. To further 

integrate the genomics and proteomics data, we examined how subtype-specific mutations 

influence proteins in this revision (Figure R2-2, revised Supplementary Fig. 9). The 

consequence of mutation on protein was evaluated by compare the T/N (tumor/normal) values 

between mutation and wild-type samples as described in a previous study2. For each mutated 



genes, we examined changes of all the possible proteins. We identified 65,184, 3,900, and 

1,146 significant mutation-to-protein associations in the S-I subtype, S-II subtype, and S-III 

subtype, respectively (Figure R2-2a). In all three subtypes, over 60 percent are negative 

associations, i.e., most mutations directly or indirectly led to the decrease of protein levels. 

Here, we showed the top 5 mutation-protein associations of the top 5 mutated genes (Figure 

R2-2b-d). Please see all the significant results in the Supplementary Data 8. These have also 

been described in the revised manuscript (Line 211-220). 

 
Figure R2-2. Significant effects of selected subtype-specific mutations on the proteins. a 
Pie charts show the percentages of up-regulated and down-regulated mutation-to-protein 
associations in the S-I subtype, S-II subtype, and S-III subtype, respectively. The top 5 
mutation-protein associations of the top 5 mutated genes in the S-I subtype (a), S-II subtype 
(b), and S-III subtype (c). 

Q3: Figure 3B (granted you have very small number of patients) S-I and S-II are about the 

same but S-III is surviving longer. 

Response: Thanks very much for the Reviewer's comment. The Reviewer is correct that 

patients of the S-I and S-II subtype showed no significant difference in overall survival time. 

But AEG subtyping remained an independent prognostic factor after adjusting for multiple 

clinicopathological characteristics (Figure R2-3, revised Supplementary Fig. 7), including age, 

sex, smoking status, alcohol status, Siewert type and tumor stage. In our multifaceted analysis, 



we revealed extensive molecular differences between the three AEG subtypes. We found 97, 

143, and 29 specifically mutated genes in the S-I, S-II, and S-III subtypes, respectively (Fig. 

3C and Supplementary Data 11). For example, LEPR mutation was most common in the S-I 

subtype (OR = 20.1, P = 2.8E-4, Fisher's exact test), NCKAP1 mutation was most common in 

the S-II subtype (OR = 10.5, P = 5.8E-3, Fisher's exact test), and WIZ mutation was most 

common in the S-III subtype (OR = 10.0, P = 7.5E-3, Fisher's exact test) (revised 

Supplementary Fig. 7d). Our analysis also found 36, 54, and 10 signature proteins in the S-I, 

S-II, and S-III subtypes, respectively. These signature proteins could be used differential 

diagnosis as for AEG subtypes. Different AEG subtypes were enriched for distinct lists of 

kinases, and the same kinases showed different levels of activities in the S-I, S-II, or S-III 

subtypes (Fig. 7c). CDK2 and CDK7 were highly enriched in all three subtypes. The S-I 

subtype specifically showed enrichment of IKBKB and PRKDC. HIPK2 kinase was 

exclusively enriched in the S-II subtype, while CHEK2 and AURKB were specifically enriched 

in the S-III AEG subtype. In addition, the abundance of fibroblasts was significantly decreased 

in the S-III subtype (FDR = 2.6E-4, Student's t test) but showed no obvious changes in tumor 

samples from the S-I (FDR = 0.48, Student's t test) and S-II (FDR = 0.98, Student's t test) 

subtypes (Fig. 6d). Although the S-I and S-II subtypes have no survival difference, they 

are significantly distinguished in molecular alterations that could be potential markers 

as differential diagnosis and precision therapeutics. 

In molecular subtype studies of other cancer types, it's common that patients of some 

subtypes show no difference in survival time. For example, Li et al. identified three proteomic 

subtypes in metastatic colorectal cancer, i.e., the CC1, CC2, and CC3 subtype3. Patients of the 

CC1 and CC2 subtype have no significant differences in survival time. In a proteomics study 

of hepatocellular carcinoma (HCC)4, Jiang et al. found three proteomic subtypes (the S-I, S-II, 

and S-III subtypes). HCC patients of the S-I and S-II subtypes showed no difference in survival 

time. 



 
Figure R2-3. Multivariate Cox regression analysis of clinicopathological characteristics 

and the proteomics-based subtyping. 

Q4: Fig 3C. Mutation frequency per se may have no meaning at all. 

Response: Thanks for the comment. We removed the mutation frequency in Figure 3C. The 

corresponding figure legend has also been revised in the manuscript. Please see the revised 

Figure 3C (Figure R2-4, revised Fig. 3c) as follows: 

 
Figure R2-4. Volcano plot showing the difference in subtype-specific mutated genes. 

Q5: Figure 3G. remove normals to see what the heat map looks like 



Response: Thanks very much for the comment. We removed the normal samples in the 

heatmap of Figure 3G (Figure R2-5). Signature proteins in each subtype showed the highest 

expression levels in tumor samples of the corresponding subtypes. In last revision, we may not 

describe clearly about the usage of normal samples in the analysis, which confused the 

Reviewer. We would like to take this opportunity to clarify this. To reduce the effect of inter-

patient heterogeneity and identify subtype-specific tumor differences, we collected NAT 

samples from regions within ~2 cm around the corresponding AEG tumor sites. We separately 

compared tumor with NAT samples in each AEG subtype. A considerable portion of 

differentially expressed proteins (DEPs) were exclusively identified in the subtype tumor-NAT 

comparisons (Figure R2-6). In total, 389, 731, and 630 DEPs in the S-I, S-II, and S-III subtype, 

respectively, were not detected in the analysis of all samples. The result demonstrated that 

subtype analysis could reveal many subtype-specific candidates that may help personalized 

therapy of AEG patients. To identify the specific molecular alterations in our proteomic 

subtypes, we compared the protein abundances between tumor samples in individual subtypes 

with those in tumor and NAT samples of the other subtypes. In each subtype, a protein that 

showed remarkably higher abundances than all NAT samples and tumor samples in the other 

subtypes was considered a signature protein. 

 
Figure R2-5. Heatmap showing the expression of AEG subtype signature proteins that 
are significantly associated with patient survival across tumor samples in all subtypes. 



 
Figure R2-6. DEPs in different comparisons. a Venny plot shows the overlaps among DEPs 
identified between tumor and normal samples in all AEG, S-I subtype, S-II subtype, or S-III 
subtype. b Upset plot shows the statistics of DEPs in different comparisons.  

Q6: FBXO44 is a known oncogene and Figure 4C is consistent with it but not really novel. 

Figure 4A. Hard to find distinction in S subtypes. No explanation 

Response: Thanks very much for the comment. We agree with the Reviewer that the oncogenic 

role of FBXO44 has been reported in several studies. Shen et al. interrogated public cancer 

transcriptomic data, and found high FBXO44 expression correlated with poor patient outcome 

in lung, breast, gastric and ovarian cancer5. Lu et al. found that FBXO44 is an E3 ubiquitin 

ligase responsible for BRCA1 degradation, which might contribute to the development of 

sporadic breast tumor6. These studies demonstrated FBXO44 may play different roles in 

different cancer types, which is worthy of further investigation in other cancer types. However, 

there was no data related to AEG. In addition, our study verified the expression of FBXO44 in 

AEG and its relationship with prognosis for the first time in an Asian population cohort, 

rather than only in public databases. As shown in Fig. 4a, the expression of FBXO44 in cancer 

tissues was significantly higher than that in adjacent cancer tissues in S-II, but there was no 

difference in S-I and S-III. 

Q7: Figures 5 ABC also don't explain why S-III are surviving longer 



Response: Thanks very much for the Reviewer's comment. We may not describe clearly in the 

last version of manuscript, which caused confusion. We would like to take this opportunity to 

clarify this. In this section, we would like to compare the genomic alterations between different 

AEG subtypes. These three AEG subtypes showed shared and specific mutation signatures. In 

particular, S-I and S-II shared the SBS3 signature, which indicates defects in DNA double-

strand break (DSB) repair by homologous recombination (HR). Both the S-II and S-III 

subtypes exhibited SBS6 mutation signatures that represent defective DNA mismatch repair. 

The SBS17b mutation signature was shared by the S-I and S-III subtypes, which displayed an 

exclusively high frequency of T>G nucleotide substitution. The SBS1 signature was 

specifically identified in the S-I subtype, which showed spontaneous or enzymatic deamination 

of 5-methylcytosine. The S-II subtype exclusively exhibited the mutation signature of 

APOBEC cytidine deaminase (the SBS2 signature). The mutation signature of "deficiency in 

base excision repair due to inactivating mutations in NTHL1" (the SBS30 signature) was 

specifically detected in the S-III subtype. These genomic differences may provide insights into 

the development of tumor heterogeneity of AEG. Although not all molecular differences 

could interpret the patient survival, these subtype-specific molecular features might serve 

as potential markers of differential diagnosis and precision treatment for AEG patients. 

Q8: DDRd should confer longer survival (but it is all over the place). Also APOBEC should 

be with longer survivors but it is not. 

Response: Thanks for the Reviewer's comment. As shown in Fig. 5a-c, all subtypes have 

defects in DNA−DSB repair (DDRd), but the corresponding single base substitution (SBS) was 

not exactly the same. DNA double strand breaks (DSBs) are potential lethal lesions, including 

various SBS7,8. The different SBS signature have different biological significance: SBS1, cell-

division/mitotic clock; SBS2, hyperactivity of AID/APOBEC enzymes; SBS3: defective 

homologous recombination-based DNA repair; SBS6, defective DNA mismatch repair and 

microsatellite unstable tumors; SBS17b: specific KRAS/NRAS and EGFR driver mutations; 

SBS30: deficiency in base excision repair due to inactivating mutations in NTHL1. Besides, 

different SBS signature also play different roles in different tumors. For example, SBS30 

(deficiency in base excision repair due to inactivating mutations in NTHL1), among various 



base excision repair genes, NTHL1 was overexpressed in non-small cell lung cancer (NSCLC)9. 

In a clinical study of urothelial cancer patients, high NTHL1 expression negatively correlated 

with disease-free survival characterized by local recurrence of resected tumor or metastasis10. 

However, the overall NTHL1 expression remained insignificant in prognosis of grade or 

overall survival. Moreover, some studies found that the decrease expression of NTHL1 was 

significantly associated with a poor prognosis in astrocytoma11. It can be seen that different 

SBS have different biological meanings, and the relationship between an SBS and prognosis is 

not the same in different tumors. 

The APOBEC-induced mutagenesis promotes divergence in the genome that often results in 

evolving many variants with drug resistance and immune-escape capacity12. On the other hand, 

the APOBEC-signature recurrent mutations found outside of stem-loops were reported to be 

accumulated in many validated driver genes and may anticipate new driver genes in cancer13. 

Survival analysis on the TCGA cohort revealed that low APOBEC signature is associated with 

prolonged overall survival in all patients2. Notably, high APOBEC signature was associated 

with a marginally significant prolonged progression-free survival for an advanced NSCLC 

cohort treated with combination immunotherapy (PD-1 and CTLA-4)14. It can be seen that 

APOBEC plays different roles in different stages of tumor. Therefore, these mutation 

signatures are more likely markers to distinguish AEG subtypes, rather than to interpret the 

survival differences between AEG subtypes. 

Q9: Figure 5G is also not very instructive. Mostly oncogenes but distributions are not striking. 

Response: Thanks very much for the comment. We may not describe clearly in the last version 

of manuscript, which caused confusion. We would like to take this opportunity to clarify this. 

We agree with the Reviewer that the most frequently mutated oncogenic pathways in all three 

AEG subtypes. However, the specific mutations are different in different AEG subtypes. For 

example, patients of the S-I subtype had both large number of mutated genes and mutation rate 

of the "TP53" pathway, but the S-II and S-III subtype had smaller number of mutated genes 

and high mutation rate of the "TP53" pathway. Furthermore, distributions of mutated genes 

between different AEG subtypes are quite different in the same oncogenic pathways. For 

example, although gene mutations in the "RTK-RAS" pathway were found in over half of the 



samples for individual subtypes, remarkably different sets of genes were affected in distinct 

subtypes (Fig. 5h). 

Q10: Similarly, Figure 6D. not striking for S-I and S-III. FDR is very high 

Response: Thanks very much for the comment. The Reviewer may refer to S-I and S-II that 

have high values of FDR. Our original description may not be clear enough. We would like to 

take this opportunity to clarify this. Fig. 6d separately compared the fibroblast abundance 

between AEG tumor and NAT samples in the S-I, S-II, and S-III subtypes. The abundance of 

fibroblasts was significantly decreased in the S-III subtype (FDR=2.6E-4, Student's t test) 

but showed no obvious changes in tumor samples from the S-I and S-II subtypes 

(FDR=0.48 in S-I, FDR=0.98 in S-II, Figure R2-7). In our following H&E analysis, the 

fibroblast abundance also showed a decrease in the S-III subtypes, compared to those in the S-

I and S-II subtype (Fig. 6e). 

 
Figure R2-7. Comparisons of fibroblast abundance between AEG tumor and NAT 

samples in the S-I, S-II, and S-III subtypes. 

Q11: Figure 6 F also not giving any clues why S-III should live longer. 

Response: Thanks very much for the comment. We may not state clearly about Fig. 6f in the 

last version of manuscript. As shown in Fig. 6f, we examined the expression changes in 

immune checkpoint genes to screen potential immunotherapy targets of different AEG 

subtypes, which were not necessarily associated with prognosis. We observed that some of the 

markers may be related to the prognosis, indicating that patients of the S-III subtype may have 



a better response rate and treatment effect to tumor immunotherapy. Specifically, the 

expression of CD27 in the S-III subtype was significantly higher than that in the other types, 

while the expression of VTCN1 in the S-III subtype was significantly lower than that in the 

other types. CD27 is a co-stimulatory immune checkpoint molecule in the tumor necrosis factor 

receptor superfamily and functions to generate and maintain T cell immunity. In addition, 

CD27 signaling can increase production of the T cell growth/survival factor IL-215,16, leading 

to either improved T cell function or dysfunction. VTCN1, also known as B7-H4, is an immune 

checkpoint molecule that negatively regulates immune responses and is known to be 

overexpressed in many human cancers17. VTCN1 negatively regulates T cell immune response 

and promotes immune escape by inhibiting the proliferation, cytokine secretion, and cell cycle 

of T cells18. However, further studies are needed to confirm the specific role of these markers 

in the immune microenvironment of AEG. 
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