

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

#### Developing a Machine Learning Algorithm to predict retear probability in patients undergoing rotator cuff repair surgery: A protocol for a retrospective multicenter study.

| Journal:                         | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | bmjopen-2022-063673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Article Type:                    | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the<br>Author: | 12-Apr-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:        | Allaart, Laurens; Clinique Générale Annecy, Orthopaedic Surgery; Vrije<br>Universiteit Amsterdam, Department of Human Movement Sciences<br>Spanning, Sanne; Vrije Universiteit Amsterdam, Department of Human<br>Movement Sciences; OLVG, 3. Shoulder and Elbow Unit, Joint Research,<br>Department of Orthopaedic Surgery<br>Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery<br>Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery<br>Ladermann, Alexandre; La Tour Hopital Prive SA, Division of<br>Orthopaedics and Trauma Surgery; University of Geneva Faculty of<br>Medicine<br>Athwal, George; Schulich School of Medicine and Dentistry, Roth<br>McFarlane Hand and Upper Limb Center<br>Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>Doornberg, Job; University Medical Centre Groningen, Orthopaedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of<br>Human Movement Sciences<br>Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic<br>Surgery; University of Amsterdam, Department of<br>Human Movement Sciences |
| Keywords:                        | ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## SCHOLARONE<sup>™</sup> Manuscripts

| 2                          |    |                                                                                                                                                               |  |  |
|----------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3<br>4                     | 1  | TITLE: Developing a Machine Learning Algorithm to predict retear probability in patients undergoing                                                           |  |  |
| 5<br>6<br>7                | 2  | rotator cuff repair surgery: A protocol for a retrospective multicenter study.                                                                                |  |  |
| 8<br>9                     | 3  | Corresponding author                                                                                                                                          |  |  |
| 10<br>11<br>12             | 4  | Full Name: Laurens Jan Houterman Allaart                                                                                                                      |  |  |
| 13<br>14<br>15             | 5  | Postal address: 4 Chemin tour de la Reine, 74000 Annecy, France                                                                                               |  |  |
| 16<br>17<br>18             | 6  | Email : laurensallaart@gmail.com                                                                                                                              |  |  |
| 19<br>20<br>21             | 7  | Authors                                                                                                                                                       |  |  |
| 22<br>23<br>24             | 8  | Laurens J. H. Allaart <sup>1,2</sup> , Sanne H. van Spanning <sup>1,2,3</sup> , Laurent Lafosse <sup>1</sup> , Thibault Lafosse <sup>1</sup> , Alexandre      |  |  |
| 25<br>26                   | 9  | Lädermann <sup>4,5,6</sup> , George S. Athwal <sup>7</sup> , Laurent A.M. Hendrickx <sup>8,9</sup> , Job N. Doornberg <sup>9,10,11</sup> , Michel P.J van den |  |  |
| 20<br>27<br>28             | 10 | Bekerom <sup>2,3,12</sup> and Geert AlexanderBuijze <sup>1,8,13</sup> on behalf of the Machine Learning Consortium                                            |  |  |
| 29<br>30<br>31             | 11 | Affiliations                                                                                                                                                  |  |  |
| 32<br>33<br>34             | 12 | 1. Alps Surgery institute, Hand, Upper Limb, Peripheral Nerve, Brachial Plexus and Microsurgery                                                               |  |  |
| 35<br>36                   | 13 | Unit, Clinique Générale Annecy, France                                                                                                                        |  |  |
| 37<br>38<br>39             | 14 | 2. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije                                                                 |  |  |
| 40<br>41                   | 15 | Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands                                                                               |  |  |
| 42<br>43                   | 16 | 3. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG, Amsterdam,                                                               |  |  |
| 44<br>45                   | 17 | The Netherlands                                                                                                                                               |  |  |
| 46<br>47<br>48             | 18 | 4. Division of Orthopaedics and Trauma Surgery, La Tour Hospital, Geneva, Switzerland                                                                         |  |  |
| 49<br>50<br>51             | 19 | 5. Faculty of Medecine, University of Geneva                                                                                                                  |  |  |
| 52<br>53                   | 20 | 6. Division of Orthopaedics and Trauma Surgery, Department of Surgery, Geneva University                                                                      |  |  |
| 55<br>56<br>57<br>58<br>59 | 21 | Hospitals, Geneva Switzerland                                                                                                                                 |  |  |
| 60                         |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                     |  |  |

| 1                    |    |                                                                                                   |
|----------------------|----|---------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 22 | 7. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and Dentistry,          |
| 5<br>6               | 23 | Western University, London, Ontario, Canada                                                       |
| 7<br>8               | 24 | 8. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, location         |
| 9<br>10<br>11        | 25 | AMC, University of Amsterdam, Amsterdam, The Netherlands                                          |
| 12<br>13<br>14       | 26 | 9. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The       |
| 14<br>15<br>16       | 27 | Netherlands                                                                                       |
| 17<br>18             | 28 | 10. Department of Orthopaedic & Trauma Surgery, University Medical Center Groningen               |
| 19<br>20<br>21       | 29 | 11. Department of Orthopaedic Trauma, Flinders Medical Centre, Adelaide, Australia                |
| 22<br>23<br>24       | 30 | 12. The Amsterdam Shoulder and Elbow Center of Expertise (ASECE), Amsterdam, The Netherlands      |
| 25<br>26             | 31 | 13. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie Hospital, |
| 27<br>28<br>29       | 32 | University of Montpellier, Montpellier, France                                                    |
| 30<br>31             | 33 |                                                                                                   |
| 32<br>33             | 34 | Keywords: Rotator Cuff Tear, Rotator Cuff Repair, Retear, Machine Learning Algorithm, Artificial  |
| 34<br>35             | 35 | Intelligence                                                                                      |
| 36<br>37<br>38<br>20 | 36 | WORD COUNT: 1461 Abstract: 271                                                                    |
| 40<br>41             | 37 | DATE: 21-3-2022                                                                                   |
| 42<br>43             | 38 | VERSION: 1.0                                                                                      |
| 44<br>45<br>46       |    |                                                                                                   |
| 47<br>48             |    |                                                                                                   |
| 49<br>50             |    |                                                                                                   |
| 51<br>52             |    |                                                                                                   |
| 53<br>54             |    |                                                                                                   |
| 55<br>56             |    |                                                                                                   |
| 57<br>58             |    |                                                                                                   |
| 59<br>60             |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                         |

| 1                                      |    |                                                                                                                |
|----------------------------------------|----|----------------------------------------------------------------------------------------------------------------|
| 2                                      |    |                                                                                                                |
| 3<br>4                                 | 39 | ABSTRACT                                                                                                       |
| 5                                      |    |                                                                                                                |
| 6<br>7                                 | 40 | Purpose/Introduction: The effectiveness of rotator cuff tear repair surgery is influenced by multiple          |
| 8<br>9                                 | 41 | patient-related, pathology-centered and technical factors, which is thought to contribute to the reported      |
| 10<br>11                               | 42 | retear rates between 17 and 94%. Adequate patient selection is thought to be essential in reaching             |
| 12<br>13<br>14                         | 43 | satisfactory results. However, no clear consensus has been reached on which factors are most predictive        |
| 15<br>16                               | 44 | of successful surgery. A clinical decision tool that encompassed all aspects is still to be made. Artificial   |
| 17<br>18                               | 45 | Intelligence (AI) and machine learning algorithms use self-learning complex models that can be used to         |
| 19<br>20<br>21                         | 46 | make patient-specific decision-making tools.                                                                   |
| 21<br>22<br>23                         | 47 | The aim of this study is to develop and train an algorithm that can be used as an online available clinical    |
| 24<br>25                               | 48 | prediction tool, to predict the risk of retear in patients undergoing rotator cuff repair.                     |
| 26<br>27<br>28                         | 49 | Methods: This is a retrospective multicenter cohort study. Patients undergoing rotator cuff repair and         |
| 29<br>30                               | 50 | evaluated by advanced imaging for healing at a minimum of 6 months after surgery were included. This           |
| 31<br>32<br>33                         | 51 | study consists of two parts. Part one: collecting all potential factors that might influence retear risks from |
| 33<br>34<br>35                         | 52 | retrospective multicenter data, aiming to include >1000 patients worldwide. Part two: combining all            |
| 36<br>37                               | 53 | influencing factors into a model that can clinically be used as a prediction tool using machine learning.      |
| 38<br>39<br>40                         | 54 | Ethics and dissemination: For safe multicenter data exchange and analysis, our Machine Learning                |
| 41<br>42                               | 55 | Consortium adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of             |
| 43<br>44<br>45                         | 56 | Data Collected by WHO in Member States Outside the Context of Public Health Emergencies." The study            |
| 46<br>47                               | 57 | results will be disseminated through publication in a peer-reviewed journal. IRB approval does not apply       |
| 48<br>49                               | 58 | to the current study protocol.                                                                                 |
| 50<br>51<br>52<br>53<br>54<br>55<br>56 | 59 | Trial registration: N/A                                                                                        |
| 57<br>58                               |    |                                                                                                                |
| 59<br>60                               |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                      |

#### 60 ARTICLE SUMMARY

- 61 This study aims to calculate a patient-specific retear-chance after rotator cuff repair surgery.
- 62 Creating an online-available tool that predicts retear chances can help both medical
- 63 professionals and patients in clinical decision-making on rotator cuff repair surgery.
- 64 Included data will be gathered from previously published databases of all authors included in the
- 65 Machine Learning Consortium, aiming to include data from over 1000 patients.
- 66 This study does have the limitation of being retrospective and therefore the study is dependent
- 20 67

on the recordkeeping of each individual hospital.

Page 5 of 17

1

| 2<br>3<br>4    | 68 | INTRODUCTION                                                                                                 |
|----------------|----|--------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7    | 69 | Despite technical advances of rotator cuff repair, the rate of unhealed or re-torn rotator cuff tears        |
| ,<br>8<br>9    | 70 | remains high, with percentages ranging between 17 and 94% (1). A myriad of patient-related (2),              |
| 10<br>11       | 71 | pathology-centered (3) and technical factors (4) influence this adverse outcome.                             |
| 12<br>13       | 72 | Patient selection is thought to be essential, however there is no consensus on which of the numerous         |
| 14<br>15<br>16 | 73 | potentially influential factors are most important for the prediction of satisfactory postoperative results  |
| 17<br>18       | 74 | (5). Furthermore, the value of preoperative optimization of potential comorbidities, metabolic               |
| 19<br>20       | 75 | deficiencies and intoxications remains questionable. Multiple leaders in shoulder surgery – convinced of     |
| 21<br>22       | 76 | patient-related influential factors – have implemented extensive preoperative screening and                  |
| 23<br>24<br>25 | 77 | optimization programs prior to rotator cuff surgery. These include smoking cessation programs, diabetes      |
| 26<br>27       | 78 | control, use of statins in hyperlipidemia and vitamin D deficiency supplementing (2,6). However, a           |
| 28<br>29       | 79 | majority of shoulder surgeons – left daunted by the overwhelming and somewhat conflicting clinical           |
| 30<br>31       | 80 | evidence – seems to limit decision-making to more basic factors including age, functional demand and         |
| 32<br>33<br>34 | 81 | pathology-specific grading. Despite many different classification systems have been developed to             |
| 35<br>36       | 82 | facilitate decision making, a patient specific decision tool is still lacking (7,8).                         |
| 37<br>38       | 83 | Artificial intelligence and machine learning (ML) is believed to facilitate a more patient-specific approach |
| 39<br>40       | 84 | and will allow us to move to the next level of evidence-based medicine: personalized patient-care.           |
| 41<br>42<br>43 | 85 | Clinical prediction tools, incorporating patient specific factors to predict outcome probabilities will      |
| 43<br>44<br>45 | 86 | provide guidance to both clinicians and patients (9–11). Within orthopedic (oncology) surgery, prediction    |
| 46<br>47       | 87 | tools based on ML algorithms, have already been successfully implemented to predict patient specific 5-      |
| 48<br>49       | 88 | year survival in patients with chondrosarcoma (12). Furthermore, based on a series of 422 patients           |
| 50<br>51<br>52 | 89 | undergoing lumbar discectomy, Staartjes et al. demonstrated deep learning algorithms to be superior to       |
| 52<br>53<br>54 | 90 | standard regression models in predicting patient-reported outcome measures (PROMs) (11).                     |
| 55<br>56       |    |                                                                                                              |
| 57<br>58       |    |                                                                                                              |
| 59<br>60       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |

1

| 2                                                        |     |                                                                                                              |
|----------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 3<br>4                                                   | 91  | The aim of this study is to develop and train a machine learning algorithm in order to create a clinical     |
| 5<br>6                                                   | 92  | prediction tool to be used in clinical practice by predicting retear-chance of the rotator cuff based on     |
| 7<br>8                                                   | 93  | preoperative patient data. The prediction tool will be free and online available.                            |
| 9<br>10<br>11                                            | 94  |                                                                                                              |
| 12<br>13<br>14                                           | 95  | METHODS AND ANALYSIS                                                                                         |
| 15<br>16<br>17                                           | 96  | This study consists of two parts                                                                             |
| 18<br>19                                                 | 97  | 1. Collecting data                                                                                           |
| 20<br>21<br>22                                           | 98  | 2. Creating an online clinical prediction tool                                                               |
| 23<br>24<br>25                                           | 99  | 1. Collecting data                                                                                           |
| 26<br>27<br>28                                           | 100 | Step one involves collecting data from previously published studies in order to combine these into a         |
| 20<br>29<br>30                                           | 101 | central database. Included were all randomized controlled trials comparing any surgical technique, add-      |
| 31<br>32                                                 | 102 | on biological intervention or rehabilitation protocols concerning rotator cuff surgery. In addition, cohorts |
| 33<br>34                                                 | 103 | evaluating risk factors of surgical techniques after rotator cuff repair were included. This retrospective   |
| 35<br>36<br>27                                           | 104 | review will therefore incorporate patients with all types of tears and concomitant procedures (e.g. biceps   |
| 37<br>38<br>39                                           | 105 | tenodesis or tenotomy and acromioclavicular resection). Exclusion criteria for all studies was the lack of   |
| 40<br>41                                                 | 106 | postoperative evaluation by ultrasound, contrast-enhanced computed tomography or magnetic                    |
| 42<br>43                                                 | 107 | resonance imaging at minimally 6 months after surgery. Relevant studies have been identified using a         |
| 44<br>45                                                 | 108 | systematic approach searching the online PubMed database according to the search terms found in              |
| 46<br>47<br>48                                           | 109 | supplement 1. We aim to include at least 1000 patients in the database, all centers worldwide will be        |
| 49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 110 | able to contribute data.                                                                                     |
| 59<br>60                                                 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |

| 1                    |     |                                                                                                          |
|----------------------|-----|----------------------------------------------------------------------------------------------------------|
| 2                    | 111 | 2 Machine Learning                                                                                       |
| 4                    | TTT | <u>z</u> . Machine Learning                                                                              |
| 5<br>6<br>7          | 112 | Training Data & Test Data                                                                                |
| 8<br>9<br>10         | 113 | Eighty percent (80%) of all (>1000) patients included in the Machine Learning Consortium Database will   |
| 11<br>12             | 114 | be randomly allocated to the training dataset and 20% to the test dataset.                               |
| 13<br>14<br>15       | 115 | Outcome variables                                                                                        |
| 16<br>17<br>18       | 116 | Primary outcome measures (dichotomous)                                                                   |
| 19<br>20<br>21       | 117 | - Rotator cuff retear rates at minimum 6 months follow-up (yes vs no, specified by Sugaya                |
| 22<br>23             | 118 | Classification (13)) as measured on magnetic resonance imaging, arthro-CT and/or ultrasound.             |
| 24<br>25             | 119 | - Enduring satisfactory functional outcome defined as achievement (yes vs no) and maintenance            |
| 26<br>27<br>28       | 120 | (yes vs no) of the PROM-specific MCID (14) in numeric rating scales of PROMs from baseline at 2-         |
| 29<br>30             | 121 | 5 years follow-up after repair (PROMs include the Constant-Murley score, ASES, UCLA, OSS,                |
| 31<br>32             | 122 | WORC, DASH).                                                                                             |
| 33<br>34<br>35       | 123 | Secondary outcome measures (categorical)                                                                 |
| 36<br>37<br>38       | 124 | - Adverse events graded as the possibility of none/minor vs moderate/severe complication as              |
| 39<br>40             | 125 | defined in accordance to Felsch et al. and specified as infection, revision surgery or other (15).       |
| 41<br>42<br>43       | 126 | Input Variables                                                                                          |
| 44<br>45<br>46       | 127 | For each respective primary outcome, a Random-Forest will be created based on all available data points  |
| 47<br>48             | 128 | in the Machine Learning Consortium Database to identify the variables with the highest predictive        |
| 49<br>50             | 129 | values. The data points available include patient demographic (sex, age), patient specific factors (BMI, |
| 51<br>52<br>53       | 130 | dominance), pathology specific factors (e.g. tear size and location), surgical technique and add-on      |
| 54<br>55<br>56<br>57 | 131 | interventions. For a complete overview of all variables see supplement 2.                                |
| 58<br>59<br>60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

| 1        |      |                                                                                                           |
|----------|------|-----------------------------------------------------------------------------------------------------------|
| 2<br>3   | 132  | Machine learning algorithm: development and testing                                                       |
| 4<br>5   |      |                                                                                                           |
| 6        | 133  | Algorithms to be trained                                                                                  |
| 7<br>8   |      |                                                                                                           |
| 9<br>10  | 134  | Based on previous studies (16,17), the following algorithms are likely to result in accurate prediction   |
| 11<br>12 | 135  | models for our primary outcomes: 1) Bayes Point Machine 2) Boosted Decision Tree 3) Penalized             |
| 13<br>14 | 136  | Logistical Regression 4) Neural Network 5) Support Vector Machine. In order to recognize patterns         |
| 15<br>16 | 137  | related to each outcome, the machine learning algorithms will have to be trained separately for each      |
| 17<br>18 | 138  | outcome.                                                                                                  |
| 19<br>20 |      |                                                                                                           |
| 21<br>22 | 139  | Assessing the performance of the algorithms on the test set                                               |
| 23       | 1/10 | The test-set consisting of 20% of the remaining data will be used to assess the performance of these      |
| 24<br>25 | 140  | The test set consisting of 20% of the remaining data will be used to assess the performance of these      |
| 26<br>27 | 141  | respective machine learning algorithms. The performance of the ML-algorithms will be assessed and         |
| 28<br>29 | 142  | compared based on 1) model discrimination 2) calibration and 3) overall model performance (Brier          |
| 30<br>31 | 143  | Score) according to Steyerberg's structured 'ABCD-methodology' for clinical prediction rules (18,19).     |
| 32       |      |                                                                                                           |
| 33<br>34 | 144  | Accuracy, sensitivity, specificity and area under the ROC-curve are measures for a model's ability to     |
| 35<br>36 | 145  | distinguish patients with the primary outcome from those without.                                         |
| 37       |      |                                                                                                           |
| 38<br>39 | 146  | Development decision rule                                                                                 |
| 40<br>41 |      |                                                                                                           |
| 42       | 147  | The best performing algorithm will be deployed as an open-access probability calculator and used to       |
| 43<br>44 | 148  | design a clinical decision rule. To simulate the clinical scenario to which a decision rule would be most |
| 45<br>46 | 149  | applicable, thresholds shall be selected based on patients with clinical symptoms of a retear with an     |
| 47<br>48 | 150  | unsatisfactory functional outcome. The technical appendix and statistical code will be published.         |
| 49<br>50 |      | <i>,</i>                                                                                                  |
| 50       |      |                                                                                                           |
| 52       |      |                                                                                                           |
| 55<br>54 |      |                                                                                                           |
| 55       |      |                                                                                                           |
| 56<br>57 |      |                                                                                                           |
| 58       |      |                                                                                                           |
| 59<br>60 |      | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |

| 2<br>3<br>4    | 151 | Blinding of data and external validation                                                                 |
|----------------|-----|----------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7    | 152 | The researchers that will perform the statistical analysis and development of machine learning           |
| ,<br>8<br>9    | 153 | algorithms will be blinded of the origin of the data. Before incorporating the best performing algorithm |
| 10<br>11<br>12 | 154 | will be externally validated. The same performance metrics will be calculated as described above.        |
| 13<br>14       | 155 | Patients and public involvement                                                                          |
| 15<br>16<br>17 | 156 | Patients and the public were not involved in the making of this protocol.                                |
| 18<br>19<br>20 | 157 | ETHICS AND DISSEMINATION                                                                                 |
| 21<br>22<br>23 | 158 | For safe multicentre data exchange and analysis, our Machine Learning Consortium adhered to the          |
| 24<br>25       | 159 | World Health Organization (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO in        |
| 26<br>27       | 160 | Member States Outside the Context of Public Health Emergencies' (20). As IRB has been acquired for       |
| 28<br>29<br>30 | 161 | each of the included studies and data are anonymized as in conventional meta-analyses, an additional     |
| 31<br>32       | 162 | IRB request does not apply to the current study protocol.                                                |
| 33<br>34<br>25 | 163 | CURRENT STATUS                                                                                           |
| 35<br>36<br>37 | 164 | The study has currently entered the data-collection phase, which is expected to last until mid-2022. Re- |
| 38<br>39       | 165 | evaluation of the data using machine learning algorithms to predict outcomes will start in September     |
| 40<br>41       | 166 | 2022, after which the algorithms can be externally validated. The expected time of completion is by the  |
| 42<br>43<br>44 | 167 | mid-2023.                                                                                                |
| 45<br>46       |     |                                                                                                          |
| 47<br>48       |     |                                                                                                          |
| 49             |     |                                                                                                          |
| 50             |     |                                                                                                          |
| 52<br>53       |     |                                                                                                          |
| 54<br>55       |     |                                                                                                          |
| 56<br>57       |     |                                                                                                          |
| 58<br>59       |     |                                                                                                          |
| 60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

| 2<br>3<br>4    | 16 |
|----------------|----|
| 4<br>5<br>6    | 16 |
| 7<br>8         | 17 |
| 9<br>10        | 17 |
| 11<br>12<br>13 | 17 |
| 14<br>15       | 17 |
| 16<br>17       | 17 |
| 18<br>19       | 17 |
| 20<br>21<br>22 | 17 |
| 23<br>24       | 17 |
| 25<br>26       | 17 |
| 27<br>28       | 17 |
| 29<br>30<br>31 | 18 |
| 32<br>33       | 18 |
| 34<br>35       | 18 |
| 36<br>37<br>20 | 18 |
| 38<br>39<br>40 | 18 |
| 41<br>42       | 18 |
| 43<br>44       | 18 |
| 45<br>46<br>47 | 18 |
| 47<br>48<br>49 | 18 |
| 50<br>51       | 18 |
| 52<br>53       | 19 |
| 54<br>55       | 19 |
| 56<br>57       |    |
| 58<br>59       |    |

60

1 2

#### DISCUSSION 68

69 Due to the wide variety of pathological factors at the origin of rotator cuff tears and the numerous 70 surgical approaches to repair, optimal decision-making remains challenging. Smaller case series often 71 provide heterogeneous data on this topic, however the largest and most recent meta-analysis to date 72 including 2,611 patients with a mean follow-up of 25 months has somewhat demystified the matter. 73 Patients with a full-thickness rotator cuff retear exhibited significantly lower functional outcome scores 74 and strength compared with patients with an intact or partially torn rotator cuff (21). This is 75 corroborated by the findings of rotator cuff repair with more than 10 years follow-up, showing clinical 76 superiority of structural tendon integrity in partial cuff tears (22,23). Progressive osteoarthritic changes 77 are significantly more common in patients with repair failures (23). The most recent RCT comparing 78 surgical repair to conservative treatment for degenerative rotator cuff tears showed that only operated 79 patients without retear had an improvement exceeding the minimal clinical important difference (MCID) 80 in functional outcome at 1 year follow-up (24). Findings from the latest meta-analysis on this 81 comparative topic conclude that as the success rate of conservative treatment may be high, judicious 82 selection of patients who are most likely to benefit from surgery is key (25). It is extremely difficult to 83 combine all these factors into a clinical decision related to one specific patient. Creating a free online 84 available clinical prediction tool that takes all these factors into account will assist physicians in selecting 85 which patients with rotator cuff tears will profit from a repair. In addition, the aimed size (more than 86 1000 patients) of the database that will be used to design and train the prediction tool might provide 87 new insights on which biological or biomechanical factors influence retear risk the most. Awareness of 88 these factors would be the essential first step to incorporating them in future treatment strategies and 89 eventually improving outcomes. The main limitation of this study is that it is a retrospective, multicenter 90 study. This means this study is dependent on the quality of recordkeeping in the different participating 91 hospitals. This may lead to variance in recorded variables and therefore missing data.

BMJ Open

#### 192 AUTHOR STATEMENT

Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander Buijze and Michel P.J van den Bekerom contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job N. Doornberg contributed to the conception and design of the methods section, primarily focussing on the machine learning section and data analysis. Alexander Lädermann, George S. Athwall, Thibault Lafosse and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the data should be collected and interpreted. Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander Buijze and Michel P.J. van den Bekerom contributed to writing the protocol. All authors revised this version of the protocol and gave final approval for it to be published. All authors ensure that questions related to the accuracy or integrity of any part of this protocol are appropriately investigated and resolved.

29 203 CONTRIBUTOR STATEMENT 

204 Vivek Pandey, Mats Ranebo, Martyn Snow and Riccardo d'Ambrosi have contributed by providing

205 relevant feedback on the general design of the study.

| 3<br>4               | 206 | CONFLICTS OF INTEREST                                                                                       |
|----------------------|-----|-------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 207 | Dr Alexandre Lädermann is a paid consultant for Arthrex, Medacta and Stryker. He receives                   |
| 8<br>9               | 208 | royalties from Stryker. He is the founder of BeeMed, Med4Cast and FORE. He owns stock options from          |
| 10<br>11             | 209 | Medacta. Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties from Depuy. Dr. T. Lafosse is |
| 12<br>13<br>14       | 210 | consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes        |
| 15<br>16             | 211 | and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has      |
| 17<br>18             | 212 | funding or commercial associations that might pose a conflict of interest in connection with the            |
| 19<br>20<br>21       | 213 | submitted article.                                                                                          |
| 21<br>22<br>23<br>24 | 214 | FUNDING                                                                                                     |
| 25<br>26             | 215 | This research has received funding by the SECEC/ESSSE 2020 Research Grant as part of the project: 'The      |
| 27<br>28<br>29       | 216 | Effect of Risk Factors, Surgical Technique and Biomodulation on Tendon Healing                              |
| 30<br>31             | 217 | after Rotator Cuff Repair'.                                                                                 |
| 32<br>33             |     |                                                                                                             |
| 34<br>35<br>36       |     |                                                                                                             |
| 37<br>38             |     |                                                                                                             |
| 39<br>40             |     |                                                                                                             |
| 41<br>42             |     |                                                                                                             |
| 43<br>44<br>45       |     |                                                                                                             |
| 45<br>46             |     |                                                                                                             |
| 47<br>48             |     |                                                                                                             |
| 49<br>50             |     |                                                                                                             |
| 51                   |     |                                                                                                             |
| 52<br>53             |     |                                                                                                             |
| 54                   |     |                                                                                                             |
| 55<br>56             |     |                                                                                                             |
| 57                   |     |                                                                                                             |
| 58<br>50             |     |                                                                                                             |
| 59<br>60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |

## for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes

1 2

| 1<br>2<br>3<br>4<br>5 | 218        | REFERENCES                                                                                                |
|-----------------------|------------|-----------------------------------------------------------------------------------------------------------|
| 6                     | 219        | 1. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of          |
| 7                     | 220        | completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004     |
| 8                     | 221        | Feb;86(2):219–24.                                                                                         |
| 9<br>10               |            |                                                                                                           |
| 11                    | 222        | 2. Zumstein M-A, Ladermann A, Raniga S, Schar M-O. The biology of rotator cuff healing. Orthop            |
| 12                    | 223        | Traumatol Surg Res OTSR. 2017;103(1S):S1–10.                                                              |
| 13                    | 224        | 3. Kunze KN, Rossi LA, Beletsky A, Chahla J. Does the Use of Knotted Versus Knotless Transosseous         |
| 14<br>15              | 225        | Equivalent Rotator Cuff Repair Technique Influence the Incidence of Retears? A Systematic Review.         |
| 16                    | 226        | Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2020 Feb 11;              |
| 17                    |            |                                                                                                           |
| 18                    | 227        | 4. Rossi LA, Chahla J, Verma NN, Millett PJ, Ranalletta M. Rotator Cuff Retears. JBJS Rev. 2020           |
| 19                    | 228        | Jan;8(1):e0039.                                                                                           |
| 20<br>21              | 229        | 5. Griffiths S. Yohannes AM. Surgical referral criteria for degenerative rotator cuff tears: a Delphi     |
| 22                    | 230        | guestionnaire study. Musculoskeletal Care, 2014 Jun:12(2):82–91.                                          |
| 23                    | 200        |                                                                                                           |
| 24                    | 231        | 6. Yang Y, Qu J. The effects of hyperlipidemia on rotator cuff diseases: a systematic review. J           |
| 25                    | 232        | Orthop Surg. 2018 Aug 17;13(1):204.                                                                       |
| 20<br>27              | 222        | 7 Lädermann A. Burkhart SS. Hoffmever P. Nevton L. Collin P. Vates F. et al. Classification of full-      |
| 28                    | 233        | thickness rotator cuff lesions: a review EEORT Open Rev. 2016 Dec 1:1(12):420–30                          |
| 29                    | 234        |                                                                                                           |
| 30                    | 235        | 8. Lee CS, Davis SM, Doremus B, Kouk S, Stetson WB. Interobserver Agreement in the Classification         |
| 31                    | 236        | of Partial-Thickness Rotator Cuff Tears Using the Snyder Classification System. Orthop J Sports Med. 2016 |
| 32<br>33              | 237        | Sep 28;4(9):2325967116667058.                                                                             |
| 34                    | 220        | Q Stiell IC Greenberg CH McKnight PD Nair PC McDowell I Worthington IP A study to develop                 |
| 35                    | 230        | clinical decision rules for the use of radiography in acute ankle injuries. Ann Emerg Med. 1992           |
| 36                    | 235        | Apr: 21/4):284_00                                                                                         |
| 3/                    | 240        | Αμι,21(4).364-50.                                                                                         |
| 39                    | 241        | 10. Wells PS, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, et al. Derivation of a simple         |
| 40                    | 242        | clinical model to categorize patients probability of pulmonary embolism: increasing the models utility    |
| 41                    | 243        | with the SimpliRED D-dimer. Thromb Haemost. 2000 Mar;83(3):416–20.                                        |
| 42                    | 244        | 11 Staartige VE de Wispelaare MD Vanderten WD Schröder MI. Deen learning based programming                |
| 45<br>44              | 244<br>24⊑ | nredictive analytics for nationt-reported outcomes following lumbar dissectomy: feasibility of center     |
| 45                    | 243<br>246 | predictive analytics for patient-reported outcomes following fumber discectomy. Teasibility of center-    |
| 46                    | 240        | specific modeling. Spirle J OH J North Am Spirle Soc. 2019,19(5).855–01.                                  |
| 47                    | 247        | 12. Thio QCBS, Karhade AV, Ogink PT, Raskin KA, De Amorim Bernstein K, Lozano Calderon SA, et al.         |
| 48                    | 248        | Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With                   |
| 49<br>50              | 249        | Chondrosarcoma? Clin Orthop. 2018;476(10):2040–8.                                                         |
| 51                    | 250        |                                                                                                           |
| 52                    | 250        | 13. Sugaya H, Maeda K, Matsuki K, Moriisni J. Functional and Structural Outcome After Arthroscopic        |
| 53                    | 251        | Full-Thickness Rotator Cutt Repair: Single-Row Versus Dual-Row Fixation. Arthrosc J Arthrosc Relat Surg.  |
| 54<br>55              | 252        | 2005 NOV;21(11):130/-16.                                                                                  |
| 56                    |            |                                                                                                           |
| 57                    |            |                                                                                                           |
| 58                    |            |                                                                                                           |
| 59                    |            | For peer review only - http://hmiopen.hmi.com/site/shout/suidelines.yhtml                                 |
| 60                    |            | for peer review only inteps/sinjopen.only.com/site/about/guidelines.vitim                                 |

14. Dabija DI, Jain NB. Minimal Clinically Important Difference of Shoulder Outcome Measures and Diagnoses: A Systematic Review. Am J Phys Med Rehabil. 2019;98(8):671-6. Felsch Q, Mai V, Durchholz H, Flury M, Lenz M, Capellen C, et al. Complications Within 6 Months 15. After Arthroscopic Rotator Cuff Repair: Registry-Based Evaluation According to a Core Event Set and Severity Grading. Arthrosc J Arthrosc Relat Surg. 2021 Jan 1;37(1):50-8. 16. Machine Learning Consortium, on behalf of the SPRINT and FLOW Investigators. A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After Operative Treatment. J Bone Joint Surg Am. 2021 Mar 17;103(6):532–40. 17. Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996;8(7):1341-90. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for 18. development and an ABCD for validation. Eur Heart J. 2014 Aug 1;35(29):1925–31. 19. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiol Camb Mass. 2010 Jan;21(1):128-38. 20. Data policy [Internet]. [cited 2022 Feb 24]. Available from: https://www.who.int/about/policies/publishing/data-policy 21. Carbonel I, Martinez AA, Calvo A, Ripalda J, Herrera A. Single-row versus double-row arthroscopic repair in the treatment of rotator cuff tears: a prospective randomized clinical study. Int Orthop. 2012 Sep;36(9):1877-83. 22. Heuberer PR, Smolen D, Pauzenberger L, Plachel F, Salem S, Laky B, et al. Longitudinal Long-term Magnetic Resonance Imaging and Clinical Follow-up After Single-Row Arthroscopic Rotator Cuff Repair: Clinical Superiority of Structural Tendon Integrity. Am J Sports Med. 2017 May;45(6):1283-8. 23. Plachel F, Siegert P, Rüttershoff K, Thiele K, Akgün D, Moroder P, et al. Long-term Results of Arthroscopic Rotator Cuff Repair: A Follow-up Study Comparing Single-Row Versus Double-Row Fixation Techniques. Am J Sports Med. 2020 May 11;363546520919120. Lambers Heerspink FO, van Raay JJAM, Koorevaar RCT, van Eerden PJM, Westerbeek RE, van 't 24. Riet E, et al. Comparing surgical repair with conservative treatment for degenerative rotator cuff tears: a randomized controlled trial. J Shoulder Elbow Surg. 2015 Aug;24(8):1274-81. 25. Schemitsch C, Chahal J, Vicente M, Nowak L, Flurin P-H, Lambers Heerspink F, et al. Surgical repair versus conservative treatment and subacromial decompression for the treatment of rotator cuff tears: a meta-analysis of randomized trials. Bone Jt J. 2019;101-B(9):1100-6. 

| 2         |                                                                                        |
|-----------|----------------------------------------------------------------------------------------|
| 3         | #1 subject                                                                             |
| 4         | Peteter suff toor/injury                                                               |
| 5         | Rotator curritear/ injury                                                              |
| 6         | (rotator[tiah] AND cuff[tiah] AND injur*[tiah])                                        |
| 7         | (rotator[tiab] AND curr[tiab] AND injur [tiab])                                        |
| 8         | OR                                                                                     |
| 9         |                                                                                        |
| 10        | (rotator[tiab] AND cuff[tiab] AND tear*[tiab])                                         |
| 11        | OR                                                                                     |
| 12        |                                                                                        |
| 13        | (rotator[tiab] AND cuff[tiab] AND repair*[tiab])                                       |
| 14        | OR                                                                                     |
| 15        |                                                                                        |
| 16        | (rotator[tiab] AND cuff[tiab] AND surg*[tiab])                                         |
| 17        |                                                                                        |
| 18        |                                                                                        |
| 19        | "Rotator Cuff Injuries"[Mesh]                                                          |
| 20        | #2.4 Intervention (DCT)                                                                |
| 21        | #2.1 Intervention (RCT)                                                                |
| 22        | Repair                                                                                 |
| 23        | #2.2 Intervention (Cohort)                                                             |
| 24        |                                                                                        |
| 25        | Renair                                                                                 |
| 20        | i i i i i i i i i i i i i i i i i i i                                                  |
| 27        | #3 Outcome                                                                             |
| 20        | Retear rate measured by MRI ultrasound or arthro CT                                    |
| 30        |                                                                                        |
| 31        | (Retear[tiab] OR (re-tear)[tiab] OR healing[tiab])                                     |
| 32        |                                                                                        |
| 33        | UR CR                                                                                  |
| 34        | ("Magnetic Peropance Imaging"[Mech] OP "MPI" OP "magnetic reconance"                   |
| 35        |                                                                                        |
| 36        | OR                                                                                     |
| 3/        |                                                                                        |
| 38        | ultraso*[tiab] OR "Ultrasonography"[Mesh]                                              |
| 39<br>40  |                                                                                        |
| 40<br>//1 | UR                                                                                     |
| 42        | "Arthrography"[Mesh] OB arthrography[tiah])                                            |
| 43        |                                                                                        |
| 44        |                                                                                        |
| 45        |                                                                                        |
| 46        | Search: ((Retear[tiab] OR re-tear[tiab] OR healing[tiab]) OR ("Magnetic Resonance      |
| 47        | Imaging"[Mesh] OR "MRI" OR "magnetic resonance" OR ultraso*[tiab] OR                   |
| 48        | "Illerosonography"[Mosh] OD "Arthrography"[Mosh] OD orthrography[tick]) \ AND          |
| 49        | Oltrasonography [iviesh] OK Arthrography [iviesh] OK arthrography[tiab]) ) AND         |
| 50        | ((rotator[tiab] AND cutt[tiab] AND injur*[tiab]) OR (rotator[tiab] AND cuff[tiab] AND  |
| 51        | tear*[tiab]) OR (rotator[tiab] AND cuff[tiab] AND repair*[tiab]) OR (rotator[tiab] AND |
| 52        |                                                                                        |

cuff[tiab] AND surg\*[tiab]) OR "Rotator Cuff Injuries"[Mesh]) Filters: Clinical Trial, Randomized Controlled Trial Sort by: Most Recent

60

1

We will collect the following potential risk factors from the electronic medical records. The variables are mostly binary to make them compatible for all machine learning algorithms. Cut-off values will be used for the non-binary values. In case of doubt, overlap or less specific grouping than in this database, variables will be rounded up.

#### Patient characteristics

- o Identification number
- o Date of birth
- o Sex
- Dominant side (yes/no)
- Chronicity of tear (<6 weeks / >6weeks)
  - Time from trauma to 1<sup>st</sup> treatment day
- ASA classification (1-4)

#### **Biological factors**

- Obesity (BMI <30 / ≥30)</li>
- Cardiovascular disease incl. hypertension (yes / no)
- Smoking history (current smoker / non-smoker)
- Diabetes (yes/no; insulin dependent yes/no)
- Osteoporosis (yes/no)
- Hyperlipidemia (yes/no)
- Hypercholesterolemia (yes/no)
- Vitamin D deficiency (yes/no)
- NSAID use (yes/no)
- Thyroid dysfunction (no disease / hypothyroid / hyperthyroid)

#### Pathology characteristics (graded by by MRI or arthro CT)

- Tear location (posterolateral / anterosuperior)
- Size of tear (small (<1 cm), medium (1–3 cm), large (3–5 cm), or massive (>5 cm))
  - Size in the saggital oblique plane
- Fatty infiltration (Goutallier 0 4)
- Muscle atrophy as graded by tangent sign (yes / no)
- Tendon retraction (Patte 1 3)

#### Surgical Technique

- Single row (yes / no)
- Double row (yes / no)
- Suture bridge (yes no)
- Performing surgeon (surgeon / resident / fellow)

#### Rehabilitation protocol

Timing of active mobilization (<6wks ≥ 6wks)</li>

#### Add-on Intervention

- Biceps tenotomy/tenodesis (yes / no)
- Bone marrow stimulation by microfracturing footprint (yes/no)

| 1        |                 |                                                                                          |
|----------|-----------------|------------------------------------------------------------------------------------------|
| 2        |                 |                                                                                          |
| 3        |                 | Staraid injustions within year prior to surgery $(0/1/2)$ injustions)                    |
| 1        | 0               | Steroid injections within year prior to surgery (0/1/22 injections)                      |
| -+<br>   | 0               | Augmentation with subacromial inflatable device (yes/no)                                 |
| 5        | 0               | Augmentation/bridging with patches/scaffolds/extracellular matrices (yes/no)             |
| 6        | 0               | Local injectable biologics (ves/no) including:                                           |
| /        | -               | Distelet_rich plasma (P_PPP  _PPP)                                                       |
| 8        |                 |                                                                                          |
| 9        |                 | Leukocyte and platelet-rich fibrin (L-PRF)                                               |
| 10       |                 | <ul> <li>Growth factors</li> </ul>                                                       |
| 11       |                 | <ul> <li>Cell therapy (bone marrow stem cells / BMAC MSCs)</li> </ul>                    |
| 12       | 0               | Systemic drugs - Statins (ves/no)                                                        |
| 13       | 0               | Systemic drugs - Vitamin D supplementation (ves/no)                                      |
| 14       | 0               | Systemic drugs Vitamin C supplementation (ves/no)                                        |
| 15       | 0               | Systemic drugs - vitamin C supplementation (yes/no)                                      |
| 16       | 0               | Systemic drugs – NSAIDs from >6 weeks postop (yes/no)                                    |
| 17       |                 |                                                                                          |
| 18       | <u>Outcomes</u> |                                                                                          |
| 10       | 0               | Retear at minimum 6 months (ves no)                                                      |
| 20       | 0               | Type of retear (Sugaya 1-5)                                                              |
| 20       | 0               | Adverse sweet                                                                            |
| 21       | 0               | Adverse event                                                                            |
| 22       |                 | <ul> <li>None/mild (none reported) / Moderate/severe (reported adverse event)</li> </ul> |
| 23       |                 | <ul> <li>Type of adverse event (Infection/revision/stiffness/other)</li> </ul>           |
| 24       | 0               | PROMS                                                                                    |
| 25       |                 | Type of PROM                                                                             |
| 26       |                 | <ul> <li>Time of measurement (in days from surgery)</li> </ul>                           |
| 27       |                 | = Thile of measurement (in days from surgery)                                            |
| 28       |                 | <ul> <li>Consistency of PROM (yes/no)</li> </ul>                                         |
| 29       |                 | <ul> <li>Will be seperatelly formulated per PROM based on MCID</li> </ul>                |
| 30       |                 | improvement/consistency                                                                  |
| 31       |                 | • As the calculation of this variable will be areatly dependent on which                 |
| 32       |                 | PROME and follow up duration will be submitted by co. authors, we prefer                 |
| 33       |                 | to receive (read date                                                                    |
| 34       |                 | to receive raw data.                                                                     |
| 35       |                 |                                                                                          |
| 36       |                 |                                                                                          |
| 37       |                 |                                                                                          |
| 38       |                 |                                                                                          |
| 30       |                 |                                                                                          |
| 40       |                 |                                                                                          |
| 40       |                 |                                                                                          |
| 41       |                 |                                                                                          |
| 42<br>42 |                 |                                                                                          |
| 45       |                 |                                                                                          |
| 44       |                 |                                                                                          |
| 45       |                 |                                                                                          |
| 46       |                 |                                                                                          |
| 47       |                 |                                                                                          |
| 48       |                 |                                                                                          |
| 49       |                 |                                                                                          |
| 50       |                 |                                                                                          |
| 51       |                 |                                                                                          |
| 52       |                 |                                                                                          |
| 53       |                 |                                                                                          |
| 54       |                 |                                                                                          |
| 55       |                 |                                                                                          |
| 56       |                 |                                                                                          |
| 57       |                 |                                                                                          |
| 58       |                 |                                                                                          |
| 59       |                 |                                                                                          |
|          |                 |                                                                                          |

# **BMJ Open**

#### Developing a Machine Learning Algorithm to predict probability of retear and functional outcomes in patients undergoing rotator cuff repair surgery: A protocol for a retrospective multicenter study.

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-063673.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Article Type:                        | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author:        | 21-Nov-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:            | Allaart, Laurens; Clinique Générale Annecy, Orthopaedic Surgery; Vrije<br>Universiteit Amsterdam, Department of Human Movement Sciences<br>Spanning, Sanne; Vrije Universiteit Amsterdam, Department of Human<br>Movement Sciences; OLVG, 3. Shoulder and Elbow Unit, Joint Research,<br>Department of Orthopaedic Surgery<br>Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery<br>Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery<br>Ladermann, Alexandre; La Tour Hopital Prive SA, Division of<br>Orthopaedics and Trauma Surgery; University of Geneva Faculty of<br>Medicine<br>Athwal, George; Schulich School of Medicine and Dentistry, Roth<br>McFarlane Hand and Upper Limb Center<br>Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>Doornberg, Job; University Medical Centre Groningen, Orthopaedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of<br>Human Movement Sciences<br>Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic<br>Surgery; University of Amsterdam, Department of Orthopedic |
| <b>Primary Subject<br/>Heading</b> : | Surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Secondary Subject Heading:           | Sports and exercise medicine, Medical publishing and peer review, Evidence based practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                            | ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| 1<br>2         |    |                                                                                                                                                        |
|----------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 1  | TITLE: Developing a Machine Learning Algorithm to predict probability of retear and functional outcomes                                                |
| 5<br>6<br>7    | 2  | in patients undergoing rotator cuff repair surgery: A protocol for a retrospective multicenter study.                                                  |
| 8<br>9         | 3  | Corresponding author                                                                                                                                   |
| 10<br>11<br>12 | 4  | Full Name: Laurens Jan Houterman Allaart                                                                                                               |
| 13<br>14<br>15 | 5  | Postal address: 4 Chemin tour de la Reine, 74000 Annecy, France                                                                                        |
| 16<br>17<br>18 | 6  | Email : laurensallaart@gmail.com                                                                                                                       |
| 19<br>20<br>21 | 7  | Authors                                                                                                                                                |
| 22<br>23<br>24 | 8  | Laurens J. H. Allaart <sup>1,2</sup> , Sanne H. van Spanning <sup>2,3</sup> , Laurent Lafosse <sup>1</sup> , Thibault Lafosse <sup>1</sup> , Alexandre |
| 25<br>26       | 9  | Lädermann⁴, George S. Athwal⁵, Laurent A.M. Hendrickx <sup>6,8</sup> , Job N. Doornberg <sup>9</sup> , Michel P.J van den                              |
| 27<br>28       | 10 | Bekerom <sup>2,3,</sup> and Geert Alexander <sup>1,6,10</sup> Buijze on behalf of the <u>Machine Learning Consortium</u>                               |
| 29<br>30<br>31 | 11 | Affiliations                                                                                                                                           |
| 32<br>33<br>34 | 12 | 1. Alps Surgery institute, Hand, Upper Limb, Peripheral Nerve, Brachial Plexus and Microsurgery                                                        |
| 35<br>36       | 13 | Unit, Clinique Générale Annecy, France                                                                                                                 |
| 37<br>38       | 14 | 2. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije                                                          |
| 39<br>40<br>41 | 15 | Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands                                                                        |
| 42<br>43       | 16 | 3. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG, Amsterdam,                                                        |
| 44<br>45       | 17 | The Netherlands                                                                                                                                        |
| 46<br>47<br>48 | 18 | 4. La Tour Hospital, Division of Orthopaedics and Trauma Surgery, Geneva, Switzerland                                                                  |
| 49<br>50       | 19 | 5. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and Dentistry,                                                               |
| 51<br>52<br>53 | 20 | Western University, London, Ontario, Canada                                                                                                            |
| 53<br>54<br>55 | 21 | 6. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, location                                                              |
| 56<br>57<br>58 | 22 | AMC, University of Amsterdam, Amsterdam, The Netherlands                                                                                               |
| 59<br>60       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                              |

| 7. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The       |
|---------------------------------------------------------------------------------------------------|
| Netherlands                                                                                       |
| 8. Department of Orthopaedic & Trauma Surgery, University Medical Center Groningen                |
| 9. The Amsterdam Shoulder and Elbow Center of Expertise (ASECE), Amsterdam, The Netherlands       |
| 10. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie Hospital, |
| University of Montpellier, Montpellier, France                                                    |
|                                                                                                   |
| Keywords: Rotator Cuff Tear, Rotator Cuff Repair, Retear, Machine Learning Algorithm, Artificial  |
| Intelligence                                                                                      |
| WORD COUNT: 2668 Abstract: 271                                                                    |
| DATE: 21-11-2022                                                                                  |
| YERSION: 2.2                                                                                      |
|                                                                                                   |

| 1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3<br>⊿   | 35 | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        | 36 | Purpose/Introduction: The effectiveness of rotator cuff tear repair surgery is influenced by multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8        | 37 | patient-related, pathology-centered and technical factors, which is thought to contribute to the reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9<br>10  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10       | 38 | retear rates between 17 and 94%. Adequate patient selection is thought to be essential in reaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13       | 39 | satisfactory results. However, no clear consensus has been reached on which factors are most predictive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>16 | 40 | of successful surgery. A clinical decision tool that encompassed all aspects is still to be made. Artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17       | 41 | Intelligence (AI) and machine learning algorithms use self learning complex models that can be used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18       | 41 | Intelligence (AI) and machine learning algorithms use sen-learning complex models that can be used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19       | 42 | make natient-specific decision-making tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20       | 74 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21<br>22 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23       | 43 | The aim of this study is to develop and train an algorithm that can be used as an online available clinical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24       |    | number of the state of the stat |
| 25       | 44 | prediction tool, to predict the risk of retear in patients undergoing rotator cull repair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26<br>27 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27       | 45 | Methods: This is a retrospective multicenter cohort study. Patients undergoing rotator cuff repair and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30       | 46 | evaluated by advanced imaging for healing at a minimum of 6 months after surgery were included. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31       | 47 | study consists of two north. Dout one, collecting all not ential factors that might influence not can visit from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32<br>33 | 47 | study consists of two parts. Part one: conecting an potential factors that might influence relear risks from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 34       | 18 | retrospective multicenter data, aiming to include >1000 patients worldwide. Part two: combining all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 35       | 40 | retrospective muticenter data, aming to meldae > 1000 patients worldwide. Furt two, combining an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36       | 49 | influencing factors into a model that can clinically be used as a prediction tool using machine learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37<br>38 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39       | 50 | <b>Ethics and discomination</b> : For cofe multicenter data evolution and analysis our Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 40       | 50 | Ethics and dissemination: For sale multicenter data exchange and analysis, our Machine Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41       | 51 | Consortium adhered to the World Health Organization (WHO) regulation "Policy on Use and Sharing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 42<br>43 | 51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44       | 52 | Data Collected by WHO in Member States Outside the Context of Public Health Emergencies." The study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 45       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46       | 53 | results will be disseminated through publication in a peer-reviewed journal. IRB approval does not apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 47<br>49 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48<br>49 | 54 | to the current study protocol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51       | 55 | Trial registration: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52<br>52 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55<br>54 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50<br>59 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

This study aims to calculate a patient-specific retear-chance after rotator cuff repair surgery

Included data will be gathered from previously published databases of all authors included in the

This study does have the limitation of being retrospective and therefore the study is dependent

Jeint.

Creating an online-available tool that predicts retear chances can help both medical

professionals and patients in clinical decision-making on rotator cuff repair surgery

Machine Learning Consortium, aiming to include data from over 1000 patients.

#### 56 **ARTICLE SUMMARY**

Strengths and Limitations of this study

on the recordkeeping of each individual hospital.

| 3 |        |
|---|--------|
| 4 |        |
| 5 |        |
| 2 |        |
| 0 |        |
| 7 |        |
| 8 |        |
| 9 |        |
| 1 | ٥      |
| 1 | 1      |
| 1 | 1      |
| 1 | 2      |
| 1 | 3      |
| 1 | 4      |
| 1 | 5      |
| 1 | 6      |
| 1 | 7      |
| 1 | /      |
| 1 | 8      |
| 1 | 9      |
| 2 | 0      |
| 2 | 1      |
| 2 | ר      |
| 2 | 2      |
| 2 | 3      |
| 2 | 4      |
| 2 | 5      |
| 2 | 6      |
| 2 | 7      |
| 2 | /<br>0 |
| 2 | ð      |
| 2 | 9      |
| 3 | 0      |
| 3 | 1      |
| 3 | 2      |
| 2 | 2<br>2 |
| 3 | 3      |
| 3 | 4      |
| 3 | 5      |
| 3 | 6      |
| 3 | 7      |
| 2 | ,<br>0 |
| 2 | 0      |
| 3 | 9      |
| 4 | 0      |
| 4 | 1      |
| 4 | 2      |
| 1 | 2      |
| 4 | 2      |
| 4 | 4      |
| 4 | 5      |
| 4 | 6      |
| 4 | 7      |
| Δ | 8      |
| 1 | 0      |
| 4 | 9      |
| 5 | 0      |
| 5 | 1      |
| 5 | 2      |
| 5 | 3      |

1 2

57

58

59

60

61

62

63

64

- 54
- 55 56
- 57 58

Page 5 of 19

1

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| a        |  |
| 10       |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 10       |  |
| 10       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| ~~<br>~~ |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 20       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 21       |  |
| 51       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 22       |  |
| 30       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 10       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| ΔΛ       |  |
|          |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 10       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52       |  |
| 55       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 5/       |  |
| 58       |  |
|          |  |
| 59       |  |

| 65 | INTRODUCTION                                                                                                 |
|----|--------------------------------------------------------------------------------------------------------------|
| 66 | Despite technical advances of rotator cuff repair, the rate of unhealed or re-torn rotator cuff tears        |
| 67 | remains high, with percentages ranging between 10 and 94% (1). A myriad of patient-related (2),              |
| 68 | pathology-centered(3) and technical factors(4) influence this adverse outcome.                               |
| 69 | Patient selection is thought to be essential, however there is no consensus on which of the numerous         |
| 70 | potentially influential factors are most important for the prediction of satisfactory postoperative results  |
| 71 | (5). Furthermore, the value of preoperative optimization of potential patient-related influential factors    |
| 72 | including comorbidities, metabolic deficiencies and intoxications remains questionable. The increasing       |
| 73 | worldwide interest in these factors is confirmed by development of preoperative screening and                |
| 74 | optimization programs aiming for smoking cessation, diabetes control, use of statins in hyperlipidemia       |
| 75 | and vitamin D deficiency supplementing (2,6). However, the majority of shoulder surgeons seems to limit      |
| 76 | decision-making to more basic, previously established predictive factors including age, functional           |
| 77 | demand and pathology-specific grading. Despite the many different classification systems that have been      |
| 78 | developed to facilitate decision making, a patient specific decision tool is still lacking (7,8). This, in   |
| 79 | combination with the fact that existing research commonly evaluates a single treatment option between        |
| 80 | homogenic groups, makes it almost impossible for surgeons to preoperatively indicate a reliable chance       |
| 81 | of satisfactory results.                                                                                     |
| 82 | Artificial intelligence and machine learning (ML) is believed to facilitate a more patient-specific approach |
| 83 | and will allow us to move to the next level of evidence-based medicine: personalized patient-care.           |
| 84 | Clinical prediction tools, incorporating patient specific factors to predict outcome probabilities will      |
| 85 | provide guidance to both clinicians and patients (9,10). Within orthopedic (oncology) surgery, prediction    |
| 86 | tools based on ML algorithms, have already been successfully implemented to predict patient specific 5-      |
| 87 | year survival in patients with chondrosarcoma (11). Furthermore, based on a series of 422 patients           |

| 1        |     |                                                                                                               |
|----------|-----|---------------------------------------------------------------------------------------------------------------|
| 2<br>3   | 88  | undergoing lumbar discectomy. Staarties et al. demonstrated deen learning algorithms to be superior to        |
| 4        | 00  | undergoing fumbal discectority, staat ges et al. demonstrated deep fearning algorithms to be superior to      |
| 5        | 89  | standard regression models in predicting patient-reported outcome measures (PROMs)(9).                        |
| 0<br>7   |     |                                                                                                               |
| 8        | 90  | online available.                                                                                             |
| 9<br>10  |     |                                                                                                               |
| 10       | 91  | Aim of this study                                                                                             |
| 12       |     |                                                                                                               |
| 13       | 92  | The aim of this study is to develop and train a machine learning algorithm in order to create a clinical      |
| 14       |     |                                                                                                               |
| 16       | 93  | prediction tool to be used in clinical practice by predicting retear-chance of the rotator cuff as well as    |
| 17       | 0.4 | shares of elizial increases the sector construction actions date. The production to all will be fore and      |
| 18<br>19 | 94  | chance of clinical improvement based on preoperative patient data. The prediction tool will be free and       |
| 20       | 95  | online available                                                                                              |
| 21       |     |                                                                                                               |
| 22<br>23 | 96  |                                                                                                               |
| 24       | 90  | METHODS AND ANALISIS                                                                                          |
| 25       | ~-  |                                                                                                               |
| 26<br>27 | 97  | The primary and secondary outcome measures will be implemented as features for the prediction                 |
| 28       | 98  | algorithm                                                                                                     |
| 29       |     |                                                                                                               |
| 30<br>31 | 00  |                                                                                                               |
| 32       | 99  | Primary outcome measures                                                                                      |
| 33       |     |                                                                                                               |
| 34<br>35 | 100 | <ul> <li>Rotator cuff retear rates at minimum 6 months follow-up as measured on magnetic resonance</li> </ul> |
| 36       | 101 | imaging, arthro-CT and/or ultrasound (yes vs no, defined by Sugava grade 1-3 as no retear and                 |
| 37       |     |                                                                                                               |
| 38<br>39 | 102 | grade 4-5 as retear (12)).                                                                                    |
| 40       |     |                                                                                                               |
| 41       | 103 | - Enduring satisfactory functional outcome defined as achievement (yes vs no) and maintenance                 |
| 42<br>43 | 104 | (ves vs no) of the PROM-specific MCID(13) in numeric rating scales of PROMs from baseline at 2-               |
| 44       | 101 |                                                                                                               |
| 45       | 105 | 5 years follow-up after repair (PROMs include the Constant-Murley score, ASES, UCLA, OSS,                     |
| 46<br>47 |     |                                                                                                               |
| 48       | 106 | WORC, DASH).                                                                                                  |
| 49       |     |                                                                                                               |
| 50<br>51 | 107 | Secondary outcome measures                                                                                    |
| 52       |     |                                                                                                               |
| 53       | 108 | - Adverse events graded as the possibility of none/minor vs moderate/severe complication as                   |
| 54<br>55 |     |                                                                                                               |
| 56       | 109 | defined in accordance to Felsch et al. (14). Adverse events classify as moderate/severe from                  |
| 57       |     |                                                                                                               |
| 58<br>59 |     |                                                                                                               |
| 60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                     |

Page 7 of 19

| 1                    |     |                                                                                                               |
|----------------------|-----|---------------------------------------------------------------------------------------------------------------|
| 2<br>3               | 110 | Felsch class III onwards, which means when other surgical or radiologic intervention was needed               |
| 4<br>5               | 111 | or unexpected hospital admission was necessary. Adverse events will be differentiated into three              |
| 6<br>7               |     |                                                                                                               |
| 8<br>9               | 112 | groups; infection, revision surgery or other.                                                                 |
| 10<br>11<br>12       | 113 | Model development                                                                                             |
| 13<br>14             | 114 | The development of the prediction model will be performed based on the steps described by Steyerberg          |
| 15<br>16<br>17       | 115 | et al (15):                                                                                                   |
| 18<br>19             | 116 | 1. Data collection                                                                                            |
| 20<br>21             | 117 | 2. Data inspection                                                                                            |
| 22<br>23             | 118 | 3. Coding of predictors                                                                                       |
| 24<br>25<br>26       | 119 | 4. Model specification                                                                                        |
| 27<br>28             | 120 | 5. Model estimation and performance                                                                           |
| 29<br>30             | 121 | 6. Model validation                                                                                           |
| 31<br>32             | 122 | 7. Model presentation                                                                                         |
| 33<br>34             |     |                                                                                                               |
| 35<br>36             | 123 | 1. Data collection                                                                                            |
| 37<br>38<br>39       | 124 | Step one will involve contacting authors from previously published studies in order to collect and            |
| 40<br>41             | 125 | combine their (raw) individual patient data into a central database. All randomized controlled trials         |
| 42<br>43             | 126 | comparing any surgical technique, add-on biological intervention or rehabilitation protocols concerning       |
| 44<br>45             | 127 | rotator cuff surgery will be included. In addition, cohorts evaluating risk factors of surgical techniques    |
| 46<br>47             | 128 | after rotator cuff repair will be included. This retrospective review will therefore incorporate patients     |
| 48<br>49<br>50       | 129 | with all types of tears and concomitant procedures (e.g. biceps tenodesis or tenotomy and                     |
| 50<br>51<br>52       | 130 | acromioclavicular resection). Exclusion criteria for all studies will be the lack of postoperative evaluation |
| 53<br>54             | 131 | by ultrasound, contrast-enhanced computed tomography or magnetic resonance imaging at minimally 6             |
| 55<br>56<br>57<br>58 | 132 | months after surgery, or publication date from before 2005. Relevant studies will be identified using a       |
| 59<br>60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                     |

1

| 2                                |     |                                                                                                            |
|----------------------------------|-----|------------------------------------------------------------------------------------------------------------|
| 3<br>4                           | 133 | systematic approach primarily searching the online PubMed database according to the search terms           |
| 5<br>6                           | 134 | found in supplement 1. As there is no golden standard for sample size or power calculations for            |
| 7<br>8                           | 135 | prediction models, and we are fully dependent on contributed data, we aim to include at least 1000         |
| 9<br>10<br>11                    | 136 | patients word wide (15).                                                                                   |
| 12<br>13                         | 137 | 2. Problem definition and data inspection                                                                  |
| 14<br>15<br>16                   | 138 | All contributed data sets will be formatted into one central database. As data is commonly collected in    |
| 17<br>18                         | 139 | .csv (Microsoft Excel) or .sav (SPSS) files, formatting will be performed with the dplyr package for R     |
| 19<br>20                         | 140 | software. All raw data of the different variables will be separately reviewed for inaccuracies and other   |
| 21<br>22<br>23                   | 141 | defects. This process will focus on uniformization of possible inconsistencies in the collected data, for  |
| 23<br>24<br>25                   | 142 | example follow-up times into a standardized format as 'days after surgery'. Categorical data will be       |
| 26<br>27                         | 143 | translated into English or corrected for typographs. Continuous variables will be screened for outliers by |
| 28<br>29                         | 144 | visualization in the ggplot package. Impossible values or uninterpretable syntax errors will be excluded   |
| 30<br>31<br>32                   | 145 | from the central database.                                                                                 |
| 33<br>34                         | 146 |                                                                                                            |
| 35<br>36<br>37                   | 147 | 3. Coding of predictors                                                                                    |
| 38<br>39                         | 148 | For each primary outcome, a logistic regression will be performed including all available variables in the |
| 40<br>41<br>42                   | 149 | central database to identify the variables with the highest predictive values. The data points available   |
| 43<br>44                         | 150 | include patient demographic (sex, age), patient specific factors (BMI, dominance, sport/activity level,    |
| 45<br>46                         | 151 | workers compensation,), pathology specific factors (e.g. tear size and location), surgical technique and   |
| 47<br>48<br>40                   | 152 | add-on interventions. For a complete overview of all variables see supplement 2. The variables with the    |
| 49<br>50<br>51                   | 153 | highest predictive values will be used as the algorithms labels.                                           |
| 52<br>53<br>54<br>55<br>56<br>57 | 154 |                                                                                                            |
| 58                               |     |                                                                                                            |
| 59<br>60                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                  |

**BMJ** Open

| 2<br>3<br>4          | 155 | Missing data                                                                                                 |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7          | 156 | As the main database will comprise data from multiple studies, we expect many cases of missing data.         |
| 7<br>8<br>9          | 157 | The approach to missing data will differ depending on the type of variable. Variables with less than 5%      |
| 10<br>11             | 158 | missing data will be replaced by imputation (16). Missing data on any surgical technique or add-on           |
| 12<br>13             | 159 | intervention is expectable as interventions outside the scope of a study would not be mentioned (or          |
| 14<br>15<br>16       | 160 | briefly mentioned in the exclusions part). Therefore this kind of missing data will be transformed to 'No'.  |
| 17<br>18             | 161 | Overall availability of variables will be presented according to current guidelines (17). Any variances      |
| 19<br>20             | 162 | between hospitals will be reported.                                                                          |
| 21<br>22<br>23       | 163 | <u>4. Model specification</u>                                                                                |
| 24<br>25<br>26<br>27 | 164 | Algorithms to be trained                                                                                     |
| 27<br>28<br>29       | 165 | Based on previous studies (18,19), the following algorithms are likely to result in accurate prediction      |
| 30<br>31             | 166 | models for our primary outcomes: 1) Bayes Point Machine 2) Boosted Decision Tree 3) Penalized                |
| 32<br>33             | 167 | Logistical Regression 4) Neural Network 5) Support Vector Machine. In order to recognize patterns            |
| 34<br>35<br>36       | 168 | related to each outcome, the machine learning algorithms will have to be trained separately for each         |
| 37<br>38             | 169 | outcome.                                                                                                     |
| 39<br>40<br>41       | 170 | 5. Model estimation and performance                                                                          |
| 42<br>43<br>44       | 171 | Assessing the performance of the algorithms                                                                  |
| 45<br>46<br>47       | 172 | The performance of the ML-algorithms will be assessed and compared based on 1) model discrimination;         |
| 47<br>48<br>49       | 173 | 2) calibration and 3) overall model performance (Brier Score) according to Steyerberg's structured           |
| 50<br>51<br>52       | 174 | 'ABCD-methodology' for clinical prediction rules (15,20).                                                    |
| 53<br>54             | 175 | The model's predicted probability is plotted against the actual observed probability to calculate            |
| 55<br>56<br>57       | 176 | calibration of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.27 |
| 58<br>59<br>60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |

| 1<br>2                                                                                                                                 |     |                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                            | 177 | The overall performance of the model will be assessed with the Brier-score. A perfect Brier score,        |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                            | 178 | indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of 1.26. Accuracy, |
|                                                                                                                                        | 179 | sensitivity, specificity and area under the ROC-curve are measures for a model's ability to distinguish   |
|                                                                                                                                        | 180 | patients with the primary outcome from those without.                                                     |
|                                                                                                                                        | 181 | 6. Model validation                                                                                       |
|                                                                                                                                        | 182 | Internal validation                                                                                       |
|                                                                                                                                        | 183 | Internal validation of our algorithms will be performed by 10-fold cross validation. This means that      |
| 20<br>21                                                                                                                               | 184 | instead of dividing the main data set into one training set and one testing set, this process will be 10  |
| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | 185 | times randomly repeated and the results will be averaged. This has as main advantage that all individual  |
|                                                                                                                                        | 186 | patient records are used as training and testing data simultaneously, which results in higher accuracy of |
|                                                                                                                                        | 187 | predictions as well as lower chance of bias. The cross validation will be performed using the             |
|                                                                                                                                        | 188 | trainControl() function from the Caret library for R.                                                     |
|                                                                                                                                        | 189 | External validation                                                                                       |
|                                                                                                                                        | 190 | Before incorporating the best performing algorithm, we aim to have the algorithm externally validated.    |
|                                                                                                                                        | 191 | The same performance metrics could be calculated as described above. However, this would involve          |
|                                                                                                                                        | 192 | collaboration with partners that have adequate data and are willing to share. As no agreements currently  |
|                                                                                                                                        | 193 | have been made, the external validation is outside the scope of this study.                               |
| 44<br>45                                                                                                                               | 194 | 7. Model presentation                                                                                     |
| 46<br>47<br>48<br>49<br>50<br>51<br>52                                                                                                 | 195 | The best performing algorithm will be deployed as an open-access probability calculator and used to       |
|                                                                                                                                        | 196 | design a clinical decision rule. To simulate the clinical scenario to which a decision rule would be most |
|                                                                                                                                        | 197 | applicable, thresholds shall be selected based on patients with clinical symptoms of a retear or with an  |
| 55<br>55                                                                                                                               | 198 | unsatisfactory functional outcome.                                                                        |
| 56<br>57                                                                                                                               |     |                                                                                                           |
| 58<br>59<br>60                                                                                                                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |

| 1              |     |                                                                                                          |
|----------------|-----|----------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 199 | ETHICS AND DISSEMINATION                                                                                 |
| 4<br>5<br>6    | 200 | For safe multicentre data exchange and analysis, our Machine Learning Consortium adhered to the          |
| 7<br>8         | 201 | World Health Organization (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO in        |
| 9<br>10        | 202 | Member States Outside the Context of Public Health Emergencies.'(21) As IRB has been acquired for        |
| 11<br>12       | 203 | each of the included studies and data are anonymized as in conventional meta-analyses, an additional     |
| 13<br>14<br>15 | 204 | IRB request does not apply to the current study protocol. The technical appendix, statistical code and   |
| 16<br>17       | 205 | final dataset will be published with the original article.                                               |
| 18<br>19<br>20 | 206 | PATIENT AND PUBLIC INVOLVEMENT                                                                           |
| 21<br>22<br>23 | 207 | Patients and the public were not involved in the making of this protocol.                                |
| 24<br>25<br>26 | 208 | CURRENT STATUS                                                                                           |
| 20<br>27<br>28 | 209 | The study has currently entered the data-collection phase, which is expected to last until end-2022. Re- |
| 29<br>30       | 210 | evaluation of the data using machine learning algorithms to predict outcomes will start in December      |
| 31<br>32       | 211 | 2022, after which the algorithms can be externally validated. The expected time of completion is by the  |
| 33<br>34<br>35 | 212 | mid-2023.                                                                                                |
| 36             |     |                                                                                                          |
| 37<br>38       |     |                                                                                                          |
| 39             |     |                                                                                                          |
| 40<br>41       |     |                                                                                                          |
| 41             |     |                                                                                                          |
| 43             |     |                                                                                                          |
| 44<br>45       |     |                                                                                                          |
| 45<br>46       |     |                                                                                                          |
| 47             |     |                                                                                                          |
| 48<br>40       |     |                                                                                                          |
| 49<br>50       |     |                                                                                                          |
| 51             |     |                                                                                                          |
| 52             |     |                                                                                                          |
| 53<br>54       |     |                                                                                                          |
| 55             |     |                                                                                                          |
| 56             |     |                                                                                                          |
| 57             |     |                                                                                                          |
| ох<br>59       |     |                                                                                                          |
| 60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

| 2<br>3         | 2 |
|----------------|---|
| 4<br>5         | 2 |
| o<br>7<br>0    | 2 |
| 0<br>9<br>10   | 7 |
| 10<br>11<br>12 | - |
| 13<br>14       | 2 |
| 15<br>16       | 2 |
| 17<br>18       | 2 |
| 19<br>20       | 2 |
| 21<br>22       | 2 |
| 23<br>24       | 2 |
| 25<br>26       | 2 |
| 27<br>28       | 2 |
| 29<br>30       | 2 |
| 31<br>32       | 2 |
| 33<br>34<br>25 | 2 |
| 35<br>36<br>27 | 2 |
| 38<br>30       | - |
| 40<br>41       | 2 |
| 42<br>43       | 2 |
| 44<br>45       | 2 |
| 46<br>47       | 2 |
| 48<br>49       | 2 |
| 50<br>51       | 2 |
| 52<br>53       | 2 |
| 54<br>55       |   |
| 56<br>57       |   |
| 58<br>59       |   |

#### 213 **DISCUSSION**

1

214 Due to the wide variety of pathological factors at the origin of rotator cuff tears and the numerous 215 surgical approaches to repair, optimal decision-making remains challenging. Smaller case series often 216 provide heterogeneous data on this topic, however the largest and most recent meta-analysis to date 217 including 2,611 patients with a mean follow-up of 25 months has somewhat demystified the matter. 218 Patients with a full-thickness rotator cuff retear exhibited significantly lower functional outcome scores 219 and strength compared with patients with an intact or partially torn rotator cuff (22). This is 220 corroborated by the findings of rotator cuff repair with more than 10 years follow-up, showing clinical 221 superiority of structural tendon integrity in partial cuff tears (23–25). Progressive osteoarthritic changes 222 are significantly more common in patients with repair failures. (24) The most recent RCT comparing 223 surgical repair to conservative treatment for degenerative rotator cuff tears showed that only operated 224 patients without retear had an improvement exceeding the minimal clinical important difference (MCID) 225 in functional outcome at 1 year follow-up (26). Findings from the latest meta-analysis on this 226 comparative topic conclude that as the success rate of conservative treatment may be high, judicious 227 selection of patients who are most likely to benefit from surgery is key (27). It is extremely difficult to 228 combine all these factors into a clinical decision related to one specific patient. Creating a free online 229 available clinical prediction tool that takes all these factors into account will assist physicians in selecting 230 which patients with rotator cuff tears will benefit from a repair. In addition, the aimed size (more than 231 1000 patients) of the database that will be used to design and train the prediction tool might provide 232 new insights on which biological or biomechanical factors influence outcomes after rotator cuff repair 233 the most. Awareness of these factors would be the essential first step to incorporating them in future 234 treatment strategies and eventually improving outcomes. The main limitation of this study is that it is a 235 retrospective, multicenter study. This means this study is dependent on the quality of recordkeeping in

| 1                          |     |                                                                                                           |
|----------------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                | 236 | the different participating hospitals. This may lead to variance in recorded variables and therefore      |
| 5<br>6<br>7                | 237 | missing data.                                                                                             |
| 8<br>9                     | 238 | AUTHOR CONTRIBUTIONS                                                                                      |
| 10<br>11<br>12             | 239 | Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander Buijze and Michel P.J van den Bekerom        |
| 13<br>14                   | 240 | contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job   |
| 15<br>16<br>17             | 241 | N. Doornberg contributed to the conception and design of the methods section, primarily focussing on      |
| 17<br>18                   | 242 | the machine learning section and data analysis. Alexander Lädermann, George S Athwal, Thibault Lafosse    |
| 20<br>21                   | 243 | and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how the    |
| 22<br>23                   | 244 | data should be collected and interpreted. Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander    |
| 24<br>25                   | 245 | Buijze and Michel P.J. van den Bekerom contributed to writing the protocol. All authors revised this      |
| 26<br>27<br>28             | 246 | version of the protocol and gave final approval for it to be published. All authors ensure that questions |
| 28<br>29<br>30<br>31<br>32 | 247 | related to the accuracy or integrity of any part of this protocol are appropriately investigated and      |
|                            | 248 | resolved.                                                                                                 |
| 33<br>34<br>35             | 249 | ACKNOWLEDGEMENTS                                                                                          |
| 36<br>37<br>38             | 250 | Vivek Pandey, Mats Ranebo, Martyn Snow and Riccardo d'Ambrosi have contributed by providing               |
| 39<br>40                   | 251 | relevant feedback on the general design of the study.                                                     |
| 41<br>42                   |     |                                                                                                           |
| 43<br>44                   |     |                                                                                                           |
| 45<br>46                   |     |                                                                                                           |
| 47                         |     |                                                                                                           |
| 48<br>49                   |     |                                                                                                           |
| 50                         |     |                                                                                                           |
| 51                         |     |                                                                                                           |
| 52<br>53                   |     |                                                                                                           |
| 54                         |     |                                                                                                           |
| 55                         |     |                                                                                                           |
| 56<br>57                   |     |                                                                                                           |
| 58                         |     |                                                                                                           |
| 59<br>60                   |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |
|                            |     |                                                                                                           |

| 1<br>2               |     |                                                                                                        |
|----------------------|-----|--------------------------------------------------------------------------------------------------------|
| 3<br>4               | 252 | CONFLICTS OF INTEREST                                                                                  |
| 5<br>6<br>7          | 253 | Dr Alexandre Lädermann is a paid consultant for Arthrex, Medacta and Stryker. He receives royalties    |
| 8<br>9               | 254 | from Stryker. He is the founder of BeeMed, Med4Cast and FORE. He owns stock options from Medacta.      |
| 10<br>11<br>12       | 255 | Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties from Depuy. Dr. T. Lafosse is     |
| 12<br>13<br>14       | 256 | consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes   |
| 15<br>16             | 257 | and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has |
| 17<br>18             | 258 | funding or commercial associations that might pose a conflict of interest in connection with the       |
| 19<br>20<br>21       | 259 | submitted article.                                                                                     |
| 21<br>22<br>23<br>24 | 260 | FUNDING                                                                                                |
| 25<br>26<br>27       | 261 | This research has received funding by the SECEC/ESSSE 2020 Research Grant as part of the project '     |
| 27<br>28<br>29       | 262 | The Effect of Risk Factors, Surgical Technique and Biomodulation on Tendon Healing                     |
| 30<br>31             | 263 | after Rotator Cuff Repair'.                                                                            |
| 32<br>33             |     |                                                                                                        |
| 34<br>35<br>36       |     |                                                                                                        |
| 30<br>37<br>38       |     |                                                                                                        |
| 39<br>40             |     |                                                                                                        |
| 41<br>42             |     |                                                                                                        |
| 42                   |     |                                                                                                        |
| 44<br>45             |     |                                                                                                        |
| 46<br>47             |     |                                                                                                        |
| 48                   |     |                                                                                                        |
| 49<br>50             |     |                                                                                                        |
| 51                   |     |                                                                                                        |
| 52<br>53             |     |                                                                                                        |
| 54                   |     |                                                                                                        |
| 55<br>56             |     |                                                                                                        |
| 57                   |     |                                                                                                        |
| 58<br>59             |     |                                                                                                        |
| 60                   |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                              |

| 1<br>2<br>3<br>4<br>5 | 264 | REFERENCES                                                                                                |
|-----------------------|-----|-----------------------------------------------------------------------------------------------------------|
| 6                     | 265 | 1. Zhao J, Luo M, Pan J, Liang G, Feng W, Zeng L, et al. Risk factors affecting rotator cuff retear after |
| 7                     | 266 | arthroscopic repair: a meta-analysis and systematic review. J Shoulder Elbow Surg. 2021 Nov               |
| 8<br>9                | 267 | 1;30(11):2660–70.                                                                                         |
| 10                    | 268 | 2 Zumstein MA Lädermann A Baniga S Schär MO. The biology of rotator cuff healing. Orthop                  |
| 11                    | 269 | Traumatol Surg Res OTSR 2017/103(1S)·S1–10                                                                |
| 12<br>13              | 200 |                                                                                                           |
| 14                    | 270 | 3. Kunze KN, Rossi LA, Beletsky A, Chahla J. Does the Use of Knotted Versus Knotless Transosseous         |
| 15                    | 271 | Equivalent Rotator Cuff Repair Technique Influence the Incidence of Retears? A Systematic Review.         |
| 16                    | 272 | Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2020 Feb 11;              |
| 17<br>18              | 273 | 4. Rossi LA, Chahla J, Verma NN, Millett PJ, Ranalletta M. Rotator Cuff Retears. JBJS Rev. 2020           |
| 19                    | 274 | Jan;8(1):e0039.                                                                                           |
| 20                    | 275 |                                                                                                           |
| 21                    | 275 | 5. Griffiths S, Yonannes AM. Surgical referral criteria for degenerative rotator cuff tears: a Deiphi     |
| 22                    | 270 | questionnaire study. Musculoskeletal care. 2014 Jun,12(2).82–91.                                          |
| 24                    | 277 | 6. Yang Y, Qu J. The effects of hyperlipidemia on rotator cuff diseases: a systematic review. J           |
| 25                    | 278 | Orthop Surg. 2018 Aug 17;13(1):204.                                                                       |
| 26<br>27              | 279 | 7 Lädermann & Burkhart SS Hoffmever P. Nevton J. Collin P. Yates F. et al. Classification of full-        |
| 28                    | 280 | thickness rotator cuff lesions: a review, FEORT Open Rev. 2016 Dec 1:1(12):420–30.                        |
| 29                    | 200 |                                                                                                           |
| 30                    | 281 | 8. Lee CS, Davis SM, Doremus B, Kouk S, Stetson WB. Interobserver Agreement in the Classification         |
| 32                    | 282 | of Partial-Thickness Rotator Cuff Tears Using the Snyder Classification System. Orthop J Sports Med. 2016 |
| 33                    | 283 | Sep 28;4(9):2325967116667058.                                                                             |
| 34                    | 284 | 9. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative            |
| 35<br>36              | 285 | predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-    |
| 37                    | 286 | specific modeling. Spine J Off J North Am Spine Soc. 2019;19(5):853–61.                                   |
| 38                    | 287 | 10 Choi E Sanval N Ding VX Gardner RM Aredo IV Lee L et al Development and Validation of a                |
| 39<br>40              | 288 | Risk Prediction Model for Second Primary Lung Cancer 1 Natl Cancer Inst 2022 Jan 11:114(1):87–96          |
| 40                    | 200 | Nok realetion would for Second Finnary Lang Cancel. S Nati Cancel mist. 2022 Jun 11,11 (11.07 So.         |
| 42                    | 289 | 11. Thio QCBS, Karhade AV, Ogink PT, Raskin KA, De Amorim Bernstein K, Lozano Calderon SA, et al.         |
| 43                    | 290 | Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With                   |
| 44<br>45              | 291 | Chondrosarcoma? Clin Orthop. 2018;476(10):2040–8.                                                         |
| 46                    | 292 | 12. Sugaya H, Maeda K, Matsuki K, Moriishi J. Functional and Structural Outcome After Arthroscopic        |
| 47                    | 293 | Full-Thickness Rotator Cuff Repair: Single-Row Versus Dual-Row Fixation. Arthrosc J Arthrosc Relat Surg.  |
| 48<br>⊿o              | 294 | 2005 Nov;21(11):1307–16.                                                                                  |
| 50                    | 205 | 12 Dabiia DL Jain NR, Minimal Clinically Important Difference of Shoulder Outcome Measures and            |
| 51                    | 295 | Diagnoses: A Systematic Review Am I Phys Med Rehabil 2019;98(8):671–6                                     |
| 52<br>52              | 250 |                                                                                                           |
| 55<br>54              | 297 | 14. Felsch Q, Mai V, Durchholz H, Flury M, Lenz M, Capellen C, et al. Complications Within 6 Months       |
| 55                    | 298 | After Arthroscopic Rotator Cuff Repair: Registry-Based Evaluation According to a Core Event Set and       |
| 56                    | 299 | Severity Grading. Arthrosc J Arthrosc Relat Surg. 2021 Jan 1;37(1):50–8.                                  |
| 57<br>58              |     |                                                                                                           |
| 59                    |     |                                                                                                           |
| 60                    |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |

15. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014 Aug 1;35(29):1925-31. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to 16. imputation of missing values. J Clin Epidemiol. 2006 Oct;59(10):1087–91. 17. Nijman SWJ, Leeuwenberg AM, Beekers I, Verkouter I, Jacobs JJL, Bots ML, et al. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review. J Clin Epidemiol. 2022 Feb 1;142:218–29. 18. Machine Learning Consortium, on behalf of the SPRINT and FLOW Investigators. A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After Operative Treatment. J Bone Joint Surg Am. 2021 Mar 17;103(6):532–40. Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput. 19. 1996;8(7):1341-90. 20. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiol Camb Mass. 2010 Jan;21(1):128-38. 21. Data policy [Internet]. [cited 2022 Feb 24]. Available from: https://www.who.int/about/policies/publishing/data-policy 22. Yang J, Robbins M, Reilly J, Maerz T, Anderson K. The Clinical Effect of a Rotator Cuff Retear: A Meta-analysis of Arthroscopic Single-Row and Double-Row Repairs. Am J Sports Med. 2017;45(3):733-41. 23. Heuberer PR, Smolen D, Pauzenberger L, Plachel F, Salem S, Laky B, et al. Longitudinal Long-term Magnetic Resonance Imaging and Clinical Follow-up After Single-Row Arthroscopic Rotator Cuff Repair: Clinical Superiority of Structural Tendon Integrity. Am J Sports Med. 2017 May;45(6):1283-8. 24. Plachel F, Siegert P, Rüttershoff K, Thiele K, Akgün D, Moroder P, et al. Long-term Results of Arthroscopic Rotator Cuff Repair: A Follow-up Study Comparing Single-Row Versus Double-Row Fixation Techniques. Am J Sports Med. 2020 May 11;363546520919120. 25. Carbonel I, Martinez AA, Calvo A, Ripalda J, Herrera A. Single-row versus double-row arthroscopic repair in the treatment of rotator cuff tears: a prospective randomized clinical study. Int Orthop. 2012 Sep;36(9):1877-83. 26. Lambers Heerspink FO, van Raay JJAM, Koorevaar RCT, van Eerden PJM, Westerbeek RE, van 't Riet E, et al. Comparing surgical repair with conservative treatment for degenerative rotator cuff tears: a randomized controlled trial. J Shoulder Elbow Surg. 2015 Aug;24(8):1274-81. 27. Schemitsch C, Chahal J, Vicente M, Nowak L, Flurin PH, Lambers Heerspink F, et al. Surgical repair versus conservative treatment and subacromial decompression for the treatment of rotator cuff tears: a meta-analysis of randomized trials. Bone Jt J. 2019;101-B(9):1100-6. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 

| 2        |                                                                                        |
|----------|----------------------------------------------------------------------------------------|
| 3        | #1 subject                                                                             |
| 4        | Rotator cuff tear/ injury                                                              |
| 6        |                                                                                        |
| 7        | (rotator[tiab] AND cum[tiab] AND injur^[tiab])                                         |
| 8        | OR                                                                                     |
| 9        |                                                                                        |
| 10       | (rotator[tiab] AND cuff[tiab] AND tear*[tiab])                                         |
| 11       | OR                                                                                     |
| 12       |                                                                                        |
| 13       | (rotator[tiab] AND cuff[tiab] AND repair*[tiab])                                       |
| 14       | OR                                                                                     |
| 15       |                                                                                        |
| 16       | (rotator[tiab] AND cuff[tiab] AND surg*[tiab])                                         |
| 17       | OR                                                                                     |
| 18       | "Potator Cuff Injurios"[Mach]                                                          |
| 19       | Rotator curi injuries [iviesi]                                                         |
| 20       | #2.1 Intervention (RCT)                                                                |
| 21       | Renair                                                                                 |
| 22       | Перан                                                                                  |
| 23       | #2.2 Intervention (Cohort)                                                             |
| 25       |                                                                                        |
| 26       | Repair                                                                                 |
| 27       |                                                                                        |
| 28       | #3 Outcome                                                                             |
| 29       | Retear rate measured by MRI ultrasound or arthro CT                                    |
| 30       | (Detersitish) OD (we terry) [tigh] OD healing[tigh])                                   |
| 31       | (Retear[tiab] OR (re-tear)[tiab] OR nealing[tiab])                                     |
| 32       | OR                                                                                     |
| 33       |                                                                                        |
| 34<br>25 | ("Magnetic Resonance Imaging"[Mesh] OR "MRI" OR "magnetic resonance"                   |
| 36       |                                                                                        |
| 37       | OR                                                                                     |
| 38       |                                                                                        |
| 39       |                                                                                        |
| 40       | OR                                                                                     |
| 41       |                                                                                        |
| 42       | "Arthrography"[Mesh] OR arthrography[tiab])                                            |
| 43       |                                                                                        |
| 44       |                                                                                        |
| 45       | Construction (/Detection 1 OD ve toou (tigh) OD healing (tigh) OD ("Magnetic Decouver  |
| 46       | Search: ((Retear[tiab] OK re-tear[tiab] OK nealing[tiab]) OK ( Magnetic Resonance      |
| 47       | Imaging"[Mesh] OR "MRI" OR "magnetic resonance" OR ultraso*[tiab] OR                   |
| 40<br>49 | "Ultrasonography"[Mesh] OR "Arthrography"[Mesh] OR arthrography[tiab]) ) AND           |
|          | ((rotator[tiab] AND cuff[tiab] AND injur*[tiab]) OR (rotator[tiab] AND cuff[tiab] AND  |
| 51       | tear*[tiah]) OR (rotator[tiah] AND cuff[tiah] AND renair*[tiah]) OR (rotator[tiah] AND |
| 52       |                                                                                        |

cuff[tiab] AND surg\*[tiab]) OR "Rotator Cuff Injuries" [Mesh]) Filters: Clinical Trial, Randomized Controlled Trial Sort by: Most Recent

60

1

We will collect the following potential risk factors from the electronic medical records. The variables are mostly binary to make them compatible for all machine learning algorithms. Cut-off values will be used for the non-binary values. In case of doubt, overlap or less specific grouping than in this database, variables will be rounded up.

#### Patient characteristics

- Identification number
- Date of birth
- o Sex
- Dominant side (yes/no)
- Chronicity of tear (<6 weeks / >6weeks)
  - Time from trauma to 1<sup>st</sup> treatment day
- ASA classification (1-4)
- Sport/activity level
- Receiving workers compensatioin (yes/no)

#### **Biological factors**

- Obesity (BMI <30 / ≥30)</li>
- Cardiovascular disease incl. hypertension (yes / no)
- Smoking history (current smoker / non-smoker)
- Diabetes (yes/no; insulin dependent yes/no)
- Osteoporosis (yes/no)
- Hyperlipidemia (yes/no)
- Hypercholesterolemia (yes/no)
- Vitamin D deficiency (yes/no)
- NSAID use (yes/no)
- Thyroid dysfunction (no disease / hypothyroid / hyperthyroid)

#### Pathology characteristics (graded by by MRI or arthro CT)

- Tear location (posterolateral / anterosuperior)
- Size of tear (small (<1 cm), medium (1–3 cm), large (3–5 cm), or massive (>5 cm))
  - Size in the saggital oblique plane
- Fatty infiltration (Goutallier 0 4)
- Muscle atrophy as graded by tangent sign (yes / no)
- Tendon retraction (Patte 1 3)

#### Surgical Technique

- Single row (yes / no)
- Double row (yes / no)
- $\circ$  Suture bridge (yes no)
- Performing surgeon (surgeon / resident / fellow)

#### Rehabilitation protocol

• Timing of active mobilization (<6wks  $\geq$  6wks)

#### Add-on Intervention

| 1  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3  | 0               | Biceps tenotomy/tenodesis (yes / no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4  | 0               | Bone marrow stimulation by microfracturing footprint (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5  | 0               | Store in a row standardion by microrractaring rootprint (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6  | 0               | A consistent in the bound of the balance of the bal |
| 7  | 0               | Augmentation with subacromial inflatable device (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8  | 0               | Augmentation/bridging with patches/scaffolds/extracellular matrices (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9  | 0               | Local injectable biologics (yes/no) including:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10 |                 | <ul> <li>Platelet-rich plasma (P-PRP, L-PRP)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 |                 | Leukocyte and platelet-rich fibrin (L-PRF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 |                 | <ul> <li>Growth factors</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13 |                 | Cell therapy (bone marrow stem cells / BMAC MSCs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14 | 0               | Systemic drugs Stating (vos/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 | 0               | Systemic drugs - Statins (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16 | 0               | Systemic drugs - vitamin D supplementation (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17 | 0               | Systemic drugs - Vitamin C supplementation (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18 | 0               | Systemic drugs – NSAIDs from >6 weeks postop (yes/no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 | <u>Outcomes</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 |                 | Retear at minimum 6 months (ves no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22 | 0               | Type of retear (Sugava $1-5$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 | 0               | Adverse event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 | 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 |                 | <ul> <li>None/mild (none reported) / Moderate/severe (reported adverse event)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26 |                 | <ul> <li>Type of adverse event (Infection/revision/stiffness/other)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27 | 0               | PROMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28 |                 | <ul> <li>Type of PROM</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29 |                 | <ul> <li>Time of measurement (in days from surgery)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30 |                 | <ul> <li>Consistency of PROM (ves/no)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31 |                 | • Will be separatelly formulated per PROM based on MCID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 32 |                 | improvement (apprintmutted per r Kolvi based on Weib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33 |                 | improvement/consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34 |                 | • As the calculation of this variable will be greatly dependent on which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35 |                 | PROMS and follow-up duration will be submitted by co-authors, we prefer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 36 |                 | to receive 'raw' data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 46 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 52 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 59 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **BMJ Open**

#### Developing a machine learning algorithm to predict probability of retear and functional outcomes in patients undergoing rotator cuff repair surgery: protocol for a retrospective, multicenter study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-063673.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Article Type:                        | Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author:        | 04-Jan-2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:            | Allaart, Laurens; Clinique Générale Annecy, Orthopaedic Surgery; Vrije<br>Universiteit Amsterdam, Department of Human Movement Sciences<br>Spanning, Sanne; Vrije Universiteit Amsterdam, Department of Human<br>Movement Sciences; OLVG, 3. Shoulder and Elbow Unit, Joint Research,<br>Department of Orthopaedic Surgery<br>Lafosse, Laurent; Clinique Générale Annecy, Orthopaedic Surgery<br>Lafosse, Thibault; Clinique Générale Annecy, Orthopaedic Surgery<br>Ladermann, Alexandre; La Tour Hopital Prive SA, Division of<br>Orthopaedics and Trauma Surgery; University of Geneva Faculty of<br>Medicine<br>Athwal, George; Schulich School of Medicine and Dentistry, Roth<br>McFarlane Hand and Upper Limb Center<br>Hendrickx, Laurent; University of Amsterdam, Department of Orthopedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>Doornberg, Job; University Medical Centre Groningen, Orthopaedic<br>Surgery; Flinders University, Orthopaedic & Trauma Surgery<br>van den Bekerom, M.P.J.; Vrije Universiteit Amsterdam, Department of<br>Human Movement Sciences<br>Buijze, Geert Alexander; Clinique Générale Annecy, Orthopaedic<br>Surgery; University of Amsterdam, Department of Orthopedic |
| <b>Primary Subject<br/>Heading</b> : | Surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Secondary Subject Heading:           | Sports and exercise medicine, Medical publishing and peer review, Evidence based practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                            | ORTHOPAEDIC & TRAUMA SURGERY, Shoulder < ORTHOPAEDIC & TRAUMA SURGERY, Orthopaedic & trauma surgery < SURGERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| 2                          |    |                                                                                                                                                        |  |  |  |  |  |
|----------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 3<br>4                     | 1  | Developing a machine learning algorithm to predict probability of retear and functional outcomes in                                                    |  |  |  |  |  |
| 5<br>6<br>7                | 2  | patients undergoing rotator cuff repair surgery: protocol for a retrospective, multicenter study                                                       |  |  |  |  |  |
| 8<br>9                     | 3  | Laurens J. H. Allaart <sup>1,2</sup> , Sanne H. van Spanning <sup>2,3</sup> , Laurent Lafosse <sup>1</sup> , Thibault Lafosse <sup>1</sup> , Alexandre |  |  |  |  |  |
| 10<br>11                   | 4  | Lädermann <sup>4</sup> , George S. Athwal <sup>5</sup> , Laurent A.M. Hendrickx <sup>6,8</sup> , Job N. Doornberg <sup>9</sup> , Michel P.J van den    |  |  |  |  |  |
| 12<br>13<br>14             | 5  | Bekerom <sup>2,3,</sup> and Geert Alexander <sup>1,6,10</sup> Buijze on behalf of the Machine Learning Consortium                                      |  |  |  |  |  |
| 15<br>16<br>17             | 6  | Affiliations                                                                                                                                           |  |  |  |  |  |
| 18<br>19<br>20             | 7  | 1. Alps Surgery institute, Hand, Upper Limb, Peripheral Nerve, Brachial Plexus and Microsurgery                                                        |  |  |  |  |  |
| 20<br>21<br>22             | 8  | Unit, Clinique Générale Annecy, France                                                                                                                 |  |  |  |  |  |
| 23<br>24                   | 9  | 2. Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije                                                          |  |  |  |  |  |
| 25<br>26                   | 10 | Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands                                                                            |  |  |  |  |  |
| 27<br>28<br>29             | 11 | 3. Shoulder and Elbow Unit, Joint Research, Department of Orthopaedic Surgery, OLVG, Amsterdam,                                                        |  |  |  |  |  |
| 30<br>31                   | 12 | Netherlands                                                                                                                                            |  |  |  |  |  |
| 32<br>33<br>34             | 13 | 4. La Tour Hospital, Division of Orthopaedics and Trauma Surgery, Geneva, Switzerland                                                                  |  |  |  |  |  |
| 35<br>36                   | 14 | 5. Roth McFarlane Hand and Upper Limb Centre, Schulich School of Medicine and Dentistry,                                                               |  |  |  |  |  |
| 37<br>38                   | 15 | Western University, London, Ontario, Canada                                                                                                            |  |  |  |  |  |
| 39<br>40                   | 16 | 6. Department of Orthopedic Surgery, Amsterdam Movement Sciences, Amsterdam UMC, location                                                              |  |  |  |  |  |
| 41<br>42<br>43             | 17 | AMC, University of Amsterdam, Amsterdam, Netherlands                                                                                                   |  |  |  |  |  |
| 44<br>45<br>46             | 18 | 7. Academic Centre for Evidence-based Sports Medicine (ACES), Amsterdam UMC, Amsterdam,                                                                |  |  |  |  |  |
| 40<br>47<br>48             | 19 | Netherlands                                                                                                                                            |  |  |  |  |  |
| 49<br>50                   | 20 | 8. Department of Orthopaedic & Trauma Surgery, University Medical Center Groningen, Groningen,                                                         |  |  |  |  |  |
| 51<br>52<br>53             | 21 | Netherlands                                                                                                                                            |  |  |  |  |  |
| 54<br>55<br>56<br>57<br>58 | 22 | 9. The Amsterdam Shoulder and Elbow Center of Expertise (ASECE), Amsterdam, Netherlands                                                                |  |  |  |  |  |
| 59<br>60                   |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                              |  |  |  |  |  |

1

| 2                                                   |    |                                                                                                   |  |  |  |
|-----------------------------------------------------|----|---------------------------------------------------------------------------------------------------|--|--|--|
| -<br>3<br>4                                         | 23 | 10. Department of Orthopedic Surgery, Montpellier University Medical Center, Lapeyronie Hospital, |  |  |  |
| 5 24 University of Montpellier, Montpellier, France |    |                                                                                                   |  |  |  |
| 7                                                   | 25 |                                                                                                   |  |  |  |
| 8<br>9                                              | 23 |                                                                                                   |  |  |  |
| 10<br>11<br>12                                      | 26 | Correspondence to:                                                                                |  |  |  |
| 13<br>14<br>15                                      | 27 | Laurens Jan Houterman Allaart                                                                     |  |  |  |
| 16<br>17                                            | 28 | 4 Chemin tour de la Reine, 74000 Annecy, France                                                   |  |  |  |
| 18<br>19<br>20                                      | 29 | laurensallaart@gmail.com                                                                          |  |  |  |
| 21<br>22<br>23                                      | 30 |                                                                                                   |  |  |  |
| 24<br>25                                            | 31 | Keywords: Rotator Cuff Tear, Rotator Cuff Repair, Retear, Machine Learning Algorithm, Artificial  |  |  |  |
| 26<br>27<br>28                                      | 32 | Intelligence                                                                                      |  |  |  |
| 29<br>30<br>31                                      | 33 | WORD COUNT: 2668 Abstract: 271                                                                    |  |  |  |
| 32<br>33                                            | 34 | DATE: 29-12-2022                                                                                  |  |  |  |
| 34<br>35<br>36                                      | 35 | VERSION: 3.0                                                                                      |  |  |  |
| 37<br>38<br>39                                      |    |                                                                                                   |  |  |  |
| 40<br>41                                            |    |                                                                                                   |  |  |  |
| 42<br>43                                            |    |                                                                                                   |  |  |  |
| 44<br>45                                            |    |                                                                                                   |  |  |  |
| 46<br>47                                            |    |                                                                                                   |  |  |  |
| 47<br>48                                            |    |                                                                                                   |  |  |  |
| 49<br>50                                            |    |                                                                                                   |  |  |  |
| 51                                                  |    |                                                                                                   |  |  |  |
| 52                                                  |    |                                                                                                   |  |  |  |
| 55<br>54                                            |    |                                                                                                   |  |  |  |
| 55                                                  |    |                                                                                                   |  |  |  |
| 56<br>57                                            |    |                                                                                                   |  |  |  |
| 58                                                  |    |                                                                                                   |  |  |  |
| 59<br>60                                            |    | For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml                         |  |  |  |
| 00                                                  |    | · ····································                                                            |  |  |  |

ABSTRACT

1

BMJ Open

| 2<br>3<br>4                | 36 |
|----------------------------|----|
| 5<br>6                     | 37 |
| 7<br>8<br>9                | 38 |
| 10<br>11                   | 39 |
| 12<br>13                   | 40 |
| 14<br>15<br>16             | 41 |
| 17<br>18                   | 42 |
| 19<br>20                   | 43 |
| 21<br>22<br>23             | 44 |
| 24<br>25                   | 45 |
| 26<br>27                   | 46 |
| 28<br>29<br>30             | 47 |
| 31<br>32                   | 48 |
| 33<br>34                   | 49 |
| 35<br>36<br>37             | 50 |
| 37<br>38<br>39             | 51 |
| 40<br>41<br>42             | 52 |
| 42<br>43<br>44             | 53 |
| 45<br>46                   | 54 |
| 47<br>48                   | 55 |
| 49<br>50<br>51             | 56 |
| 52<br>53<br>54<br>55<br>56 | 57 |
| 57<br>58<br>50             |    |
| 60                         |    |

| 37 | Introduction: The effectiveness of rotator cuff tear repair surgery is influenced by multiple patient-      |
|----|-------------------------------------------------------------------------------------------------------------|
| 38 | related, pathology-centered and technical factors, which is thought to contribute to the reported retear    |
| 39 | rates between 17 and 94%. Adequate patient selection is thought to be essential in reaching satisfactory    |
| 40 | results. However, no clear consensus has been reached on which factors are most predictive of               |
| 41 | successful surgery. A clinical decision tool that encompassed all aspects is still to be made. Artificial   |
| 42 | Intelligence (AI) and machine learning algorithms use complex self-learning models that can be used to      |
| 43 | make patient-specific decision-making tools. The aim of this study is to develop and train an algorithm     |
| 44 | that can be used as an online available clinical prediction tool, to predict the risk of retear in patients |
| 45 | undergoing rotator cuff repair.                                                                             |
| 46 | Methods and analysis: This is a retrospective, multicenter, cohort study using pooled individual patient    |
| 47 | data from multiple studies of patients who have undergone rotator cuff repair and were evaluated by         |
| 48 | advanced imaging for healing at a minimum of 6 months after surgery. This study consists of two parts.      |
| 49 | Part one: collecting all potential factors that might influence retear risks from retrospective multicenter |
| 50 | data, aiming to include >1000 patients worldwide. Part two: combining all influencing factors into a        |
| 51 | model that can clinically be used as a prediction tool using machine learning.                              |
| 52 | Ethics and dissemination: For safe multicenter data exchange and analysis, our Machine Learning             |

52 Ethics and dissemination: For sale multicenter data exchange and analysis, our Machine Learning
 53 Consortium adheres to the World Health Organization (WHO) regulation "Policy on Use and Sharing of
 54 Data Collected by WHO in Member States Outside the Context of Public Health Emergencies". The study
 55 results will be disseminated through publication in a peer-reviewed journal. Institutional Review Board
 56 approval does not apply to the current study protocol.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### 58 **ARTICLE SUMMARY**

| 3        |
|----------|
| 4        |
| 5        |
| 6        |
| 0        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| ∠∪<br>ว1 |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 20       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 24       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 40<br>41 |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| т/<br>ЛО |
| 40<br>40 |
| 49       |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| J+       |

60

1 2

59

Strengths and limitations of this study

- 60 This study aims to calculate a patient-specific retear-chance after rotator cuff repair surgery.
- 61 Creating an online-available tool that predicts retear chances can help both medical
- 62 professionals and patients in clinical decision-making on rotator cuff repair surgery.
- 63 Included data will be gathered from previously published databases of all authors included in the \_ Machine Learning Consortium, aiming to include data from over 1000 patients. 64
  - Jein, .dual hospita 65 This study does have the limitation of being retrospective and therefore the study is dependent
  - 66 on the recordkeeping of each individual hospital.

Page 5 of 18

1

| 2          |  |
|------------|--|
| 3          |  |
| 1          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 8          |  |
| 0          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 21         |  |
| Z I        |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 28         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 22         |  |
| 55         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 27         |  |
| 57         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| <u>/</u> 1 |  |
| 40         |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 40         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| 40         |  |
|            |  |
| 50         |  |
| 51         |  |
| 52         |  |
| 53         |  |
| 55         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 5,<br>E0   |  |
| 20         |  |
| 59         |  |
| 60         |  |

| ( | 67 | INTRODUCTION                                                                                                 |
|---|----|--------------------------------------------------------------------------------------------------------------|
| ( | 68 | Despite technical advances of rotator cuff repair, the rate of unhealed or re-torn rotator cuff tears        |
| ( | 69 | remains high, with percentages ranging between 10 and 94% (1). A myriad of patient-related (2),              |
| - | 70 | pathology-centered(3) and technical factors(4) influence this adverse outcome.                               |
| - | 71 | Patient selection is thought to be essential, however there is no consensus on which of the numerous         |
| - | 72 | potentially influential factors are most important for the prediction of satisfactory postoperative results  |
| - | 73 | (5). Furthermore, the value of preoperative optimization of potential patient-related influential factors    |
| - | 74 | including comorbidities, metabolic deficiencies and intoxications remains questionable. The increasing       |
| - | 75 | worldwide interest in these factors is confirmed by development of preoperative screening and                |
| - | 76 | optimization programs aiming for smoking cessation, diabetes control, use of statins in hyperlipidemia       |
| - | 77 | and vitamin D deficiency supplementing (2,6). However, the majority of shoulder surgeons seems to limit      |
| - | 78 | decision-making to more basic, previously established predictive factors including age, functional           |
| - | 79 | demand and pathology-specific grading. Despite the many different classification systems that have been      |
| 8 | 80 | developed to facilitate decision making, a patient specific decision tool is still lacking (7,8). This, in   |
| 8 | 81 | combination with the fact that existing research commonly evaluates a single treatment option between        |
| 8 | 82 | homogenic groups, makes it almost impossible for surgeons to preoperatively indicate a reliable chance       |
| 8 | 83 | of satisfactory results.                                                                                     |
| 8 | 84 | Artificial intelligence and machine learning (ML) is believed to facilitate a more patient-specific approach |
| 8 | 85 | and will allow us to move to the next level of evidence-based medicine: personalized patient-care.           |
| 8 | 86 | Clinical prediction tools, incorporating patient specific factors to predict outcome probabilities will      |
| 8 | 87 | provide guidance to both clinicians and patients (9,10). Within orthopedic (oncology) surgery, prediction    |
| 8 | 88 | tools based on ML algorithms, have already been successfully implemented to predict patient specific 5-      |
| 8 | 89 | year survival in patients with chondrosarcoma (11). Furthermore, based on a series of 422 patients           |
|   |    |                                                                                                              |

| 1        |                                                                                                                                           |                                                                                                               |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2<br>3   | 90                                                                                                                                        | undergoing lumbar discectomy, Staartjes et al. demonstrated deep learning algorithms to be superior to        |  |  |  |  |
| 4<br>5   |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 6        | 91                                                                                                                                        | standard regression models in predicting patient-reported outcome measures (PROMs)(9).                        |  |  |  |  |
| 7<br>8   | 02                                                                                                                                        |                                                                                                               |  |  |  |  |
| 9        | 92                                                                                                                                        | Aim of this study                                                                                             |  |  |  |  |
| 10<br>11 | 02                                                                                                                                        | The sim of this study is to develop and train a machine learning algorithm in order to create a clinical      |  |  |  |  |
| 12       | 93                                                                                                                                        |                                                                                                               |  |  |  |  |
| 13<br>14 | 94                                                                                                                                        | prediction tool to be used in clinical practice by predicting retear-chance of the rotator cuff as well as    |  |  |  |  |
| 15       | 05                                                                                                                                        | chance of clinical improvement based on preoperative nations data. The prediction tool will be free and       |  |  |  |  |
| 16<br>17 | 55                                                                                                                                        | chance of chinical improvement based on preoperative patient data. The prediction tool win be free and        |  |  |  |  |
| 18       | 96                                                                                                                                        | online available.                                                                                             |  |  |  |  |
| 19<br>20 |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 21       | 97                                                                                                                                        | METHODS AND ANALYSIS                                                                                          |  |  |  |  |
| 22<br>23 |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 24       | 98                                                                                                                                        | This is a retrospective, multicenter, cohort study.                                                           |  |  |  |  |
| 25<br>26 |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 27       | <ul><li>99 The primary and secondary outcome measures will be implemented as features for the prediction</li><li>100 algorithm.</li></ul> |                                                                                                               |  |  |  |  |
| 28<br>29 |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 30       |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 31<br>32 | 101                                                                                                                                       | Primary outcome measures                                                                                      |  |  |  |  |
| 33       |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 34<br>35 | 102                                                                                                                                       | - Rotator cuff retear rates at minimum 6 months follow-up as measured on magnetic resonance                   |  |  |  |  |
| 36       | 102                                                                                                                                       | imaging, arthro-CT and/or ultrasound (ves vs no, defined by Sugava grade 1-3 as no retear and                 |  |  |  |  |
| 37<br>38 | 105                                                                                                                                       | maging, artifio-er and/or dicasound (yes vs no, denned by Sugaya grade 1-5 as no recear and                   |  |  |  |  |
| 39<br>40 | 104                                                                                                                                       | grade 4-5 as retear (12)).                                                                                    |  |  |  |  |
| 40<br>41 | 105                                                                                                                                       | - Enduring satisfactory functional outcome defined as achievement (ves vs no) and maintenance                 |  |  |  |  |
| 42<br>43 | 105                                                                                                                                       | Endering satisfactory functional outcome defined as demovement (yes vs no) and maintenance                    |  |  |  |  |
| 43<br>44 | 106                                                                                                                                       | (yes vs no) of the PROM-specific minimal clinical important difference (MCID) (13) in numeric                 |  |  |  |  |
| 45<br>46 | 107                                                                                                                                       | rating scales of PROMs from baseline at 2-5 years follow-up after repair (PROMs include the                   |  |  |  |  |
| 47       | 107                                                                                                                                       | ruting scales of the mis from Saseline at 2 5 years follow up after repair (i horns include the               |  |  |  |  |
| 48<br>⊿q | 108                                                                                                                                       | Constant-Murley score, ASES, UCLA, OSS, WORC, DASH).                                                          |  |  |  |  |
| 50       |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 51<br>52 | 109                                                                                                                                       | Secondary outcome measures                                                                                    |  |  |  |  |
| 53       |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 54<br>55 | 110                                                                                                                                       | <ul> <li>Adverse events graded as the possibility of none/minor vs moderate/severe complication as</li> </ul> |  |  |  |  |
| 56       | 111                                                                                                                                       | defined in accordance to Felsch et al. (14). Adverse events classify as moderate/severe from                  |  |  |  |  |
| 57<br>58 |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 59       |                                                                                                                                           |                                                                                                               |  |  |  |  |
| 60       |                                                                                                                                           | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                     |  |  |  |  |

Page 7 of 18

| 1              |                                                     |                                                                                                               |  |  |  |
|----------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| 2<br>3         | 117                                                 | Folgeb class III onwards, which means other surgical or radiologic intervention was needed or                 |  |  |  |
| 4              | 112                                                 | reisch class in onwalds, which means other surgical of radiologic intervention was needed of                  |  |  |  |
| 5<br>6         | 113                                                 | 3 unexpected hospital admission was necessary. Adverse events will be differentiated into th                  |  |  |  |
| 7<br>8<br>9    | 3 114 groups: infection, revision surgery or other. |                                                                                                               |  |  |  |
| 10<br>11<br>12 | 115                                                 | Model development                                                                                             |  |  |  |
| 13<br>14       | 116                                                 | The development of the prediction model will be performed based on the steps described by Steyerberg          |  |  |  |
| 15<br>16<br>17 | et al (15):                                         |                                                                                                               |  |  |  |
| 17             |                                                     |                                                                                                               |  |  |  |
| 19             | 118                                                 | 1. Data collection                                                                                            |  |  |  |
| 20             | 119                                                 | 2 Data inspection                                                                                             |  |  |  |
| 22             | 115                                                 |                                                                                                               |  |  |  |
| 23             | 120                                                 | 3. Coding of predictors                                                                                       |  |  |  |
| 24<br>25       |                                                     |                                                                                                               |  |  |  |
| 25<br>26       | 121                                                 | 4. Model specification                                                                                        |  |  |  |
| 27             | 177                                                 | E Model actimation and performance                                                                            |  |  |  |
| 28             | 122                                                 | 5. Model estimation and performance                                                                           |  |  |  |
| 29<br>30       | 123                                                 | 6. Model validation                                                                                           |  |  |  |
| 31             | -                                                   |                                                                                                               |  |  |  |
| 32             | 124                                                 | 7. Model presentation                                                                                         |  |  |  |
| 33             |                                                     |                                                                                                               |  |  |  |
| 54<br>35       | 125                                                 | 1. Data collection                                                                                            |  |  |  |
| 36             |                                                     |                                                                                                               |  |  |  |
| 37             | 176                                                 | Step one will involve contacting authors from previously published studies in order to collect and            |  |  |  |
| 38<br>39       | 120                                                 | Step one will involve contacting authors from previously published studies in order to collect and            |  |  |  |
| 40             | 127                                                 | combine their (raw) individual patient data into a central database. All randomized controlled trials         |  |  |  |
| 41             |                                                     | combine their frawy individual patient data into a central database. Air raildomized controlled thats         |  |  |  |
| 42<br>42       | 128                                                 | comparing any surgical technique, add-on biological intervention or rehabilitation protocols concerning       |  |  |  |
| 43<br>44       |                                                     |                                                                                                               |  |  |  |
| 45             | 129                                                 | rotator cuff surgery will be included. In addition, cohorts evaluating risk factors of surgical techniques    |  |  |  |
| 46             | 120                                                 | after retator suff repair will be included. This retrospective review will therefore incorporate patients     |  |  |  |
| 47<br>48       | 150                                                 | after rotator curriepair win be included. This retrospective review win therefore incorporate patients        |  |  |  |
| 49             | 131                                                 | with all types of tears and concomitant procedures (e.g. biceps tenodesis or tenotomy and                     |  |  |  |
| 50             | -                                                   | ,,,                                                                                                           |  |  |  |
| 51             | 132                                                 | acromioclavicular resection). Exclusion criteria for all studies will be the lack of postoperative evaluation |  |  |  |
| 52<br>53       |                                                     |                                                                                                               |  |  |  |
| 54             | 133                                                 | by ultrasound, contrast-enhanced computed tomography or magnetic resonance imaging at minimally 6             |  |  |  |
| 55             | 104                                                 | months after surgery or publication date from before 2005. Polevent studies will be identified using a        |  |  |  |
| 56<br>57       | 134                                                 | months after surgery, or publication date from before 2005. Relevant studies will be identified using a       |  |  |  |
| 58             |                                                     |                                                                                                               |  |  |  |
| 59             |                                                     |                                                                                                               |  |  |  |
| 60             |                                                     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                     |  |  |  |

systematic approach primarily searching the online PubMed database according to the search terms found in supplement 1. As there is no golden standard for sample size or power calculations for prediction models, and we are fully dependent on contributed data, we aim to include at least 1000 patients worldwide (15).

**BMJ** Open

2. Problem definition and data inspection

All contributed data sets will be formatted into one central database. As data is commonly collected in .csv (Microsoft Excel) or .sav (SPSS) files, formatting will be performed with the dplyr package for R software. All raw data of the different variables will be separately reviewed for inaccuracies and other defects. This process will focus on uniformization of possible inconsistencies in the collected data, for example follow-up times into a standardized format as 'days after surgery'. Categorical data will be translated into English or corrected for typographs. Continuous variables will be screened for outliers by visualization in the ggplot package. Impossible values or uninterpretable syntax errors will be excluded from the central database. ich

#### 3. Coding of predictors

For each primary outcome, a logistic regression will be performed including all available variables in the central database to identify the variables with the highest predictive values. The data points available include patient demographic (sex, age), patient specific factors (BMI, dominance, sport/activity level, workers compensation), pathology specific factors (e.g. tear size and location), surgical technique and add-on interventions. For a complete overview of all variables see supplement 2. The variables with the highest predictive values will be used as the algorithms labels.

| 1                    |     |                                                                                                              |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 157 | Missing data                                                                                                 |
| 5<br>6<br>7          | 158 | As the main database will comprise data from multiple studies, we expect many cases of missing data.         |
| ,<br>8<br>9          | 159 | The approach to missing data will differ depending on the type of variable. Variables with less than 5%      |
| 10<br>11             | 160 | missing data will be replaced by imputation (16). Missing data on any surgical technique or add-on           |
| 12<br>13             | 161 | intervention is expectable as interventions outside the scope of a study would not be mentioned (or          |
| 14<br>15<br>16       | 162 | briefly mentioned in the exclusions part). Therefore, this kind of missing data will be transformed to 'No'. |
| 17<br>18             | 163 | Overall availability of variables will be presented according to current guidelines (17). Any variances      |
| 19<br>20             | 164 | between hospitals will be reported.                                                                          |
| 21<br>22<br>23<br>24 | 165 | 4. Model specification                                                                                       |
| 24<br>25<br>26<br>27 | 166 | Algorithms to be trained                                                                                     |
| 27<br>28<br>29       | 167 | Based on previous studies (18,19), the following algorithms are likely to result in accurate prediction      |
| 30<br>31             | 168 | models for our primary outcomes: 1) Bayes Point Machine 2) Boosted Decision Tree 3) Penalized                |
| 32<br>33             | 169 | Logistical Regression 4) Neural Network 5) Support Vector Machine. In order to recognize patterns            |
| 34<br>35<br>36       | 170 | related to each outcome, the machine learning algorithms will have to be trained separately for each         |
| 37<br>38             | 171 | outcome.                                                                                                     |
| 39<br>40<br>41       | 172 | 5. Model estimation and performance                                                                          |
| 42<br>43<br>44       | 173 | Assessing the performance of the algorithms                                                                  |
| 45<br>46<br>47       | 174 | The performance of the ML-algorithms will be assessed and compared based on 1) model discrimination;         |
| 47<br>48<br>49       | 175 | 2) calibration and 3) overall model performance (Brier Score) according to Steyerberg's structured           |
| 50<br>51<br>52       | 176 | 'ABCD-methodology' for clinical prediction rules (15,20).                                                    |
| 53<br>54             | 177 | The model's predicted probability will be plotted against the actual observed probability to calculate       |
| 55<br>56<br>57<br>58 | 178 | calibration of a model. Perfect models will have calibration intercepts of 0, and calibration slopes of 1.27 |
| 59<br>60             |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |

| 1<br>2                                                                 |     |                                                                                                             |  |  |
|------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------|--|--|
| 2<br>3<br>4                                                            | 179 | The overall performance of the model will be assessed with the Brier-score. A perfect Brier score,          |  |  |
| 5<br>6                                                                 | 180 | indicating total accuracy, is a score of 0. The lowest possible score is a Brier score of 1.26. Accuracy,   |  |  |
| 7<br>8<br>0                                                            | 181 | sensitivity, specificity and area under the ROC-curve will be measures for a model's ability to distinguish |  |  |
| 9<br>10<br>11                                                          | 182 | patients with the primary outcome from those without.                                                       |  |  |
| 12<br>13<br>14                                                         | 183 | 6. Model validation                                                                                         |  |  |
| 15<br>16                                                               | 184 | Internal validation                                                                                         |  |  |
| 17<br>18<br>19                                                         | 185 | Internal validation of our algorithms will be performed by 10-fold cross validation. This means that        |  |  |
| 20<br>21                                                               | 186 | instead of dividing the main data set into one training set and one testing set, this process will be 10    |  |  |
| 22<br>23                                                               | 187 | times randomly repeated and the results will be averaged. This has as main advantage that all individual    |  |  |
| 24<br>25<br>26                                                         | 188 | patient records are used as training and testing data simultaneously, which results in higher accuracy of   |  |  |
| 27<br>28                                                               | 189 | predictions as well as lower chance of bias. The cross validation will be performed using the trainControl  |  |  |
| 29<br>30<br>21                                                         | 190 | function from the Caret library for R.                                                                      |  |  |
| 32<br>33<br>34                                                         | 191 | External validation                                                                                         |  |  |
| 34<br>35<br>36                                                         | 192 | Before incorporating the best performing algorithm, we aim to have the algorithm externally validated.      |  |  |
| 37<br>38                                                               | 193 | The same performance metrics could be calculated as described above. However, this would involve            |  |  |
| 39<br>40                                                               | 194 | collaboration with partners that have adequate data and are willing to share. As no agreements currently    |  |  |
| <ul> <li>41</li> <li>42</li> <li>43</li> <li>43</li> <li>43</li> </ul> |     |                                                                                                             |  |  |
| 44<br>45<br>46                                                         | 196 | 7. Model presentation                                                                                       |  |  |
| 47<br>48                                                               | 197 | The best performing algorithm will be deployed as an open-access probability calculator and used to         |  |  |
| 49<br>50<br>51                                                         | 198 | design a clinical decision rule. To simulate the clinical scenario to which a decision rule would be most   |  |  |
| 52<br>53                                                               | 199 | applicable, thresholds shall be selected based on patients with clinical symptoms of a retear or with an    |  |  |
| 54<br>55<br>56<br>57<br>58                                             | 200 | unsatisfactory functional outcome.                                                                          |  |  |
| 59<br>60                                                               |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                   |  |  |

| 1<br>2<br>3                      | 201 |                                                                                                              |  |  |  |  |
|----------------------------------|-----|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4                                | 201 | Patient and public involvement                                                                               |  |  |  |  |
| 5<br>6<br>7                      | 202 | None.                                                                                                        |  |  |  |  |
| 8<br>9<br>10                     | 203 | ETHICS AND DISSEMINATION                                                                                     |  |  |  |  |
| 10<br>11<br>12                   | 204 | For safe multicenter data exchange and analysis, our Machine Learning Consortium adheres to the World        |  |  |  |  |
| 12<br>13<br>14                   | 205 | Health Organization (WHO) regulation 'Policy on Use and Sharing of Data Collected by WHO in Member           |  |  |  |  |
| 15<br>16                         | 206 | States Outside the Context of Public Health Emergencies'.(21) As Institutional Review Board (IRB)            |  |  |  |  |
| 17<br>18                         | 207 | approval has been acquired for each of the included studies and data are anonymized as in conventional       |  |  |  |  |
| 19<br>20<br>21                   | 208 | meta-analyses, additional IRB approval is not required for the current study protocol. The technical         |  |  |  |  |
| 21<br>22<br>23                   | 209 | appendix, statistical code and final dataset will be published with the study results.                       |  |  |  |  |
| 24<br>25                         | 210 | CURRENT STATUS                                                                                               |  |  |  |  |
| 26                               | 210 |                                                                                                              |  |  |  |  |
| 27<br>28                         | 211 | The study has currently entered the data-collection phase, which is expected to last until March 2023.       |  |  |  |  |
| 29<br>30                         | 212 | Re-evaluation of the data using machine learning algorithms to predict outcomes will start in April 2023,    |  |  |  |  |
| 31<br>32<br>33                   | 213 | after which the algorithms can be externally validated. The expected time for study completion is by late    |  |  |  |  |
| 33<br>34<br>35                   | 214 | 2023.                                                                                                        |  |  |  |  |
| 36<br>37<br>38                   | 215 | DISCUSSION                                                                                                   |  |  |  |  |
| 39<br>40                         | 216 | Due to the wide variety of pathological factors at the origin of rotator cuff tears and the numerous         |  |  |  |  |
| 41<br>42                         | 217 | surgical approaches to repair, optimal decision-making remains challenging. Smaller case series often        |  |  |  |  |
| 43<br>44                         | 218 | provide heterogeneous data on this topic, however the largest and most recent meta-analysis to date          |  |  |  |  |
| 45<br>46<br>47                   | 219 | including 2,611 patients with a mean follow-up of 25 months has somewhat demystified the matter.             |  |  |  |  |
| 48<br>49                         | 220 | Patients with a full-thickness rotator cuff retear exhibited significantly lower functional outcome scores   |  |  |  |  |
| 50<br>51                         | 221 | and strength compared with patients with an intact or partially torn rotator cuff (22). This is              |  |  |  |  |
| 52<br>53                         | 222 | corroborated by the findings of rotator cuff repair with more than 10 years follow-up, showing clinical      |  |  |  |  |
| 54<br>55<br>56<br>57<br>58<br>59 | 223 | superiority of structural tendon integrity in partial cuff tears (23–25). Progressive osteoarthritic changes |  |  |  |  |
| 60                               |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                    |  |  |  |  |

| 2          |  |
|------------|--|
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| ,<br>0     |  |
| 0          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 10         |  |
| 20         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 28         |  |
| 29         |  |
| 30         |  |
| 21         |  |
| 21         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| 41         |  |
| -r⊺<br>//2 |  |
| 42         |  |
| 45         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| 49         |  |
| 50         |  |
| 51         |  |
| 52         |  |
| 52         |  |
| 55         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 58         |  |
| 59         |  |
| 60         |  |

1

| 224  | are significantly more common in patients with repair failures (24). The most recent randomized              |
|------|--------------------------------------------------------------------------------------------------------------|
| 225  | controlled trial comparing surgical repair to conservative treatment for degenerative rotator cuff tears     |
| 226  | showed that only operated patients without retear had an improvement exceeding the MCID in                   |
| 227  | functional outcome at 1 year follow-up (26). Findings from the latest meta-analysis on this comparative      |
| 228  | topic conclude that as the success rate of conservative treatment may be high, judicious selection of        |
| 229  | patients who are most likely to benefit from surgery is key (27). It is extremely difficult to combine all   |
| 230  | these factors into a clinical decision related to one specific patient. Creating a free online available     |
| 231  | clinical prediction tool that takes all these factors into account will assist physicians in selecting which |
| 232  | patients with rotator cuff tears will benefit from a repair. In addition, the aimed size (more than 1000     |
| 233  | patients) of the database that will be used to design and train the prediction tool might provide new        |
| 234  | insights on which biological or biomechanical factors influence outcomes after rotator cuff repair the       |
| 235  | most. Awareness of these factors would be the essential first step to incorporating them in future           |
| 236  | treatment strategies and eventually improving outcomes. The main limitation of this study is that it is a    |
| 237  | retrospective, multicenter study. This means this study is dependent on the quality of recordkeeping in      |
| 238  | the different participating hospitals. This may lead to variance in recorded variables and therefore         |
| 239  | missing data.                                                                                                |
| 240  |                                                                                                              |
|      |                                                                                                              |
| 241  | <u>ት</u> ት ት ት ት                                                                                             |
| 242  | CONTRIBUTORS                                                                                                 |
| 2/12 | Laurens I.H. Allaart, Sanne H. van Spanning, Geert Alexander Ruijze and Michel P. I.van den Rekerom          |

Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander Buijze and Michel P.J van den Bekerom
contributed to the conception, overall design and planning of the study. Laurent A.M. Hendrickx and Job
N. Doornberg contributed to the conception and design of the methods section, primarily focussing on
the machine learning section and data analysis. Alexander L\u00e4dermann, George S Athwal, Thibault Lafosse

| 1                                            |                             |                                                                                                           |  |  |  |  |  |  |  |
|----------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2<br>3<br>4                                  | 247                         | and Laurent Lafosse contributed to the design of the methods section and primarily focussed on how        |  |  |  |  |  |  |  |
| 5<br>6                                       | 248                         | data should be collected and interpreted. Laurens J.H. Allaart, Sanne H. van Spanning, Geert Alexander    |  |  |  |  |  |  |  |
| 7<br>8                                       | 249                         | Buijze and Michel P.J. van den Bekerom contributed to writing the protocol. All authors revised this      |  |  |  |  |  |  |  |
| 9<br>10<br>11                                | 250                         | version of the protocol and gave final approval for it to be published. All authors ensure that questions |  |  |  |  |  |  |  |
| 12<br>13                                     | 251                         | related to the accuracy or integrity of any part of this protocol are appropriately investigated and      |  |  |  |  |  |  |  |
| 14<br>15                                     | 252                         | resolved.                                                                                                 |  |  |  |  |  |  |  |
| 16<br>17<br>18<br>19                         | 6<br>7 253 ACKNOWLEDGEMENTS |                                                                                                           |  |  |  |  |  |  |  |
| 20<br>21                                     | 254                         | Olimpio Galasso, Vivek Pandey, Mats Ranebo, Martyn Snow and Riccardo d'Ambrosi have contributed by        |  |  |  |  |  |  |  |
| 22<br>23<br>24                               | 255                         | providing relevant feedback on the general design of the study.                                           |  |  |  |  |  |  |  |
| 25<br>26<br>27                               | 256                         | COMPETING INTERESTS                                                                                       |  |  |  |  |  |  |  |
| 28<br>29                                     | 257                         | Dr Alexandre Lädermann is a paid consultant for Arthrex, Medacta and Stryker. He receives royalties       |  |  |  |  |  |  |  |
| 30<br>31                                     | 258                         | from Stryker. He is the founder of BeeMed, Med4Cast and FORE. He owns stock options from Medacta.         |  |  |  |  |  |  |  |
| 32<br>33<br>24                               | 259                         | Dr. L. Lafosse is a consultant for Depuy Stryker, received royalties from Depuy. Dr. T. Lafosse is        |  |  |  |  |  |  |  |
| 34<br>35<br>36                               | 260                         | consultant for Depuy Mitek and Stryker. Dr. G.A. Buijze received consultancy fees from Depuy-Synthes      |  |  |  |  |  |  |  |
| 37<br>38                                     | 261                         | and Research Funds from SECEC, Vivalto Santé. The remaining authors certify that neither he or she has    |  |  |  |  |  |  |  |
| 39<br>40                                     | 262                         | funding or commercial associations that might pose a conflict of interest in connection with the          |  |  |  |  |  |  |  |
| 41<br>42<br>43                               | 263                         | submitted article.                                                                                        |  |  |  |  |  |  |  |
| 44<br>45<br>46                               | 264                         | FUNDING                                                                                                   |  |  |  |  |  |  |  |
| 47<br>48<br>49                               | 265                         | This research has received funding by the SECEC/ESSSE 2020 Research Grant as part of the project '        |  |  |  |  |  |  |  |
| 50<br>51                                     | 266                         | The Effect of Risk Factors, Surgical Technique and Biomodulation on Tendon Healing                        |  |  |  |  |  |  |  |
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59 | 267                         | after Rotator Cuff Repair'.                                                                               |  |  |  |  |  |  |  |
| 60                                           |                             | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                 |  |  |  |  |  |  |  |

| 3<br>4   | 268                                                                                                      | REFERENCES                                                                                                |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| 5<br>6   | 269                                                                                                      | 1. Zhao J. Luo M. Pan J. Liang G. Feng W. Zeng L. et al. Risk factors affecting rotator cuff retear after |  |  |  |
| 7        | 270                                                                                                      | arthroscopic repair: a meta-analysis and systematic review. J Shoulder Flbow Surg. 2021 Nov               |  |  |  |
| 8<br>9   | 271                                                                                                      | 1;30(11):2660–70.                                                                                         |  |  |  |
| 10       | 272                                                                                                      | 2. Zumstein MA, Lädermann A, Raniga S, Schär MO. The biology of rotator cuff healing. Orthop              |  |  |  |
| 11       | 273                                                                                                      | Traumatol Surg Res OTSR. 2017;103(1S):S1–10.                                                              |  |  |  |
| 13<br>14 | 274                                                                                                      | 3. Kunze KN, Rossi LA, Beletsky A, Chahla J. Does the Use of Knotted Versus Knotless Transosseous         |  |  |  |
| 15       | 275                                                                                                      | Equivalent Rotator Cuff Repair Technique Influence the Incidence of Retears? A Systematic Review.         |  |  |  |
| 16<br>17 | 276                                                                                                      | Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2020 Feb 11;              |  |  |  |
| 17       | 277                                                                                                      | 4. Rossi LA, Chahla J, Verma NN, Millett PJ, Ranalletta M. Rotator Cuff Retears. JBJS Rev. 2020           |  |  |  |
| 19<br>20 | 278                                                                                                      | Jan;8(1):e0039.                                                                                           |  |  |  |
| 21       | 279                                                                                                      | 5. Griffiths S, Yohannes AM. Surgical referral criteria for degenerative rotator cuff tears: a Delphi     |  |  |  |
| 22       | 280                                                                                                      | questionnaire study. Musculoskeletal Care. 2014 Jun;12(2):82–91.                                          |  |  |  |
| 23<br>24 | 281                                                                                                      | 6. Yang Y. Qu J. The effects of hyperlipidemia on rotator cuff diseases: a systematic review. J           |  |  |  |
| 25<br>26 | 282                                                                                                      | Orthop Surg. 2018 Aug 17;13(1):204.                                                                       |  |  |  |
| 27       | 283                                                                                                      | 7. Lädermann A, Burkhart SS, Hoffmeyer P, Neyton L, Collin P, Yates E, et al. Classification of full-     |  |  |  |
| 28<br>29 | 284                                                                                                      | thickness rotator cuff lesions: a review. EFORT Open Rev. 2016 Dec 1;1(12):420–30.                        |  |  |  |
| 30       | 285                                                                                                      | 8. Lee CS, Davis SM, Doremus B, Kouk S, Stetson WB. Interobserver Agreement in the Classification         |  |  |  |
| 31       | 286                                                                                                      | of Partial-Thickness Rotator Cuff Tears Using the Snyder Classification System. Orthop J Sports Med. 2016 |  |  |  |
| 32<br>33 | 287                                                                                                      | Sep 28;4(9):2325967116667058.                                                                             |  |  |  |
| 34       | 288                                                                                                      | 9. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative            |  |  |  |
| 35       | $\frac{15}{26}$ 289 predictive analytics for patient-reported outcomes following lumbar discectomy: feas |                                                                                                           |  |  |  |
| 37       | 290                                                                                                      | specific modeling. Spine J Off J North Am Spine Soc. 2019;19(5):853–61.                                   |  |  |  |
| 38       | 201                                                                                                      | 10 Choi E Sanval N. Ding VX. Gardner PM. Aredo IV. Lee L. et al. Development and Validation of a          |  |  |  |
| 39<br>40 | 291                                                                                                      | Risk Prediction Model for Second Primary Lung Cancer. J Natl Cancer Inst. 2022 Jan 11;114(1):87–96.       |  |  |  |
| 41<br>42 | 293                                                                                                      | 11. Thio QCBS. Karhade AV. Ogink PT. Raskin KA. De Amorim Bernstein K. Lozano Calderon SA. et al.         |  |  |  |
| 43       | 294                                                                                                      | Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With                   |  |  |  |
| 44       | 295                                                                                                      | Chondrosarcoma? Clin Orthop. 2018;476(10):2040–8.                                                         |  |  |  |
| 45<br>46 | 206                                                                                                      | 12 Sugava H. Maeda K. Matsuki K. Morijshi I. Eunctional and Structural Outcome After Arthroscopic         |  |  |  |
| 47       | 290                                                                                                      | Full Thickness Potator Cuff Popair: Single Pow Vorcus Dual Pow Eivation Arthross I Arthross Polat Surg    |  |  |  |
| 48       | 297                                                                                                      | Pull-Thickness Rotator Cull Repair. Single-Row Versus Dual-Row Fixation. Arthrosc J Arthrosc Relat Surg.  |  |  |  |
| 49       | 298                                                                                                      | 2005 NOV;21(11):1307-16.                                                                                  |  |  |  |
| 50       | 299                                                                                                      | 13. Dabija DI, Jain NB. Minimal Clinically Important Difference of Shoulder Outcome Measures and          |  |  |  |
| 51<br>52 | 300                                                                                                      | Diagnoses: A Systematic Review. Am J Phys Med Rehabil. 2019;98(8):671–6.                                  |  |  |  |
| 53       | 301                                                                                                      | 14. Felsch Q, Mai V, Durchholz H, Flury M, Lenz M, Capellen C, et al. Complications Within 6 Months       |  |  |  |
| 54<br>55 | 302                                                                                                      | After Arthroscopic Rotator Cuff Repair: Registry-Based Evaluation According to a Core Event Set and       |  |  |  |
| 56       | 303                                                                                                      | Severity Grading. Arthrosc J Arthrosc Relat Surg. 2021 Jan 1;37(1):50–8.                                  |  |  |  |
| 57       |                                                                                                          |                                                                                                           |  |  |  |
| 58       |                                                                                                          |                                                                                                           |  |  |  |
| 59       |                                                                                                          | For peer review only - http://hmiopon.hmi.com/site/shout/suidelines.yhtml                                 |  |  |  |
| 60       |                                                                                                          | i of peer review only - http://binjopen.binj.com/site/about/guidelines.kittin                             |  |  |  |

| 1<br>ว                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 304<br>305        | 15. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014 Aug 1;35(29):1925–31.                                                                                                                                    |
|                                                                                                                                                                          | 306<br>307        | 16. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol. 2006 Oct;59(10):1087–91.                                                                                                                                       |
|                                                                                                                                                                          | 308<br>309<br>310 | 17. Nijman SWJ, Leeuwenberg AM, Beekers I, Verkouter I, Jacobs JJL, Bots ML, et al. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review. J Clin Epidemiol. 2022 Feb 1;142:218–29.                                                            |
|                                                                                                                                                                          | 311<br>312<br>313 | 18. Machine Learning Consortium, on behalf of the SPRINT and FLOW Investigators. A Machine Learning Algorithm to Identify Patients with Tibial Shaft Fractures at Risk for Infection After Operative Treatment. J Bone Joint Surg Am. 2021 Mar 17;103(6):532–40.                                             |
|                                                                                                                                                                          | 314<br>315        | 19. Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996;8(7):1341–90.                                                                                                                                                                                             |
|                                                                                                                                                                          | 316<br>317<br>318 | 20. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiol Camb Mass. 2010 Jan;21(1):128–38.                                                                                   |
|                                                                                                                                                                          | 319<br>320        | 21. Data policy [Internet]. [cited 2022 Feb 24]. Available from:<br>https://www.who.int/about/policies/publishing/data-policy                                                                                                                                                                                |
|                                                                                                                                                                          | 321<br>322<br>323 | <ul> <li>Yang J, Robbins M, Reilly J, Maerz T, Anderson K. The Clinical Effect of a Rotator Cuff Retear: A</li> <li>Meta-analysis of Arthroscopic Single-Row and Double-Row Repairs. Am J Sports Med. 2017;45(3):733–</li> <li>41.</li> </ul>                                                                |
| 32<br>33<br>34<br>35                                                                                                                                                     | 324<br>325<br>326 | 23. Heuberer PR, Smolen D, Pauzenberger L, Plachel F, Salem S, Laky B, et al. Longitudinal Long-term<br>Magnetic Resonance Imaging and Clinical Follow-up After Single-Row Arthroscopic Rotator Cuff Repair:<br>Clinical Superiority of Structural Tendon Integrity. Am J Sports Med. 2017 May;45(6):1283–8. |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                       | 327<br>328<br>329 | 24. Plachel F, Siegert P, Rüttershoff K, Thiele K, Akgün D, Moroder P, et al. Long-term Results of Arthroscopic Rotator Cuff Repair: A Follow-up Study Comparing Single-Row Versus Double-Row Fixation Techniques. Am J Sports Med. 2020 May 11;363546520919120.                                             |
|                                                                                                                                                                          | 330<br>331<br>332 | 25. Carbonel I, Martinez AA, Calvo A, Ripalda J, Herrera A. Single-row versus double-row arthroscopic repair in the treatment of rotator cuff tears: a prospective randomized clinical study. Int Orthop. 2012 Sep;36(9):1877–83.                                                                            |
| 45<br>46<br>47<br>48                                                                                                                                                     | 333<br>334<br>335 | 26. Lambers Heerspink FO, van Raay JJAM, Koorevaar RCT, van Eerden PJM, Westerbeek RE, van 't<br>Riet E, et al. Comparing surgical repair with conservative treatment for degenerative rotator cuff tears: a<br>randomized controlled trial. J Shoulder Elbow Surg. 2015 Aug;24(8):1274–81.                  |
| 49<br>50<br>51<br>52                                                                                                                                                     | 336<br>337<br>338 | 27. Schemitsch C, Chahal J, Vicente M, Nowak L, Flurin PH, Lambers Heerspink F, et al. Surgical repair versus conservative treatment and subacromial decompression for the treatment of rotator cuff tears: a meta-analysis of randomized trials. Bone Jt J. 2019;101-B(9):1100–6.                           |
| 54<br>55<br>56<br>57<br>58                                                                                                                                               | 339               |                                                                                                                                                                                                                                                                                                              |
| 59<br>60                                                                                                                                                                 |                   | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                    |

|                                               | BMJ Open                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1 subjec<br>Rotator c                        | t<br>uff tear/ injury                                                                                                                                                                                                                                                                                                                                                     |
| (rotator<br>OR                                | tiab] AND cuff[tiab] AND injur*[tiab])                                                                                                                                                                                                                                                                                                                                    |
| (rotator<br>OR                                | tiab] AND cuff[tiab] AND tear*[tiab])                                                                                                                                                                                                                                                                                                                                     |
| (rotator<br>OR                                | tiab] AND cuff[tiab] AND repair*[tiab])                                                                                                                                                                                                                                                                                                                                   |
| (rotator<br>OR<br>"Rotator                    | tiab] AND cuff[tiab] AND surg*[tiab])<br>Cuff Injuries"[Mesh]                                                                                                                                                                                                                                                                                                             |
| #2.1 Inter<br>Repair                          | vention (RCT)                                                                                                                                                                                                                                                                                                                                                             |
| #2.2 Inter                                    | vention (Cohort)                                                                                                                                                                                                                                                                                                                                                          |
| Repair                                        |                                                                                                                                                                                                                                                                                                                                                                           |
| #3 Outcoi<br>Retear ra                        | ne<br>te measured by MRI ultrasound or arthro CT                                                                                                                                                                                                                                                                                                                          |
| (Retear[t                                     | ab] OR (re-tear)[tiab] OR healing[tiab])                                                                                                                                                                                                                                                                                                                                  |
| OR                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| ("Magnet                                      | ic Resonance Imaging"[Mesh] OR "MRI" OR "magnetic resonance"                                                                                                                                                                                                                                                                                                              |
| OR                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| ultraso*[                                     | iab] OR "Ultrasonography"[Mesh]                                                                                                                                                                                                                                                                                                                                           |
| OR                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| "Arthrog                                      | aphy"[Mesh] OR arthrography[tiab])                                                                                                                                                                                                                                                                                                                                        |
| Search: (<br>Imaging<br>"Ultraso<br>((rotatou | (Retear[tiab] OR re-tear[tiab] OR healing[tiab]) OR ("Magnetic Resonanc<br>"[Mesh] OR "MRI" OR "magnetic resonance" OR ultraso*[tiab] OR<br>nography"[Mesh] OR "Arthrography"[Mesh] OR arthrography[tiab]) ) Al<br>r[tiab] AND cuff[tiab] AND injur*[tiab]) OR (rotator[tiab] AND cuff[tiab]<br>b]) OR (rotator[tiab] AND cuff[tiab] AND repair*[tiab]) OR (rotator[tiab] |

3 4

| 2        |                                                                                                                        |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 3        | We will collect the following potential risk factors from the electronic medical records. The variables are            |  |  |  |
| 4        |                                                                                                                        |  |  |  |
| 5        | mostly binary to make them compatible for all machine learning algorithms. Cut-off values will be used                 |  |  |  |
| 6<br>7   | for the non-binary values. In case of doubt, overlap or less specific grouping than in this database,                  |  |  |  |
| 8        | variables will be rounded up                                                                                           |  |  |  |
| 9        | variables will be founded up.                                                                                          |  |  |  |
| 10       |                                                                                                                        |  |  |  |
| 11       | Patient characteristics                                                                                                |  |  |  |
| 12       | <ul> <li>Identification number</li> </ul>                                                                              |  |  |  |
| 14       | • Date of birth                                                                                                        |  |  |  |
| 15       | o Sex                                                                                                                  |  |  |  |
| 16       | <ul> <li>Dominant side (yes/no)</li> </ul>                                                                             |  |  |  |
| 17       | <ul> <li>Chronicity of tear (&lt;6 weeks / &gt;6weeks)</li> </ul>                                                      |  |  |  |
| 18       | <ul> <li>Time from trauma to 1<sup>st</sup> treatment day</li> </ul>                                                   |  |  |  |
| 19       | <ul> <li>ASA classification (1-4)</li> </ul>                                                                           |  |  |  |
| 20       | <ul> <li>Sport/activity level</li> </ul>                                                                               |  |  |  |
| 21       | <ul> <li>Receiving workers compensatioin (yes/no)</li> </ul>                                                           |  |  |  |
| 22       |                                                                                                                        |  |  |  |
| 23       | Biological factors                                                                                                     |  |  |  |
| 24       | <ul> <li>Obesity (BMI &lt;30 / ≥30)</li> </ul>                                                                         |  |  |  |
| 25       | • Cardiovascular disease incl. hypertension (yes / no)                                                                 |  |  |  |
| 20       | <ul> <li>Smoking history (current smoker / non-smoker)</li> </ul>                                                      |  |  |  |
| 27       | <ul> <li>Diabetes (ves/no: insulin dependent ves/no)</li> </ul>                                                        |  |  |  |
| 20       | $\circ  \text{Osteonorosis (ves/no)}$                                                                                  |  |  |  |
| 30       | $\sim$ Hyperlinidemia (yes/no)                                                                                         |  |  |  |
| 31       | <ul> <li>Hyperipideimia (yes/no)</li> <li>Hyperipideimia (yes/no)</li> </ul>                                           |  |  |  |
| 32       | <ul> <li>Nitamin D deficiency (ves/no)</li> </ul>                                                                      |  |  |  |
| 33       |                                                                                                                        |  |  |  |
| 34       | • INSAID use (yes/110)                                                                                                 |  |  |  |
| 35       | o Thyrold dystunction (no disease / hypothyrold / hyperthyrold)                                                        |  |  |  |
| 36       | Pathology characteristics (graded by by MRI or arthro CT)                                                              |  |  |  |
| 37       | <ul> <li>Tear location (nosterolateral / anterosuperior)</li> </ul>                                                    |  |  |  |
| 30       | $\sim$ Size of tear (small (<1 cm) medium (1-3 cm) large (3-5 cm) or massive (>5 cm))                                  |  |  |  |
| 40       | $\bigcirc$ Size of teal (small ( $\le 1$ cm), mediatin ( $1-5$ cm), large ( $5-5$ cm), of massive ( $>5$ cm))          |  |  |  |
| 41       | - Size in the saggital oblique plane                                                                                   |  |  |  |
| 42       | <ul> <li>Fatty Infinitiation (Gouldhier 0 - 4)</li> <li>Muscle atreaby as graded by tangent sign (yes / no)</li> </ul> |  |  |  |
| 43       | Tonden retraction (Dette 1 2)                                                                                          |  |  |  |
| 44       | o rendon retraction (Patter 1 - 3)                                                                                     |  |  |  |
| 45       | Survival Tashniqua                                                                                                     |  |  |  |
| 46       | <u>Surgical Technique</u>                                                                                              |  |  |  |
| 4/       | O Single row (yes / no)                                                                                                |  |  |  |
| 48       | $\circ$ Double row (yes / no)                                                                                          |  |  |  |
| 49<br>50 | <ul> <li>Suture bridge (yes no)</li> <li>Defension and the second devident (fellow)</li> </ul>                         |  |  |  |
| 51       | <ul> <li>Performing surgeon (surgeon / resident / fellow)</li> </ul>                                                   |  |  |  |
| 52       |                                                                                                                        |  |  |  |
| 53       | <u>Remaining of active mobilization (could &gt; could</u> )                                                            |  |  |  |
| 54       | <ul> <li>Imming of active mobilization (&lt;6WKS 2 6WKS)</li> </ul>                                                    |  |  |  |
| 55       |                                                                                                                        |  |  |  |
| 56       | Add-on Intervention                                                                                                    |  |  |  |
| 5/       |                                                                                                                        |  |  |  |
| 50<br>50 |                                                                                                                        |  |  |  |
| 57<br>60 | For peer review only - http://bmjopen.bmj.com/site/about/quidelines.xhtml                                              |  |  |  |
| 00       |                                                                                                                        |  |  |  |

| 1        |                 |                                                                                            |
|----------|-----------------|--------------------------------------------------------------------------------------------|
| 2        |                 |                                                                                            |
| 3        | - I             | Picons tonotomy/tonodosis (yos / no)                                                       |
| 4        | 0 1             | Biceps tenotonny/ tenotoesis (yes / no)                                                    |
| 5        | 0 1             | Bone marrow stimulation by microfracturing footprint (yes/no)                              |
| 6        | 0 9             | Steroid injections within year prior to surgery (0 / 1 / ≥2 injections)                    |
| 7        | 0 /             | Augmentation with subacromial inflatable device (yes/no)                                   |
| /<br>0   | 0 /             | Augmentation/bridging with patches/scaffolds/extracellular matrices (yes/no)               |
| 0        | • I             | I ocal injectable biologics (ves/no) including                                             |
| 9        | 0               | Detalot rich placma (D.DPD   DPD)                                                          |
| 10       |                 |                                                                                            |
| 11       |                 | Leukocyte and platelet-rich fibrin (L-PRF)                                                 |
| 12       |                 | <ul> <li>Growth factors</li> </ul>                                                         |
| 13       |                 | <ul> <li>Cell therapy (bone marrow stem cells / BMAC MSCs)</li> </ul>                      |
| 14       | 0 9             | Systemic drugs - Statins (ves/no)                                                          |
| 15       | 0               | Systemic drugs - Vitamin D supplementation (ves/no)                                        |
| 16       | 0               | Systemic drugs - Vitamin C supplementation (yes/no)                                        |
| 17       | 0               |                                                                                            |
| 18       | 0               | Systemic drugs – NSAIDs from >6 weeks postop (yes/no)                                      |
| 19       |                 |                                                                                            |
| 20       | <u>Outcomes</u> |                                                                                            |
| 21       | 0               | Retear at minimum 6 months (ves no)                                                        |
| 22       |                 | Type of retear (Sugava 1-5)                                                                |
| 23       |                 | Adverse event                                                                              |
| 24       | 0 1             | Adverse event                                                                              |
| 25       |                 | <ul> <li>None/mild (none reported) / Moderate/severe (reported adverse event)</li> </ul>   |
| 26       |                 | <ul> <li>Type of adverse event (Infection/revision/stiffness/other)</li> </ul>             |
| 27       | 0 <b>I</b>      | PROMS                                                                                      |
| 28       |                 | Type of PROM                                                                               |
| 20       |                 | <ul> <li>Time of measurement (in days from surgery)</li> </ul>                             |
| 29       |                 | Consistency of DBOM (use (no)                                                              |
| 21       |                 | Consistency of PROIVI (yes/no)                                                             |
| 21       |                 | • Will be seperatelly formulated per PROM based on MCID                                    |
| 3Z<br>33 |                 | improvement/consistency                                                                    |
| 33       |                 | <ul> <li>As the calculation of this variable will be greatly dependent on which</li> </ul> |
| 34       |                 | PROMS and follow-up duration will be submitted by co-authors, we prefer                    |
| 35       |                 | to receive 'row' data                                                                      |
| 36       |                 |                                                                                            |
| 3/       |                 |                                                                                            |
| 38       |                 |                                                                                            |
| 39       |                 |                                                                                            |
| 40       |                 |                                                                                            |
| 41       |                 |                                                                                            |
| 42       |                 |                                                                                            |
| 43       |                 |                                                                                            |
| 44       |                 |                                                                                            |
| 45       |                 |                                                                                            |
| 46       |                 |                                                                                            |
| 47       |                 |                                                                                            |
| 48       |                 |                                                                                            |
| 49       |                 |                                                                                            |
| 50       |                 |                                                                                            |
| 51       |                 |                                                                                            |
| 52       |                 |                                                                                            |
| 53       |                 |                                                                                            |
| 54       |                 |                                                                                            |
| 55       |                 |                                                                                            |
| 55       |                 |                                                                                            |
| 50       |                 |                                                                                            |
| 57       |                 |                                                                                            |
| 58       |                 |                                                                                            |
| 59       |                 |                                                                                            |