

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Optimizing diagnosis and treatment of tuberculosis infection in community and primary care settings in two urban provinces of Viet Nam: a cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071537
Article Type:	Original research
Date Submitted by the Author:	03-Jan-2023
Complete List of Authors:	Vo, Luan ; Friends for International TB Relief, Nguyen, Viet Nhung; National Lung Hospital , National TB Program Nguyen, Nga Thi Thuy; Friends for International TB Relief Dong, Thuy Thi Thu; Friends for International TB Relief Codlin, Andrew; Friends for International TB Relief Forse, Rachel; Friends for International TB Relief, TB Programs; Karolinska Institutet, Department of Global Public Health, The Health and Social Protection Action Research & Knowledge Sharing network (SPARKS) Truong, Huyen Thanh; National Lung Hospital Nguyen, Hoa Binh; National Lung Hospital Dang, Ha Thi Minh; Pham Ngoc Thach Hospital Truong, Vinh Van; Pham Ngoc Thach Hospital Nguyen, Lan Huu; Pham Ngoc Thach Hospital Mac, Tuan Huy; Hai Phong Lung Hospital Le, Phong Thanh; IRD VN Social Enterprise LLC Tran, Khoa Tu; Friends for International TB Relief Ndunda, Nduku; Former Qiagen Employee Caws, Maxine; Liverpool School of Tropical Medicine, Clinical Sciences; Birat Nepal Medical Trust Creswell, Jacob; Stop TB Partnership
Keywords:	Tuberculosis < INFECTIOUS DISEASES, PREVENTIVE MEDICINE, PUBLIC HEALTH
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Optimizing diagnosis and treatment of tuberculosis infection in community and primary care settings in two urban provinces of Viet Nam: a cohort study

Luan Nguyen Quang Vo^{1,*}, Nhung Viet Nguyen², Nga Thi Thuy Nguyen¹, Thuy Thi Thu Dong¹, Andrew Codlin¹, Rachel Forse¹, Huyen Thanh Truong², Hoa Binh Nguyen², Ha Thi Minh Dang³, Vinh Van Truong³, Lan Huu Nguyen³, Tuan Huy Mac⁴, Phong Thanh Le⁵, Khoa Tu Tran¹, Nduku Ndunda⁶, Maxine Caws⁷ and

- Jacob Creswell⁸
- 1 Friends for International TB Relief, Ha Noi, Viet Nam
- 2 National Lung Hospital, Ha Noi, Viet Nam
- 3. Pham Ngoc Thach Hospital, Ho Chi Minh City, Viet Nam
- 4 Hai Phong Lung Hospital, Hai Phong, Viet Nam
- 5 IRD VN Social Enterprise LLC, Ho Chi Minh City, Viet Nam
- 6 Former Qiagen employee, Dubai, UAE
- 7 Liverpool School of Tropical Medicine, Liverpool, UK
- 8 Stop TB Partnership, Geneva, Switzerland
- * Corresponding author:
- Luan Nguyen Quang Vo
- Friends for International TB Relief
- 6th Floor, 1/21 Le Van Luong St., Nhan Chinh Ward, Thanh Xuan District, Ha Noi, Viet Nam
- luan.vo@tbhelp.org; +84 902908004

Word count: 3,781

24 ABSTRACT

Objectives: To end tuberculosis (TB), the vast reservoir of 1.7-2.3 billion TB infections (TBI) must be addressed but achieving global TB preventive therapy (TPT) targets seems unlikely. This study assessed the feasibility of using interferon-gamma release assays (IGRA) at lower healthcare levels and the comparative performance of 3- and 9-month daily TPT regimens (3HR/9H).

Methods: This cohort study was implemented in six districts of Ho Chi Minh City and Hai Phong, Viet Nam, from May-2019 to Sept-2020. Participants included household contacts (HHC), vulnerable community members and healthcare workers (HCW) recruited at community-based TB screening events or HHC investigations at primary care centers, who were followed up throughout TPT. We constructed TBI care cascades describing indeterminate and positivity rates to assess feasibility, and initiation and completion rates to assess performance. We fitted mixed-effect logistic and stratified Cox models to identify factors associated with IGRA-positivity and loss to follow-up (LTFU).

Results: Among 5,837 participants, the indeterminate rate was 0.8% and 30.7% were IGRA-positive. TPT initiation and completion rates were 63.3% (3HR=61.2% vs. 9H=63.6%; p=0.147) and 80.6% (3HR=85.7% vs. 9H=80.0%; p=0.522), respectively. Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018) and exhibiting TB-related abnormalities on Xray (2.23 [1.38, 3.61]; p=0.001) were associated with positive IGRA results. Risk of IGRA-positivity was lower in peri-urban districts (0.55 [0.36, 0.55]; p=0.007), aged <15 years (0.18 [0.13, 0.26]; p<0.001), aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), and HCWs (0.34 [0.24, 0.48]; p<0.001). The 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) showed higher hazards of LTFU.

44 Conclusion: Providing IGRA at lower healthcare levels is feasible and along with shorter regimen may expand
 45 access and uptake towards meeting TPT targets, but scale-up may require complementary advocacy and
 46 education for beneficiaries and providers.

Keywords: tuberculosis, infection, community, urban, interferon-gamma release assay, short-course,
 tuberculosis preventive therapy

50 Running head: Optimizing diagnosis and treatment of TB infection in Viet Nam

51 STRENGTHS AND LIMITATIONS OF THIS STUDY

• A strength of the study was the large sample size of persons tested by interferon-gamma release assay across two sites with varying characteristics in background tuberculosis infection as well as demographic and clinical characteristics, which enabled comparative analyses of subsegments of the sample.

The community setting in which participants were recruited and tested using sophisticated diagnostics
 decentralized to lower care levels further contributes to the evidence base for scale-up of tuberculosis
 prevention, especially given the size of the sample.

Embedding the study in routine tuberculosis program activities exposed it to common limitations such as
 heterogeneity in supply chain as well as health worker knowledge, attitudes and practices commonly
 experienced by the program.

ton the ton only

INTRODUCTION

After a brief relegation due to the COVID-19 pandemic, tuberculosis (TB) is once again the world's leading infectious disease killer.[1] One of the key reasons is the estimated 1.7–2.3 billion people infected with TB without suffering from active disease, whose activation continues to fuel incidence.[2,3] An estimated 5-15% of people with TB infection (TBI) develop active TB disease in their lifetimes, serving as a vast reservoir for future TB disease, even if new TB transmission were completely eliminated today.[4,5] This was also observed by a study in London at the height of the pandemic which showed that social distancing mitigated incidence of several respiratory diseases, but not of TB.[6] Thus, research and modeling suggest that increased emphasis on TBI is needed in order to reduce worldwide TB incidence.[7] However, while efforts to find and treat people with TB who are missed by existing TB care programs have been launched in most high TB burden countries, relatively few are addressing the burden of TBI at scale.[8–11]

This muted response was historically linked to World Health Organization (WHO) guidelines recommending TB preventive therapy (TPT) in high TB burden settings only for people living with HIV (PLHIV), under-5 household contacts (HHC) of persons with bacteriologically-confirmed, pulmonary TB and persons with occupational risk factors for progression to active TB.[12] Beyond conservative guidelines, other commonly cited bottlenecks have included shortages in commodities and particularly diagnostic consumables such as tuberculin, high health system costs of diagnosis, treatment and follow-up depressing TPT uptake, and lack of patient-friendly treatment regimen negatively affecting adherence.[13,14]

In recent years, the WHO has issued updated technical and operational guidelines with expanded TPT eligibility criteria, such as HIV-negative household contacts of all ages. [15,16] However, a key recommendation for this expanded eligibility was the inclusion of an appropriate clinical and laboratory evaluation, which in select settings translated to the prerequisite of immunological confirmation of TBI by tuberculin skin test (TST) or interferon-gamma release assay (IGRA) for TPT within national guidelines.[14,17] The updated WHO guidelines also introduced new short-course TPT regimens with better tolerability and safety profiles, which high TB burden countries have eagerly integrated into national TBI guidelines and national strategic plans.[18,19]

One of these countries is Viet Nam, which ranks 11th among the 30 high TB burden countries. During the first prevalence survey, the annual rate of TB infection was measured to be 1.7% with a TBI prevalence of 16.7% in children aged 6–14 years using TST with a threshold of 10mm.[20] A subsequent study in rural Ca Mau province measured a TBI rate of 36.8% using IGRA.[21] In 2014, Viet Nam passed legislation codifying its goals to drastically reduce TB prevalence in alignment with the WHO End TB Strategy.[22] On World TB Day 2020, the Ministry of Health introduced the country's inaugural guidelines on diagnosis and treatment of TBI. Viet Nam further demonstrated its focus on TB prevention by committing at the UN High-Level Meeting on Ending TB to scale-up provision of TPT to 291,500 people by 2022.[23]

However, the country has experienced many of the challenges related to the scale-up of TPT as described above. Specifically, Viet Nam requires TBI confirmation within the expanded eligibility criteria prior to treatment, but has experienced tuberculin supply chain shortages and batch-variance in the positivity threshold. While WHO-recommended IGRAs are commercially available, the National TB Control Programme (NTP) has consigned this assay class to tertiary care facilities due to the delicate specimen handling and sophistical laboratory requirements, [24,25] which is underscored by the lack of published evidence of the assay's deployment at the point-of-care domestically and worldwide. In addition, the prohibitively high costs per test have precluded serious consideration for routine TB program activities.

Nevertheless, the NTP remains committed to the scale-up of TPT through the optimal use of available and new diagnostics and regimens. [26] Given tuberculin supply and staff capacity challenges, and lack of evidence on the impact of recently introduced shorter TPT regimen on uptake and completion, this study assessed the use of the QuantiFERON-TB Gold Plus assay (QFT-Plus; Qiagen, Hilden, Germany) at the community level and the performance of shorter TPT regimen under programmatic conditions. The goal was to inform NTP of Viet Nam and other high TB burden countries in their ambitions to meet their TPT goals. CZ-CZ

METHODS

Study design and objectives

This was a cohort study to measure the feasibility of employing IGRA at the community and primary care levels for the diagnosis of TBI. Feasibility was defined by comparing indeterminate and positivity rates with those demonstrated in facility-based studies (primary endpoints). Secondary objectives included measuring the rate of TPT initiation and completion (secondary endpoints) in cohorts provided with two different TPT regimens, and to identify participant covariates associated with IGRA-positivity and loss to follow-up. The study followed the STROBE guideline for reporting observational studies (Supplemental material 1).

Study setting

The study was conducted in six districts of Ho Chi Minh City (HCMC) and Hai Phong municipal provinces. In HCMC, study sites included Districts 6, 8, 12, Binh Chanh, Go Vap, and Tan Binh with a cumulative population of 2,387,052 and 3,598 TB notifications in 2019. In Hai Phong, the study took place in Do Son with a population of 49,029 and 52 persons with drug-susceptible TB notified in 2019.

122 Study population and recruitment

The study was embedded into routine contact investigations at primary care commune health posts and community-based active TB case finding (ACF) events. Details of the ACF events are provided elsewhere.[27] The study population included HHC and close contacts, and vulnerable community members at elevated risk of active TB, such as the elderly, urban poor and economic migrants.[28] The HCMC site also included a subgroup of primary- and secondary-level healthcare workers (HCW) based on the request from local authorities. Recruitment and follow-up occurred from May-2019 to Sep-2020. All individuals presenting for screening provided routine demographic and clinical information including age, sex, residency status, history of TB, comorbidities and symptomatic presentation. Following intake, persons belonging to the study population with residency in the study districts were invited to participate in the study. Persons living outside of or intending to relocate away from the study sites, or who declined to consent were excluded. Eligible, consenting participants were recruited consecutively until the quota of available QFT-Plus tests was reached (n=5,000 in HCMC and n=1,000 in Hai Phong). Parents consented on behalf of their children.

²⁵ 135 Specimen collection and processing

Provincial lung hospital (PLH) laboratory staff hosted training sessions on specimen collection and processing for the District TB Unit (DTU) and district-level laboratory staff. The District Health Center (DHC) mobilized participants to attend ACF events or to present at commune health posts. All attendants were systematically screened for TB symptoms and directed to undergo chest radiography (CXR) to rule out active TB. Persons with parenchymal abnormalities suggestive of TB on CXR or strong clinical suspicion of TB were referred for molecular sputum testing, as per contemporary national TB treatment guidelines.[29] Attendants were counseled on TBI and invited to participate. Study staff collected blood specimens from consenting, eligible individuals as per manufacturer recommended procedures. Each participant provided 4ml of venous whole blood in four separate tubes. Blood specimens were processed and analyzed per manufacturer's recommendations. Briefly, all four tubes were immediately shaken ~10 times to dissolve all antigens on the tube's wall coating. Tubes were stored inside dry ice coolers at 17–25°C, which were transported to the PLH biochemistry-hematology departments within six hours, twice a day. Samples were incubated at 37°C for 20 hours (±1 hour) and centrifuged within one hour of completing the incubation stage at 2000-3000g for 14 minutes at room temperature. The twelve-step enzyme linked immunosorbent assay was conducted within 16-24 hours. Results were analyzed by using proprietary QuantiFERON software v2.7.1.

1 151 **TPT initiation and participant follow-up**

152 QFT-Plus test results were returned to the DHC two days after receipt of the blood specimens. Individuals with 153 negative results were informed via phone by DHC staff. Those with positive results and eligible for preventive

treatment (i.e., with confirmed TBI and active TB ruled out) were invited to present at their respective DTU for pre-treatment counseling and TPT initiation as per national guidelines.[17] TPT regimen varied by province. In HCMC, TPT consisted of nine months of daily isoniazid (9H), while in Hai Phong eligible persons received three months of daily isoniazid and rifampicin (3HR). Individuals on TPT received in-person follow-up during monthly drug pick-up at the DTU. Community TB officers conducted phone or in-person follow-up in regular intervals or as needed. Participants experiencing adverse events were asked to present at the DTU for check-up.

160 Statistical analyses

The primary measures of interest were QFT-Plus positivity and indeterminate rates. Secondary variables of interest included TPT initiation and completion rates within the study population. Missing data were retrieved through post-event follow-up of participants or excluded from individual analyses. We constructed TBI care cascades in aggregate and segmented by site ranging from persons recruited to participants with a successful TPT completion. We documented losses along the cascade and reported median and interquartile ranges of diagnostic delay, i.e., time from testing to TPT initiation. We calculated descriptive statistics for key sample characteristics by QFT-Plus result and TPT completion and fitted a saturated, mixed-effect logistic regression to assess associations between positivity and participant covariates to adjust for confounding and inherent bias. Study district was the random effect to account for intra-cluster correlation. The survival analysis designated loss to follow-up (LTFU) a failure and censored adherent participants on 3HR and 9H at three and nine months, respectively. We constructed Kaplan-Meier survival curves and conducted log-rank tests to assess the equality of survival between the two TPT regimen. We fitted a saturated Cox model and assessed validity of the proportionality assumption using log-log plots and Schoenfeld residuals. Violations were addressed via stratification or modeling of time-variance for parameters of interest. The final model passed both the global postestimation proportional hazards test and tests of individual parameters. P-values of validation tests were provided in the Supplemental material 2. Hypothesis tests were two-tailed. A threshold of p<0.05 was considered significant. Analyses were conducted using STATA v17 (Stata Corp.; College Station, TX, USA).

⁴³ 178 Patient and public involvement
⁴⁴

While TB patients and their families were not involved in setting the research question, a consensus building meeting was held at the beginning of the study for government stakeholders and community members to provide feedback and recommendations and reach consensus about the study design and implementation. Patients, their families and public stakeholders were also central to dissemination of study information, which helped to motivate community involvement during and beyond the study.

RESULTS

Sample characteristics

Of the 5,837 participants in the sample, 59.3% (n=3,463) were female (Table 1). Children under 15 years constituted 19.5% (1,136/5,834) of the sample and the median participant age was 40 (IQR: 20–55). Overall, most participants were recruited at community-based ACF events (55.8%; n=3,257), lived in urban areas (65.6%; n=3.827), were permanent residents (90.5%; 3,116/3,444) and were enrolled on social health insurance (90.4%; 5,269/5,832). About 2.9% (n=167) were diabetics and 1.1% (n=62) reported a history of TB. Moreover, 39.5% (n=2,306) reported experiencing at least one of the four core TB symptoms (cough, weight loss, fever, during ... and/or night sweats) during recruitment, while 2.3% (n=134) participants exhibited TB-related CXR abnormalities.

	Total	IGRA(+) [¥]	IGRA (-) [¥]	Indeterminate	aOR¥	p-value [†]
	(N = 5,837)	(N = 1,792)	(N = 4,000)	(N = 45)	(95% CI)	
	N (%) [¤]	N (%)	N (%)	N (%)		
Sex						
Female	3,463 (59.3)	1,048 (30.3)	2,392 (69.1)	23 (0.7)	Ref	
Male	2,374 (40.7)	744 (31.3)	1,608 (67.7)	22 (0.9)	1.51 [1.28; 1.78]	< 0.001
Age¶						
<15 years	1,136 / 5,834 (19.5)	134 / 1,792 (11.8)	997 / 3,997 (87.8)	5 / 45 (0.4)	0.18 [0.13; 0.26]	< 0.001
15-29 years	891 / 5,834 (15.3)	195 / 1,792 (21.9)	687 / 3,997 (77.1)	9 / 45 (1.0)	0.56 [0.42; 0.75]	< 0.001
30-44 years	1,290 / 5,834 (22.1)	418 / 1,792 (32.4)	864 / 3,997 (67.0)	8 / 45 (0.6)	Ref	
45-59 years	1,679 / 5,834 (28.8)	704 / 1,792 (41.9)	957 / 3,997 (57.0)	18 / 45 (1.1)	1.30 [1.05; 1.60]	0.018
≥ 60 years	838 / 5,834 (14.4)	341 / 1,792 (40.7)	492 / 3,997 (58.7)	5 / 45 (0.6)	1.06 [0.80; 1.40]	0.673
Median age (IQR)	40 (20–55)	49 (35–58)	35 (15–52)	45 (24–54)		
Study site						
Ho Chi Minh City	4,840 (82.9)	1,603 (33.1)	3,200 (66.1)	37 (0.8)	Ref	
Hai Phong	997 (17.1)	189 (19.0)	800 (80.2)	8 (0.8)	0.69 [0.40; 1.20]	0.186
Screening location						
Community screening event	3,257 (55.8)	993 (30.5)	2,244 (68.9)	20 (0.6)	Ref	
Primary care center	2,580 (44.2)	799 (31.0)	1,756 (68.1)	25 (1.0)	0.88 [0.69; 1.13]	0.325
Target group						
Household and close contacts	2,431 (41.7)	897 (36.9)	1,495 (61.5)	39 (1.6)	1.11 [0.67; 1.82]	0.690
Vulnerable community members	2,995 (51.3)	821 (27.4)	2,168 (72.4)	6 (0.2)	Ref	
Healthcare workers	411 (7.0)	74 (18.0)	337 (82.0)	0 (0.0)	0.34 [0.24; 0.48]	< 0.001
Urbanization		× ,				
Urban	3,827 (65.6)	1,135 (29.7)	2,669 (69.7)	23 (0.6)	Ref	
Peri-urban	2,010 (34.4)	657 (32.7)	1,331 (66.2)	22(1.1)	0.55 [0.36; 0.85]	0.007
Residency status ^{+,¶}		. ,			_ · _	
Grade 1	3,116 / 3,444 (90.5)	799 / 907 (25.6)	2,294 / 2,511 (73.6)	23 / 26 (0.7)	Ref	
Grade 2	91 / 3,444 (2.6)	27 / 907 (29.7)	62 / 2,511 (68.1)	2 / 26 (2.2)	1.08 [0.66; 1.74]	0.765
Grade 3	202 / 3,444 (5.9)	68 / 907 (33.7)	134 / 2,511 (66.3)	0 / 26 (0.0)	1.36 [0.96; 1.92]	0.083
Grade 4	35 / 3,444 (1.0)	13 / 907 (37.1)	21 / 2,511 (60.0)	1 / 26 (2.9)	1.54 [0.73; 3.26]	0.260
Social health insurance [¶]						
No	563 / 5,832 (9.7)	180 / 1,790 (32.0)	376 / 3,997 (66.8)	7 / 45 (1.2)	Ref	
Yes	5,269 / 5,832 (90.4)	1,610 / 1,790 (30.6)	3,621 / 3,997 (68.7)	38 / 45 (0.7)	1.11 [0.84; 1.46]	0.473

194 Table 1: Participant characteristics and adjusted odds ratios associated with IGRA-positivity

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4 5							
3 4 5							
5	Diabetes mellitus						
5	No/Unknown	5,670 (97.1)	1,721 (30.4)	3,906 (68.9)	43 (0.8)	Ref	
6	Yes	167 (2.9)	71 (42.5)	94 (56.3)	2 (1.2)	1.15 [0.75; 1.76]	0.516
7	Previous history of TB						
8	No/Unknown	5,775 (98.9)	1,764 (30.6)	3,967 (68.7)	44 (0.8)	Ref	
9	Yes	62 (1.1)	28 (45.2)	33 (53.2)	1 (1.6)	1.93 [0.96; 3.86]	0.063
10	Any TB symptoms ^{§,¶}						
11	No	3,531 (60.5)	1,012 (28.7)	2,499 (70.8)	20 (0.6)	Ref	
12	Yes	2,306 (39.5)	780 (33.8)	1,501 (65.1)	25 (1.1)	0.96 [0.80; 1.15]	0.635
13 14	Chest X-ray result						
14	Normal	5 502 (94 3)	1 693 (30 8)	3 768 (68 5)	41 (0.8)	Ref	
15	Abnormal	134 (2.3)	78 (58.2)	56 (41.8)	0 (0.0)	2.23 [1.38: 3.61]	0.001
17	No Chest X-ray	201 (3.4)	21 (10.5)	176 (87.6)	4 (2.0)	0.28 [0.15; 0.51]	< 0.001
18 1	95 Notes:						
19 l'	96 ¶ N sizes listed due to missing values						
20 1	9/ § Includes cough, fever, night sweats 98	and weight loss of any duration;	rovince temporary resident	· 3=Short-term intra-provi	nce temporary re	esident: 1=Short_term_ir	ter-province
21 1	99 temporary resident	hanent resident, 2 Eong-term mud-p	novince temporary resident	, 5 Short-term, mua-provi	lee temporary re	esident, + Short-term, n	ner-provinee
22 2	00 ¤ Percent of total						
23 20	1 + Percent of row total VICPA-Interferen Commo Polooso	agave a OP-adjusted Odds Patio					
24 20	$02 \text{#IORA-Interferon-Gamma Release } 1 \\ 03 \text{† Wald test}$	Assay, aOK-aujusteu Odus Katio					
26							
27							
27 28							
27 28 29							
27 28 29 30							
27 28 29 30 31							
27 28 29 30 31 32							
27 28 29 30 31 32 33 24							
27 28 29 30 31 32 33 34 35							
27 28 29 30 31 32 33 34 35 36							
27 28 29 30 31 32 33 34 35 36 37							
27 28 29 30 31 32 33 34 35 36 37 38							
27 28 29 30 31 32 33 34 35 36 37 38 39							
27 28 29 30 31 32 33 34 35 36 37 38 39 40							
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41							
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42							
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43							
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		For peer review only - ht	tp://bmiopen.bmi.com	/site/about/guidelines.x	chtml		
27 28							

TB infection care cascade

Of the 16,652 individuals verbally screened in both provinces, 35.1% (n=5,837) agreed to be tested by OFT-Plus for the study (Figure 1). The overall indeterminate rate was 0.8% (n=45) and 30.7% (n=1,792) of participants were QFT-Plus-positive, of whom 97.5% (n=1,748) were eligible for TPT. About 63.3% (1,107/1,748) of eligible participants initiated TPT and 80.6% (892/1,107) completed therapy. The sample included 4,840 participants in HCMC and 997 in Hai Phong (Table 2). The indeterminate rate was 0.8% in both sites, while positivity rates were 33.1% (1,603/4,840) in HCMC and 19.0% (189/997) in Hai Phong. The respective TPT initiation and completion rates in the 9H cohort in HCMC were 63.6% (995/1,565) and 80.0% (796/995) compared to 61.2% (112/183) and 85.7% (96/112) in the 3HR cohort in Hai Phong. Neither initiation nor completion rates were significantly different between the two regimens (p=0.522 & p=0.147, respectively).

214 Table 2: TB infection care cascade by TPT cohort

	Total	HCMC	Hai Phong
	(N = 5,837)	(N = 4,840)	(N = 997)
\sim	N (%)	N (%)	N (%)
IGRA result & TPT [¥]	5		
Indeterminate	45 (0.8)	37 (0.8)	8 (0.8)
Negative	4,000 (68.5)	3,200 (66.1)	800 (80.2)
Positive	1,791 (30.7)	1,603 (33.1)	189 (19.0)
Ineligible for TPT (% of positive)	44 (0.8)	38 (0.8)	6 (0.6)
No CXR	21 (0.4)	16 (0.3)	5 (0.5)
CXR(+), No MTB test	6 (0.1)	5 (0.1)	1 (0.1)
MTB(+)	17 (0.3)	17 (0.4)	0 (0.0)
Eligible for TPT (% of positive)	1,748 (97.6)	1,565 (97.6)	183 (97.3)
CXR(-)	1,702 (95.0)	1,524 (95.1)	178 (94.7)
CXR(+), MTB(-)	46 (2.6)	41 (2.6)	5 (2.7)
Initiated on TPT [¶] (% of eligible)	1,107 (63.3)	995 (63.6)	112 (61.2)
Completed TPT [¶] (% of initiated)	892 (80.6)	796 (80.0)	96 (85.7)

215 Notes:

¥ IGRA=Interferon-Gamma Release Assay; CXR=Chest X-Ray; TPT=TB Preventive Therapy; MTB=*M. tuberculosis*; HCMC=Ho
 Chi Minh City

218 ¶ TPT consisted of 9H in HCMC and of 3HR in Hai Phong

The sample included 46.6% (n=2,256) HHCs, 44.9% (n=2,173) vulnerable community members and 8.5% (n=411) HCWs in HCMC (Figure 2). In Hai Phong, the sample consisted of 17.6% (n=175) HHCs and 82.5% (n=822) community members. IGRA-positivity among HHCs was similar in both cities, but lower in community members in Hai Phong (123/822=15.0%) compared to HCMC (698/2173=32.1%). Similarly, positivity in HCWs was also comparatively lower (74/411=18.0%). TPT initiation rates in HHCs and community members were similar across sites ranging from 59.0% to 66.6%, and higher among HCWs (52/72=72.2%). Diagnostic delays in HCMC were shorter than in Hai Phong for both HHCs (17 vs. 59 days) and community members (15

Page 13 of 27

BMJ Open

1 2	
3	22
4 5	22
6 7	20
8 9	22
10	2:
11 12	23
13 14	23
15	23
16 17	23
18 19	•
20	23
21 22	23
23 24	23
25 26	2:
20 27	24
28 29	2- 24
30	2- 24
32	-
33 34	24
35	
30 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53 54	
55	
56	

57 58

59

60

vs. 58 days), except among HCWs (40.5). Similarly, TPT completion rates were high among HHCs and
community members in both sites ranging from 77.3% to 90.5%, but only half of HCWs completed TPT.

229 Risk factors of IGRA-positivity

Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018), and exhibiting CXR abnormalities suggestive of TB (2.23 [1.38, 3.61]; p=0.001) were associated with higher QFT-Plus positivity (Table 2). Conversely, compared to the reference group (30-44 years), the risk of QFT-Plus-positivity was significantly lower among children under 15 years (0.18 [0.13, 0.26]; p<0.001) and persons aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), as well as among HCWs (0.34 [0.24, 0.48]; p<0.001) and individuals living in peri-urban areas (0.55 [0.36, 0.55]; p=0.007).

⁹ 236 Survival analysis and risk factors of TPT completion

A total of 1,107 participants were followed for a total of 8,211 person-months with 215 recorded LTFUs (Table 3). There were 7,904 and 307 person-months of observations with mean follow-up times of 7.9 [7.8, 8.1] months and 2.7 [2.6, 2.9] months, and 199 and 16 LTFUs in the 9H and 3HR cohorts, respectively. The respective LTFU incidence rates were 25.2 and 52.1 per 1,000 person-months. Most LTFUs occurred after the first month of TPT in both the 9H (79/199=39.7%) and 3HR (13/16=81.2%) cohorts (Figures 3a and 3b). The survival analysis showed that the 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) were strongly associated with higher risk of LTFU.

Table 3: Participant characteristics and adjusted risk factors associated with TPT loss to follow-up

		ТРТ		aHR of LTFU [¥]	p-value [†]
	Total	completed [¥]	LTFU[¥]	(95% CI)	
	(N = 1, 107)	(N = 892)	(N = 215)		
	N (%) [¤]	N (%) [‡]	N (%) [‡]		
TPT regimen					
9Н	995 (89.9)	796 (80.0)	199 (20.0)	Ref	
3HR	112 (10.1)	96 (85.7)	16 (14.3)	3.83 [1.49; 9.84]	0.005
Sex					
Female	645 (58.3)	512 (79.4)	133 (20.6)	Ref	
Male	462 (41.7)	380 (82.3)	082 (17.8)	1.02 [0.94; 1.11]	0.608
Age					
<15 years	86 (7.8)	72 (83.7)	14 (16.3)	0.63 [0.22; 1.79]	0.390
15-29 years	116 (10.5)	90 (77.6)	26 (22.4)	1.71 [0.88; 3.35]	0.116
30-44 years	249 (22.5)	195 (78.3)	54 (21.7)	Ref	
45-59 years	426 (38.5)	354 (83.1)	72 (16.9)	0.97 [0.56; 1.69]	0.911
≥ 60 years	230 (20.8)	181 (78.7)	49 (21.3)	1.14 [0.56; 2.32]	0.723
Median age (IQR)	50 (35–58)	50 (35–58)	49 (35–59)		
Screening location					
Community screening event	627 (56.6)	523 (83.4)	104 (16.6)	Ref	

Primary care center	480 (43.4)	369 (76.9)	111 (23.1)	1.19 [0.62; 2.30]	0.593
Target group	· · · · · ·				
Household and close contacts	585 (52.9)	458 (78.3)	127 (21.7)	1.03 [0.75; 1.39]	0.874
Vulnerable community members	470 (42.5)	408 (86.8)	62 (13.2)	Ref	
Healthcare workers	52 (4.7)	26 (50.0)	26 (50.0)	1.38 [1.25; 1.53]	< 0.001
Urbanization					
Urban	729 (65.9)	598 (82.0)	131 (18.0)	Ref	
Peri-urban	378 (34.2)	294 (77.8)	84 (22.2)	1.00 [0.58; 1.73]	0.990
Diabetes mellitus					
No/Unknown	1,065 (96.2)	859 (80.7)	206 (19.3)	Ref	
Yes	42 (3.8)	33 (78.6)	9 (21.4)	0.74 [0.18; 3.11]	0.679
Previous history of TB	, í		, í		
No/Unknown	1,096 (99.0)	883 (80.6)	213 (19.4)	Ref	
Yes	11 (1.0)	9 (81.8)	2 (18.2)	1.03 [0.14; 7.63]	0.980

245 Notes: 246 ¶Mode

¹ Model stratified by health insurance and residency status, so these parameters were excluded; parameters of sex and target group fitted as time-varying covariates; includes a total of 8,211 person-months

248 ¤ Percent of total

+ Percent of row total

- 250 ¥ LTFU=Loss to follow-up; aOR=adjusted Hazard Ratio
- 251 † Wald test

DISCUSSION

In the array of obstacles to scaling up TPT in Viet Nam, TBI diagnosis remains a critical step in the country's targeted approach. To date, however, it has also represented an insuperable bottleneck. This stems from an overreliance on TST from a single product (PPD-Bulbio), for which there is documented performance deviation compared to other TSTs and IGRA [30]. These issues are in addition to the well-understood range of confounders affecting clinical performance of TSTs in comparison to IGRAs.[31] Despite its shortcomings, TST remains the programmatic standard of care partly due to the perceived operational challenges in deploying IGRAs outside of hospital settings.

This evaluation builds on the evidence base that it is possible to deploy IGRAs at lower healthcare levels.[21] As shown previously, fidelity to manufacturer recommended procedures in terms of handling, timing and temperature-control throughout collection, transport and processing of specimens from the community to the laboratory resulted in positivity[32] and indeterminate rates[33,34] that were comparable to those of facility-based studies. Our measured positivity was also aligned with previously published IGRA-positivity measured in the community in Viet Nam (pooled positivity: 37.7%; n=2,706).[21,35] We also observed the expected dose-response pattern of rising positivity and risk of TBI in older individuals as well as the higher risk of QFT-Plus positivity in males.[20,21] Concordant with these results, our study highlighted that IGRA can be used at the community level as another option for TBI diagnosis and accelerating scale-up of TPT.

However, there were patterns in the TBI care cascade indicating that scale-up of available TBI diagnostic tools and regimens requires more than simply decentralization. Fewer than half of the individuals mobilized during these ACF campaigns agreed to or were eligible for an IGRA test and only six out of ten eligible persons initiated TPT, which was concordant with prior studies in Viet Nam.[32] One potential reason for the drop-off may be process related, since we embedded the study in a programmatic setting, which meant that in general over two weeks elapsed from when participants were tested until eligible persons initiated TPT. Nevertheless, slow turnaround time may only partially explain the pre-treatment LTFU, as TPT initiation rate was consistent across both settings despite the difference in turnaround time.

By fielding the study in two separate sites with different TPT regimen and TBI rates in the community, we recorded several noteworthy observations. Specifically, while initiation rates in both sites were similar, there was a slightly higher completion rate in the 3HR cohort. Thus, even though we did not observe a greater uptake of TPT as seen on prior studies, the shorter treatment duration of 3HR may have contributed to higher TPT completion rates.[36–38] However, the survival analysis showed that more persons were lost to follow-up than expected over the shorter period of treatment. Based on informal qualitative feedback from field staff, reasons for the large drop-offs in the cascade included a lack of understanding of the implications of TBI and the benefits of TPT, and the de-prioritization of TPT among providers. Since the 3HR regimen was only used in one province which may have faced site-specific challenges, we cannot generalize these results to other areas of the country. However, they highlight the need for more education and advocacy for providers and participants to improve the acceptance and prioritization of TPT.[39,40]

Moreover, advocacy and awareness building may need to be tailored to individual subgroups. Even though positivity, initiation and completion rates did not vary substantially across sites, gender or age category, there were, however, notable differences across study populations. In our study, HCWs exhibited a lower proportion and risk of positivity, higher TPT initiation and significantly higher risk of LTFU compared to HHCs and community members in either site. The low positivity rate was particularly noteworthy for its discordance with published, albeit dated, evidence from Viet Nam[41] and WHO guidelines warranting intervention in this group due to higher occupational risk of TB infection.[42] A potential explanation for the discordance is that a sizeable proportion of HCWs were generalist primary care workers. The more recent EnTIC study (NCT02073240) measured lower TBI rates among Vietnamese HCWs in general hospitals compared to HCWs in TB hospitals (27.9% [22.8%, 33.6%] vs. 41.7% [26.2%, 58.9%]).[43] However, this TBI rate in general hospital HCWs is still higher than the rate among HCWs on this study; a future comparative analyses of TBI in HCWs in tertiary/quaternary general hospitals versus primary care workers may offer further insight.

The diagnostic delay was unacceptably long among HCWs and across all groups in Hai Phong. In Hai Phong, the lower burden and more limited TB care capacity as well as greater reliance on the lung hospital in TB care

and prevention activities may have contributed to the long delay in treatment initiation. Meanwhile, upon investigation, HCWs indicated a preference to wait for the new 12-dose regimen of isoniazid and rifapentine (3HP), but then agreed to initiate TPT on 9H as concerns over nitrosamine impurities delayed scale-up of 3HP in Viet Nam.[44,45] Nevertheless, despite a delay of almost six weeks, the TPT initiation rate among HCWs was highest across all groups and also above rates measured on prior studies (39.0%-49.6%).[46,47] Conversely, the low completion rate measured on this study was on par with other studies on HCWs receiving 9H for TPT. However, this low rate may have been avoided with shorter regimen as adherence in this study at month 3 was 100% and month 8 was still at 80.0%. These results were in line with previous studies that indicated health workers were significantly more likely to complete TPT on 3HR compared to 9H (91.4% vs. 76.7%, p=0.02).[48-50]

The use of the 9H regimen in the majority of participants also highlights a key limitation of this study. By conducting it under routine program conditions, the study was exposed to external bias and confounding, such as the variability in the available TPT regimen. HCMC historically has had a substantially larger burden of TB and TBI, as evinced on this study. Thus, 9H was the local regimen of choice due to its greater availability and lower costs. Similarly, we relied on routine diagnostics to rule out active TB rather than more sensitive tools such as culture due to cost implications. With respect to costs, another limitation of our study was the lack of a formal assessment of the cost barrier of IGRAs in our low-resource setting. Operationally, WHO recommends to integrate TPT into routine HHC investigations and ACF.[16] It stands to reason that such integration may also improve value for money as has been well-established for highly vulnerable people living with HIV.[51] There is ample evidence that HHC investigations and community-based ACF campaigns can reach those most vulnerable to active TB and thus most in need of TPT.[52–54] Nevertheless, given the lack of an accompanying health economic evaluation, future research should conduct impact evaluations and cost-effectiveness analyses of integrated TB and TBI testing and treatment on ACF campaigns and differences in incidence and disability-adjusted life years compared to a control cohort. Another limitation is that our cohort design did not include a post-treatment follow-up to assess incidence of TB in those with and without TPT, in part due to the social distancing measures launched in response to the pandemic. The study's convenience sampling and selection of HCMC and Hai Phong as study sites likely introduced bias towards densely populated urban settings, which consequently limits the generalizability of this study. Nevertheless, the study benefitted from its large sample size and integration into routine program operations that may help to translate the findings to recommendations for densely populated, high TB burden settings in general.

332 CONCLUSIONS

WHO's End TB Strategy highlights the need for increased testing and treatment of TB infection as a core intervention to reduce transmission and thus achieve incidence targets. While many high TB burden countries have incorporated this emphasis into their national strategic plans, operationalization of these plans is often hindered by the suboptimal application of available tools. IGRAs are the current gold standard for TBI testing, but are often underutilized, particularly at the lower healthcare levels. Shorter TPT regimen are recommended, but require further studies to assess their potential to support broad-scale TPT. This study elucidated the potential to decentralize and leverage these tools for wider and more cost-effective deployment towards meeting TPT targets, but also highlighted that scale-up of these tools, as well as overall TPT access and uptake, will likely require complementary, tailored advocacy and education for both beneficiaries and providers.

342 ACKNOWLEDGMENTS

We would like to acknowledge Viet Nam's National TB Programme, the HCMC and Hai Phong Provincial Departments of Health, and PLHs, the DHCs and commune health posts and participating public health staff for their support. We would also like to thank the Ho Chi Minh City Public Health Association for their support. Lastly, we feel a debt of gratitude to our patients, family members and communities for their participation and support. We would like to especially thank the site coordinators and CHWs for their tireless efforts to care for their patients and contribute to ending TB in Viet Nam.

COMPETING INTERESTS

350 The authors have no competing interests to declare.

FUNDING

This study and LNQV, AJC, RJF, NTTN and MC were supported by the European Commission's Horizon 2020 programme (grant number: 733174). The study and TTTD received additional financial support from the Government of Canada through the Stop TB Partnership's TB REACH initiative (grant number: STBP/TBREACH/GSA/W6SU-09). JC received support from the Government of Canada (grant number: CA-3-D000920001). Qiagen contributed the QFT-Plus kits to this study through an in-kind donation (grant number: N/A; clinical collaboration agreement dated 27 November 2017). None of these funding bodies had a role in the design of the study, in collection, analysis, and interpretation of data, or in writing the manuscript.

1
2
3
4
5
6
7
, 0
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
27
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
2/
38
39
40
41
42
43
<u>4</u> 4
- / E
4) 42
46
47
48
49
50
51
51
52
53
54
55
56
57

59

60

360

361

362

363

364

365

368

369

370

371

372

359 AUTHORS' CONTRIBUTIONS

- Conceptualization: LNQV, NN, VVT, HMD, THM
- Methodology: LNQV, NTTN, TTTD, THM, HMD, VVT
- Formal analysis: LNQV, PTL
 - Investigation: VVT, NTTN, TTTD, PTL
 - Resources: LHN, HMD, HTT, HBN, NVN
- Data curation: LNQV, AJC, PTL, KTT
- Writing original draft: LNQV, NTTN, TTTD
- Writing review and editing: LNQV, AJC, JC, NN, HTT, MC
 - Visualization: LNQV
 - Supervision: JC, MC, LNQV, LHN, THM, HTT, HBN, NVN
 - Project administration: RJF, AJC, VVT, NTTN, TTTD
 - Funding acquisition: LNQV, RJF, AJC
 - Final approval: all authors have read and approved the manuscript

373 DATA AVAILABILITY

The data that support the findings of this study are available from the Viet Nam National TB Control Program, Hai Phong Provincial Lung Hospital and Pham Ngoc Thach Provincial TB Hospital, but restrictions apply to their availability. Data are can be made available from the authors upon reasonable request and with permission of the Viet Nam National TB Control Program, Hai Phong Provincial Lung Hospital and Pham Ngoc Thach Provincial TB Hospital.

379 ETHICAL CONSIDERATIONS

This study was approved by the Pham Ngoc Thach Hospital ethics committee for biomedical research (897/HDDD-PNT). In addition, QFT-Plus testing is part of national guidelines and activities were approved by the NTP (1069/BVPTW-DAPCL). Participation was voluntary and did not affect the provision or standard of care. All personal identifying information was removed from the dataset prior to analysis.

1 2			
3 4	384	RE	FERENCES
5 6	385	1	World Health Organization. Global Tuberculosis Report 2022. Geneva, Switzerland: 2022.
7	386	2	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using
8 9	387		Mathematical Modelling. PLOS Med 2016;13:e1002152. doi:10.1371/journal.pmed.1002152
10	388	3	Esmail H, Barry CE, Young DB, et al. The ongoing challenge of latent tuberculosis. Philos Trans R Soc
11	389		<i>B Biol Sci</i> 2014; 369 :20130437–20130437. doi:10.1098/rstb.2013.0437
13 14	390	4	Matteelli A, Sulis G, Capone S, et al. Tuberculosis elimination and the challenge of latent tuberculosis.
15	391		Press Medicale 2017;46:e13-21. doi:10.1016/j.lpm.2017.01.015
16 17	392	5	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using
18	393		Mathematical Modelling. PLoS Med 2016;13:1–13. doi:10.1371/journal.pmed.1002152
19 20	394	6	Lewer D, Mulchandani R, Roche A, et al. Why has the incidence of tuberculosis not reduced in London
21	395		during the COVID-19 pandemic? Lancet Respir Med 2022;2600:1-2. doi:10.1016/s2213-
22 23	396		2600(22)00012-1
24 25	397	7	Shrestha S, Kendall EA, Chang R, et al. Achieving a "step change" in the tuberculosis epidemic through
25 26	398		comprehensive community-wide intervention: a model-based analysis. BMC Med 2021;19:1-15.
27 28	399		doi:10.1186/s12916-021-02110-5
29	400	8	Creswell J, Khan A, Bakker MI, et al. The TB REACH Initiative : Supporting TB Elimination Efforts in
30 31	401		the Asia-Pacific. Trop Med Infect Dis 2020;5:1-11. doi:10.3390/tropicalmed5040164
32	402	9	Hinderaker SG, Rusen ID, Chiang CY, et al. The FIDELIS initiative: Innovative strategies for increased
33 34	403		case finding. Int J Tuberc Lung Dis 2011;15:71–6.
35 36	404	10	The Global Fund. 2020-2022 Strategic Initiatives. 2020;:1–
37	405		6.https://www.theglobalfund.org/media/9228/fundingmodel_2020-2022strategicinitiatives_list_en.pdf
38 39	406		(accessed 14 Nov 2022).
40	407	11	Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: Diagnosis and
41 42	408		treatment of tuberculosis infection. Lancet 2015;386:2344-53. doi:10.1016/S0140-6736(15)00323-2
43 44	409	12	World Health Organization. Guidelines on the management of latent tuberculosis infection. 2015.
45	410		doi:WHO/HTM/TB/2015.01
46 47	411	13	World Health Organization. Report of the Global Consultation on the Programmatic Management of
48	412		Latent Tuberculosis Infection. 2016. 12.http://www.who.int/tb/challenges/consultation_meeting_ltbi/en/
49 50	413	14	Faust L, Ruhwald M, Schumacher S, et al. How are high burden countries implementing policies and
51 52	414		tools for latent tuberculosis infection? A survey of current practices and barriers. Heal Sci Reports
52 53	415		2020; 3 . doi:10.1002/hsr2.158
54 55	416	15	World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for
56	417		programmatic management. First edit. Geneva: : World Health Organization Press 2018.
57 58			18
59			For peer review only - http://bmiopen.bmi.com/site/about/quidelines.vbtml
00			

Page 20 of 27

BMJ Open

2			
3 ∡	418	16	World Health Organization. WHO operational handbook on tuberculosis - Module 1 : Prevention. 2022.
5	419		https://apps.who.int/iris/bitstream/handle/10665/340256/9789240022614-eng.pdf
6 7	420	17	Ministry of Health. Decision on the promulgation of the Guidelines on the detection and treatment of
8	421		Latent TB Infection [vietnamese]. Viet Nam: 2020.
9 10	422	18	National Tuberculosis Leprosy and Lung Disease Program. National Strategic Plan for Tuberculosis,
11	423		Leprosy and Lung Health 2019-2023. 2019.
12	424	19	Revised National Tuberculosis Control Programme. National Strategic Plan for tuberculosis elimination
14 15	425		2017–2025. New Delhi, India: 2017.
16	426	20	Hoa NB, Cobelens FGJ, Sy DN, et al. First national tuberculin survey in Viet Nam: Characteristics and
17 18	427		association with tuberculosis prevalence. Int J Tuberc Lung Dis 2013;17:738-44.
19	428		doi:10.5588/ijtld.12.0200
20 21	429	21	Marks GB, Nhung N V., Nguyen TA, et al. Prevalence of latent tuberculous infection among adults in
22	430		the general population of Ca Mau, Viet Nam. Int J Tuberc Lung Dis 2018;22:246-51.
23 24	431		doi:10.5588/ijtld.17.0550
25 26	432	22	Office of the Prime Minister. Approval of the National Strategy for TB prevention and control until 2020
26 27	433		with vision to 2030 [vietnamese]. Viet Nam, Viet Nam: 2014.
28 29	434	23	Stop TB Partnership. UN GA HLM on TB Political Declaration: Target for TB Preventive Therapy.
30	435		2018;:19.
31 32	436	24	Ganmaa D, Khudyakov P, Buyanjargal U, et al. Risk factors for active tuberculosis in 938
33	437		QuantiFERON-positive schoolchildren in Mongolia: A community-based cross-sectional study. BMC
34 35	438		Infect Dis 2019;19:1–9. doi:10.1186/s12879-019-4160-7
36 27	439	25	World Health Organization. Operational Handbooks, Module 1: Prevention, Annex 6. Answers to
37 38	440		frequently asked questions on IGRAs. WHO TB Knowl. Shar. Platf. 2021.https://tbksp.org/en/node/666
39 40	441		(accessed 14 Oct 2022).
41	442	26	Viet Nam National TB Control Programme. Viet Nam National Strategic Plan for TB 2021-2025. Ha
42 43	443		Noi, Viet Nam: 2020.
44	444	27	Nguyen LH, Codlin AJ, Vo LNQ, et al. An Evaluation of Programmatic Community-Based Chest X-ray
45 46	445		Screening for Tuberculosis in Ho Chi Minh City, Vietnam. Trop Med Infect Dis 2020;5:185.
47 48	446		doi:10.3390/tropicalmed5040185
48 49	447	28	Vo LNQ, Codlin AJ, Forse RJ, et al. Evaluating the yield of systematic screening for tuberculosis among
50 51	448		three priority groups in Ho Chi Minh City, Viet Nam. Infect Dis Poverty 2020;9:1-13.
52	449		doi:10.1186/s40249-020-00766-4
53 54	450	29	Viet Nam Ministry of Health. Decision on the promulgation of the Guidelines for Diagnosis, Treatment
55	451		and Prevention of Tuberculosis [Vietnamese]. Viet Nam: 2018.
56 57			
58			19
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 27

1

BMJ Open

2			
3 ⊿	452	30	Mulder C, Erkens C, Kouw P, et al. Tuberculin skin test reaction depends on type of purified protein
5	453		derivative: Implications for cut-off values. Int J Tuberc Lung Dis 2019;23:1327-34.
6 7	454		doi:10.5588/ijtld.18.0838
8	455	31	Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, et al. Diagnosis for Latent Tuberculosis
9 10	456		Infection: New Alternatives. Front Immunol 2020;11:1-13. doi:10.3389/fimmu.2020.02006
11	457	32	Khan A, Phares CR, Phuong HL, et al. Overseas Treatment of Latent Tuberculosis Infection in US-
12 13	458		Bound Immigrants. Emerg Infect Dis 2022;28:582-90. doi:10.3201/eid2803.212131
14 15	459	33	Sharninghausen JC, Shapiro AE, Koelle DM, et al. Risk factors for indeterminate outcome on interferon
16	460		gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum
17 18	461		Infect Dis 2018;5:1-8. doi:10.1093/ofid/ofy184
19	462	34	Banach DB, Harris TG. Indeterminate QuantiFERON ® -TB Gold results in a public health clinic setting.
20 21	463		Int J Tuberc Lung Dis 2011;15:1623–30. doi:10.5588/ijtld.11.0017
22	464	35	International Union Against Tuberculosis and Lung Disease. Abstract Book. In: 53rd World Conference
23 24	465		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2022.
25 26	466		S1–468.
20 27	467	36	Oxlade O, Boon S Den, Menzies D, et al. TB preventive treatment in high- and intermediate-incidence
28 29	468		countries : research needs for scale-up. 2021;25:823-31.
30	469	37	McClintock AH, Eastment MK, McKinney CM, et al. Treatment completion for latent tuberculosis
31 32	470		infection: A retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3
33	471		months of isoniazid and rifapentine. BMC Infect Dis 2017;17:1-8. doi:10.1186/s12879-017-2245-8
34 35	472	38	World Health Organization. Consolidated guidelines on tuberculosis : Module 1 : Prevention. Geneva,
36 37	473		Switzerland: 2020.
38	474	39	Mølhave M, Wejse C. Historical review of studies on the effect of treating latent tuberculosis. Int J Infect
39 40	475		<i>Dis</i> 2020; 92 :S31–6. doi:10.1016/j.ijid.2020.03.011
41	476	40	Paton NI, Borand L, Benedicto J, et al. Diagnosis and management of latent tuberculosis infection in
42 43	477		Asia: Review of current status and challenges. Int J Infect Dis 2019;87:21-9.
44 45	478		doi:10.1016/j.ijid.2019.07.004
45 46	479	41	Lien LT, Hang NT Le, Kobayashi N, et al. Prevalence and risk factors for tuberculosis infection among
47 48	480		hospital workers in Hanoi, Viet Nam. PLoS One 2009;4:1-7. doi:10.1371/journal.pone.0006798
49	481	42	Ngo CQ, Manabe T, Vu G Van, et al. Difficulties in tuberculosis infection control in a general hospital
50 51	482		of Vietnam: a knowledge, attitude, and practice survey and screening for latent tuberculosis infection
52	483		among health professionals. BMC Infect Dis 2019;19:1-11. doi:10.1186/s12879-019-4593-z
53 54	484	43	nternational Union Against Tuberculosis and Lung Disease. Abstract Book. In: 48th World Conference
55 56	485		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2017.
57			
58 59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3	486		S123.http://www.abstractserver.com/TheUnion2017/TheUnion2017 Abstracts Web.pdf
4 5	487	44	U.S. Food & Drug Administration (FDA). FDA Updates and Press Announcements on Nitrosamine in
6	488		Rifampin and Rifapentine. 2021.https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-
8	489		and-press-announcements-nitrosamines-rifampin-and-rifapentine (accessed 7 Nov 2022).
9 10	490	45	World Health Organization. Nitrosamine concerns for rifapentine and rifampicin Update and FAQs.
11	491		2020.https://extranet.who.int/pqweb/sites/default/files/documents/FAQ_Nitrosamine_18Dec2020.pdf
12 13	492		(accessed 7 Nov 2022).
14 15	493	46	Arguello Perez E, Seo SK, Schneider WJ, et al. Management of Latent Tuberculosis Infection among
16	494		Healthcare Workers: 10-Year Experience at a Single Center. Clin Infect Dis 2017;65:2105-11.
17 18	495		doi:10.1093/cid/cix725
19	496	47	Han SS, Lee SJ, Yim JJ, et al. Evaluation and treatment of latent tuberculosis infection among healthcare
20 21	497		workers in Korea: A multicentre cohort analysis. PLoS One 2019;14:1-11.
22	498		doi:10.1371/journal.pone.0222810
23 24	499	48	Park SY, Lee E, Lee EJ, et al. Screening and treatment of latent tuberculosis infection among healthcare
25 26	500		workers at a referral hospital in Korea. Infect Chemother 2019;51:355–64. doi:10.3947/ic.2019.51.4.355
27	501	49	Lardizabal A, Passannante M, Kojakali F, et al. Enhancement of treatment completion for latent
28 29	502		tuberculosis infection with 4 months of rifampin. Chest 2006;130:1712–7. doi:10.1378/chest.130.6.1712
30 21	503	50	Horsburgh CR, Goldberg S, Bethel J, et al. Latent TB infection treatment acceptance and completion in
32	504		the United States and Canada. Chest 2010;137:401-9. doi:10.1378/chest.09-0394
33 34	505	51	Uppal A, Rahman S, Campbell JR, et al. Economic and modeling evidence for tuberculosis preventive
35	506		therapy among people living with HIV: A systematic review and meta-analysis. PLoS Med 2021;18:1-
36 37	507		24. doi:10.1371/journal.pmed.1003712
38	508	52	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of Tuberculosis in
39 40	509		Vietnam - Supplementary Appendix. N Engl J Med 2018;378:221-9. doi:10.1056/NEJMoa1700209
41 42	510	53	Mac TH, Phan TH, Nguyen V Van, et al. Optimizing Active Tuberculosis Case Finding : Evaluating the
43	511		Impact of Community Referral for Chest X-ray Screening and Xpert Testing on Case Notifications in
44 45	512		Two Cities in Viet Nam. Trop Med Infect Dis 2020;221:1-15. doi:10.3390/tropicalmed5040181
46 47	513	54	Morishita F, Garfin AMCG, Lew W, et al. Bringing state-of-The-Art diagnostics to vulnerable
47 48	514		populations: The use of a mobile screening unit in active case finding for tuberculosis in Palawan, the
49 50	515		Philippines. PLoS One 2017;12:1–21. doi:10.1371/journal.pone.0171310
51	516		
52			
53			

Page 23 of 27

BMJ Open

1582x659mm (96 x 96 DPI)

219x187mm (150 x 150 DPI)

Figure 3a & 3b - Kaplan-Meier TPT survival curves a) for all participants and b) by TPT regimen 528x190mm (150 x 150 DPI)

STROBE Statement

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4-5
C		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting locations and relevant dates including periods of	5-6
botting	5	recruitment, exposure, follow-up, and data collection	5.0
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
1 uniterpainte	0	of participants	Ũ
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders.	6-7
		and effect modifiers. Give diagnostic criteria, if applicable	0,
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement	0	of assessment (measurement). Describe comparability of assessment	0,
mousurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6
Quantitativo voriablos	10	Explain how the study size was arrived at	67
Quantitative variables	11	explain now quantitative variables were handled in the analyses. If	0-7
Statistical mathods	12	(a) Describe all statistical methods, including these used to control for	7
Statistical methods	12	(a) Describe an statistical methods, including those used to control for	/
		(b) Describe any methods used to examine subgroups and interactions	7
		(a) Explain how missing date were addressed	7
		(c) Explain now missing data were addressed	1
		(a) If applicable, describe analytical methods taking account of sampling	n/a
		strategy	,
		(<u>e</u>) Describe any sensitivity analyses	n/a
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8-9
		(c) Consider use of a flow diagram	8-9
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	10-12
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	10-12
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8-12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8-12
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were categorized	10, 12
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	n/a
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	13-15
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			-
Funding	22	Give the source of funding and the role of the funders for the present study	16
		and, if applicable, for the original study on which the present article is	
		based 🔨	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

SUPPLEMENTAL MATERIAL

Model specification validation results

Figure S1: Kaplan-Meier observed survival curve of TPT regimen

The log-rank test result to assess the equality of survival between the two TPT regimen was p=0.319.

The p-value of the global postestimation proportional hazards test 0.644 and tests of individual parameters produced p-values of 0.112 .

BMJ Open

Optimizing diagnosis and treatment of tuberculosis infection in community and primary care settings in two urban provinces of Viet Nam: a cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071537.R1
Article Type:	Original research
Date Submitted by the Author:	18-Jan-2023
Complete List of Authors:	Vo, Luan ; Friends for International TB Relief, Nguyen, Viet Nhung; National Lung Hospital , National TB Program Nguyen, Nga Thi Thuy; Friends for International TB Relief Dong, Thuy Thi Thu; Friends for International TB Relief Codlin, Andrew; Friends for International TB Relief Forse, Rachel; Friends for International TB Relief, TB Programs; Karolinska Institutet, Department of Global Public Health, The Health and Social Protection Action Research & Knowledge Sharing network (SPARKS) Truong, Huyen Thanh; National Lung Hospital Nguyen, Hoa Binh; National Lung Hospital Dang, Ha Thi Minh; Pham Ngoc Thach Hospital Truong, Vinh Van; Pham Ngoc Thach Hospital Nguyen, Lan Huu; Pham Ngoc Thach Hospital Mac, Tuan Huy; Hai Phong Lung Hospital Le, Phong Thanh; IRD VN Social Enterprise LLC Tran, Khoa Tu; Friends for International TB Relief Ndunda, Nduku; Former Qiagen Employee Caws, Maxine; Liverpool School of Tropical Medicine, Clinical Sciences; Birat Nepal Medical Trust Creswell, Jacob; Stop TB Partnership
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Global health, Public health, Epidemiology
Keywords:	Tuberculosis < INFECTIOUS DISEASES, PREVENTIVE MEDICINE, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4		
5 6	1	Optimizing diagnosis and treatment of tuberculosis infection in
7 8	2	community and primary care settings in two urban provinces of Viet
9 10	3	Nam: a cohort study
11 12	4	Luan Nguyen Quang Vo ^{1,*} , Nhung Viet Nguyen ² , Nga Thi Thuy Nguyen ¹ , Thuy Thi Thu Dong ¹ , Andrew
13	5	Codlin ¹ , Rachel Forse ¹ , Huyen Thanh Truong ² , Hoa Binh Nguyen ² , Ha Thi Minh Dang ³ , Vinh Van Truong ³ ,
14 15	6	Lan Huu Nguyen ³ , Tuan Huy Mac ⁴ , Phong Thanh Le ⁵ , Khoa Tu Tran ¹ , Nduku Ndunda ⁶ , Maxine Caws ⁷ and
16 17	7	Jacob Creswell ⁸
18 19 20	8	1 Friends for International TB Relief, Ha Noi, Viet Nam
20 21 22	9	2 National Lung Hospital, Ha Noi, Viet Nam
23 24	10	3. Pham Ngoc Thach Hospital, Ho Chi Minh City, Viet Nam
25 26 27	11	4 Hai Phong Lung Hospital, Hai Phong, Viet Nam
27 28 29	12	5 IRD VN Social Enterprise LLC, Ho Chi Minh City, Viet Nam
30 31	13	6 Former Qiagen employee, Dubai, UAE
32 33	14	7 Liverpool School of Tropical Medicine, Liverpool, UK
34 35 26	15	8 Stop TB Partnership, Geneva, Switzerland
30 37 38	16	
39 40	17	* Corresponding author:
41 42	18	Luan Nguyen Quang Vo
43 44 45	19	Friends for International TB Relief
46 47	20	6th Floor, 1/21 Le Van Luong St., Nhan Chinh Ward, Thanh Xuan District, Ha Noi, Viet Nam
48 49	21	luan.vo@tbhelp.org; +84 902908004
50 51	22	
52 53	23	Word count: 3,884
54 55		
56 57		
58		
59		

24 ABSTRACT

Objectives: To end tuberculosis (TB), the vast reservoir of 1.7-2.3 billion TB infections (TBI) must be addressed but achieving global TB preventive therapy (TPT) targets seems unlikely. This study assessed the feasibility of using interferon-gamma release assays (IGRA) at lower healthcare levels and the comparative performance of 3- and 9-month daily TPT regimens (3HR/9H).

Methods: This cohort study was implemented in six districts of Ho Chi Minh City and Hai Phong, Viet Nam, from May-2019 to Sept-2020. Participants included household contacts (HHC), vulnerable community members and healthcare workers (HCW) recruited at community-based TB screening events or HHC investigations at primary care centers, who were followed up throughout TPT. We constructed TBI care cascades describing indeterminate and positivity rates to assess feasibility, and initiation and completion rates to assess performance. We fitted mixed-effect logistic and stratified Cox models to identify factors associated with IGRA-positivity and loss to follow-up (LTFU).

Results: Among 5,837 participants, the indeterminate rate was 0.8% and 30.7% were IGRA-positive. TPT initiation and completion rates were 63.3% (3HR=61.2% vs. 9H=63.6%; p=0.147) and 80.6% (3HR=85.7% vs. 9H=80.0%; p=0.522), respectively. Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018) and exhibiting TB-related abnormalities on Xray (2.23 [1.38, 3.61]; p=0.001) were associated with positive IGRA results. Risk of IGRA-positivity was lower in peri-urban districts (0.55 [0.36, 0.55]; p=0.007), aged <15 years (0.18 [0.13, 0.26]; p<0.001), aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), and HCWs (0.34 [0.24, 0.48]; p<0.001). The 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) showed higher hazards of LTFU.

Conclusion: Providing IGRA at lower healthcare levels is feasible and along with shorter regimen may expand 45 access and uptake towards meeting TPT targets, but scale-up may require complementary advocacy and 46 education for beneficiaries and providers.

Keywords: tuberculosis, infection, community, urban, interferon-gamma release assay, short-course,
 tuberculosis preventive therapy

50 Running head: Optimizing diagnosis and treatment of TB infection in Viet Nam

51 STRENGTHS AND LIMITATIONS OF THIS STUDY

• A strength of the study was the large sample size of persons tested by interferon-gamma release assay across two sites with varying characteristics in background tuberculosis infection as well as demographic and clinical characteristics, which enabled comparative analyses of subsegments of the sample.

The community setting in which participants were recruited and tested using sophisticated diagnostics
 decentralized to lower care levels further contributes to the evidence base for scale-up of tuberculosis
 prevention, especially given the size of the sample.

Embedding the study in routine tuberculosis program activities exposed it to common limitations such as
 heterogeneity in supply chain as well as health worker knowledge, attitudes and practices commonly
 experienced by the program.

or review only

INTRODUCTION

After a brief relegation due to the COVID-19 pandemic, tuberculosis (TB) is once again the world's leading infectious disease killer.[1] One of the key reasons is the estimated 1.7–2.3 billion people infected with TB without suffering from active disease, whose activation continues to fuel incidence.[2,3] An estimated 5-15% of people with TB infection (TBI) develop active TB disease in their lifetimes, serving as a vast reservoir for future TB disease, even if new TB transmission were completely eliminated today.[4,5] This was also observed by a study in London at the height of the pandemic which showed that social distancing mitigated incidence of several respiratory diseases, but not of TB.[6] Thus, research and modeling suggest that increased emphasis on TBI is needed in order to reduce worldwide TB incidence.[7] However, while efforts to find and treat people with TB who are missed by existing TB care programs have been launched in most high TB burden countries, relatively few are addressing the burden of TBI at scale.[8–11]

This muted response was historically linked to World Health Organization (WHO) guidelines recommending TB preventive therapy (TPT) in high TB burden settings only for people living with HIV (PLHIV), under-5 household contacts (HHC) of persons with bacteriologically-confirmed, pulmonary TB and persons with occupational risk factors for progression to active TB.[12] Beyond conservative guidelines, other commonly cited bottlenecks have included shortages in commodities and particularly diagnostic consumables such as tuberculin, high health system costs of diagnosis, treatment and follow-up depressing TPT uptake, and lack of patient-friendly treatment regimen negatively affecting adherence.[13,14]

In recent years, the WHO has issued updated technical and operational guidelines with expanded TPT eligibility criteria, such as HIV-negative household contacts of all ages. [15,16] However, a key recommendation for this expanded eligibility was the inclusion of an appropriate clinical and laboratory evaluation, which in select settings translated to the prerequisite of immunological confirmation of TBI by tuberculin skin test (TST) or interferon-gamma release assay (IGRA) for TPT within national guidelines.[14,17] The updated WHO guidelines also introduced new short-course TPT regimens with better tolerability and safety profiles, which high TB burden countries have eagerly integrated into national TBI guidelines and national strategic plans.[18,19]

One of these countries is Viet Nam, which ranks 11th among the 30 high TB burden countries. During the first prevalence survey, the annual rate of TB infection was measured to be 1.7% with a TBI prevalence of 16.7% in children aged 6–14 years using TST with a threshold of 10mm.[20] A subsequent study in rural Ca Mau province measured a TBI rate of 36.8% using IGRA.[21] In 2014, Viet Nam passed legislation codifying its goals to drastically reduce TB prevalence in alignment with the WHO End TB Strategy.[22] On World TB Day 2020, the Ministry of Health introduced the country's inaugural guidelines on diagnosis and treatment of TBI. These
guidelines expanded TPT eligibility to all adults with TBI confirmed by recommended diagnostic tools and
excluding active TB, permitted the use of various shortened regimen, and described contact investigation and
follow-up requirements. Viet Nam further demonstrated its focus on TB prevention by committing at the UN
High-Level Meeting on Ending TB to scale-up provision of TPT to 291,500 people by 2022.[23]

However, the country has experienced many of the challenges related to the scale-up of TPT as described above. Specifically, Viet Nam requires TBI confirmation within the expanded eligibility criteria prior to treatment, but has experienced tuberculin supply chain shortages and batch-variance in the positivity threshold. While WHO-recommended IGRAs are commercially available, the National TB Control Programme (NTP) has consigned this assay class to tertiary care facilities due to the delicate specimen handling and sophistical laboratory requirements, [24,25] which is underscored by the lack of published evidence of the assay's deployment at the point-of-care domestically and worldwide. In addition, the prohibitively high costs per test have precluded serious consideration for routine TB program activities.

Nevertheless, the NTP remains committed to the scale-up of TPT through the optimal use of available and new diagnostics and regimens.[26] Given tuberculin supply and staff capacity challenges, and lack of evidence on the impact of recently introduced shorter TPT regimen on uptake and completion, this study assessed the use of the QuantiFERON-TB Gold Plus assay (QFT-Plus; Qiagen, Hilden, Germany) at the community level and the performance of shorter TPT regimen under programmatic conditions. The goal was to inform NTP of Viet Nam and other high TB burden countries in their ambitions to meet their TPT goals.

METHODS

37
38 112 Study design and objectives

This was a cohort study to measure the feasibility of employing IGRA at the community and primary care levels for the diagnosis of TBI. Feasibility was defined by comparing indeterminate and positivity rates with those demonstrated in facility-based studies (primary endpoints). Secondary objectives included measuring the rate of TPT initiation and completion (secondary endpoints) in cohorts provided with two different TPT regimens, and to identify participant covariates associated with IGRA-positivity and loss to follow-up. The study followed the STROBE guideline for reporting observational studies (Supplemental material 1).

119 Study setting

The study was conducted in six districts of Ho Chi Minh City (HCMC) and Hai Phong municipal provinces. In
 HCMC, study sites included Districts 6, 8, 12, Binh Chanh, Go Vap, and Tan Binh with a cumulative population

Page 7 of 28

BMJ Open

of 2,387,052 and 3,598 TB notifications in 2019. In Hai Phong, the study took place in Do Son with a population of 49,029 and 52 persons with drug-susceptible TB notified in 2019.

Study population and recruitment

The study was embedded into routine contact investigations at primary care commune health posts and community-based active TB case finding (ACF) events. Details of the ACF events are provided elsewhere.[27] The study population included HHC and close contacts, and vulnerable community members at elevated risk of active TB, such as the elderly, urban poor and economic migrants. Briefly, elderly persons were ≥55 years, urban poor were based on national poverty definitions and economic migrants were categorized based on residency registration in rural provinces outside of the intervention districts. [28–30] The HCMC site also included a subgroup of primary- and secondary-level healthcare workers (HCW) based on the request from local authorities. Recruitment and follow-up occurred from May-2019 to Sep-2020. All individuals presenting for screening provided routine demographic and clinical information including age, sex, residency status, history of TB, comorbidities and symptomatic presentation. Following intake, persons belonging to the study population with residency in the study districts were invited to participate in the study. Persons living outside of or intending to relocate away from the study sites, or who declined to consent were excluded. Eligible, consenting participants were recruited consecutively until the quota of available OFT-Plus tests was reached (n=5.000 in HCMC and n=1,000 in Hai Phong). Parents consented on behalf of their children under 18 years.

Specimen collection and processing

Provincial lung hospital (PLH) laboratory staff hosted training sessions on specimen collection and processing for the District TB Unit (DTU) and district-level laboratory staff. The District Health Center (DHC) mobilized participants to attend ACF events or to present at commune health posts. All attendants were systematically screened for TB symptoms and directed to undergo chest radiography (CXR) to rule out active TB. Persons with parenchymal abnormalities suggestive of TB on CXR or strong clinical suspicion of TB were referred for molecular sputum testing, as per contemporary national TB treatment guidelines.[31] Attendants were counseled on TBI and invited to participate. Study staff collected blood specimens from consenting, eligible individuals as per manufacturer recommended procedures. Each participant provided 4ml of venous whole blood in four separate tubes. Blood specimens were processed and analyzed per manufacturer's recommendations. Briefly, all four tubes were immediately shaken ~ 10 times to dissolve all antigens on the tube's wall coating. Tubes were stored inside dry ice coolers at 17–25°C, which were transported to the PLH biochemistry-hematology departments within six hours, twice a day. Samples were incubated at 37° C for 20 hours (±1 hour) and centrifuged within one hour of completing the incubation stage at 2000-3000g for 14 minutes at room temperature. The twelve-step enzyme linked immunosorbent assay was conducted within 16-24 hours. Results were analyzed by using proprietary QuantiFERON software v2.7.1.

155 TPT initiation and participant follow-up

QFT-Plus test results were returned to the DHC two days after receipt of the blood specimens. Individuals with negative results were informed via phone by DHC staff. Those with positive results and eligible for preventive treatment (i.e., with confirmed TBI and active TB ruled out by CXR and symptomatic presentation) were invited to present at their respective DTU for pre-treatment counseling and TPT initiation as per national guidelines.[17] TPT regimen varied by province. In HCMC, TPT consisted of nine months of daily isoniazid (9H), while in Hai Phong eligible persons received three months of daily isoniazid and rifampicin (3HR). Individuals on TPT received in-person follow-up during monthly drug pick-up at the DTU. Community TB officers conducted phone or in-person follow-up in regular intervals or as needed, as recommended in national guidelines. Participants experiencing adverse events were asked to present at the DTU for check-up.

Statistical analyses

The primary measures of interest were QFT-Plus positivity and indeterminate rates. Secondary variables of interest included TPT initiation and completion rates within the study population. Missing data were retrieved through post-event follow-up of participants or excluded from individual analyses. We constructed TBI care cascades in aggregate and segmented by site ranging from persons recruited to participants with a successful TPT completion. We documented losses along the cascade and reported median and interquartile ranges of diagnostic delay, i.e., time from testing to TPT initiation. We calculated descriptive statistics for key sample characteristics by QFT-Plus result and TPT completion and fitted a saturated, mixed-effect logistic regression to assess associations between positivity and participant covariates to adjust for confounding and inherent bias. Study district was the random effect to account for intra-cluster correlation. The survival analysis designated loss to follow-up (LTFU) a failure and censored adherent participants on 3HR and 9H at three and nine months, respectively. We constructed Kaplan-Meier survival curves and conducted log-rank tests to assess the equality of survival between the two TPT regimen. We fitted a saturated Cox model and assessed validity of the proportionality assumption using log-log plots and Schoenfeld residuals. Violations were addressed via stratification or modeling of time-variance for parameters of interest. The final model passed both the global postestimation proportional hazards test and tests of individual parameters. P-values of validation tests were provided in the Supplemental material 2. Hypothesis tests were two-tailed. A threshold of p<0.05 was considered significant. Analyses were conducted using STATA v17 (Stata Corp.; College Station, TX, USA).

50 183 Patient and public involvement

While TB patients and their families were not involved in setting the research question, a consensus building
 meeting was held at the beginning of the study for government stakeholders and community members to provide
 feedback and recommendations and reach consensus about the study design and implementation. Patients, their

BMJ Open

families and public stakeholders were also central to dissemination of study information, which helped to motivate community involvement during and beyond the study.

RESULTS

Sample characteristics

Of the 5,837 participants in the sample, 59.3% (n=3,463) were female (Table 1). Children under 15 years constituted 19.5% (1,136/5,834) of the sample and the median participant age was 40 (IQR: 20–55). Overall, most participants were recruited at community-based ACF events (55.8%; n=3.257), lived in urban areas (65.6%; n=3.827), were permanent residents (90.5%; 3,116/3,444) and were enrolled on social health insurance (90.4%; 5,269/5,832). About 2.9% (n=167) were diabetics and 1.1% (n=62) reported a history of TB. Moreover, g at lea. ment, while 2.. 39.5% (n=2,306) reported experiencing at least one of the four core TB symptoms (cough, weight loss, fever, and/or night sweats) during recruitment, while 2.3% (n=134) participants exhibited TB-related CXR abnormalities.

	Total (N - 5 937)	$IGRA(+)^{\text{F}}$ (N - 1 702)	IGRA (-) [¥] (N = 4.000)	Indeterminate $(N - 45)$	aOR [¥]	p-value [†]
	(1N - 3,037) N (%) ^a	(N - 1, 792) N (%)	(N - 4,000) N (%)	(N - 43) N (%)	(95% CI)	
Sex						
Female	3,463 (59.3)	1,048 (30.3)	2,392 (69.1)	23 (0.7)	Ref	
Male	2,374 (40.7)	744 (31.3)	1,608 (67.7)	22 (0.9)	1.51 [1.28; 1.78]	< 0.001
Age¶						
<15 years	1,136 / 5,834 (19.5)	134 / 1,792 (11.8)	997 / 3,997 (87.8)	5 / 45 (0.4)	0.18 [0.13; 0.26]	< 0.001
15-29 years	891 / 5,834 (15.3)	195 / 1,792 (21.9)	687 / 3,997 (77.1)	9 / 45 (1.0)	0.56 0.42; 0.75	< 0.001
30-44 years	1,290 / 5,834 (22.1)	418 / 1,792 (32.4)	864 / 3,997 (67.0)	8 / 45 (0.6)	Ref	
45-59 years	1,679 / 5,834 (28.8)	~ 704 / 1,792 (41.9)	957 / 3,997 (57.0)	18 / 45 (1.1)	1.30 [1.05; 1.60]	0.018
≥ 60 years	838 / 5,834 (14.4)	341 / 1,792 (40.7)	492 / 3,997 (58.7)	5 / 45 (0.6)	1.06 [0.80; 1.40]	0.673
Median age (IQR)	40 (20–55)	49 (35–58)	35 (15–52)	45 (24–54)		
Study site						
Ho Chi Minh City	4,840 (82.9)	1,603 (33.1)	3,200 (66.1)	37 (0.8)	Ref	
Hai Phong	997 (17.1)	189 (19.0)	800 (80.2)	8 (0.8)	0.69 [0.40; 1.20]	0.186
Screening location						
Community screening event	3,257 (55.8)	993 (30.5)	2,244 (68.9)	20 (0.6)	Ref	
Primary care center	2,580 (44.2)	799 (31.0)	1,756 (68.1)	25 (1.0)	0.88 [0.69; 1.13]	0.325
Farget group						
Household and close contacts	2,431 (41.7)	897 (36.9)	1,495 (61.5)	39 (1.6)	1.11 [0.67; 1.82]	0.690
Vulnerable community members	2,995 (51.3)	821 (27.4)	2,168 (72.4)	6 (0.2)	Ref	
Healthcare workers	411 (7.0)	74 (18.0)	337 (82.0)	0 (0.0)	0.34 [0.24; 0.48]	< 0.001
Urbanization						
Urban	3,827 (65.6)	1,135 (29.7)	2,669 (69.7)	23 (0.6)	Ref	
Peri-urban	2,010 (34.4)	657 (32.7)	1,331 (66.2)	22 (1.1)	0.55 [0.36; 0.85]	0.007
Residency status ^{+,¶}						
Grade 1	3,116 / 3,444 (90.5)	799 / 907 (25.6)	2,294 / 2,511 (73.6)	23 / 26 (0.7)	Ref	
Grade 2	91 / 3,444 (2.6)	27 / 907 (29.7)	62 / 2,511 (68.1)	2 / 26 (2.2)	1.08 [0.66; 1.74]	0.765
Grade 3	202 / 3,444 (5.9)	68 / 907 (33.7)	134 / 2,511 (66.3)	0 / 26 (0.0)	1.36 [0.96; 1.92]	0.083
Grade 4	35 / 3,444 (1.0)	13 / 907 (37.1)	21 / 2,511 (60.0)	1 / 26 (2.9)	1.54 [0.73; 3.26]	0.260
Social health insurance [¶]						
No	563 / 5,832 (9.7)	180 / 1,790 (32.0)	376 / 3,997 (66.8)	7 / 45 (1.2)	Ref	
Yes	5,269 / 5,832 (90.4)	1,610 / 1,790 (30.6)	3,621 / 3,997 (68.7)	38 / 45 (0.7)	1.11 [0.84; 1.46]	0.473

199 Table 1: Participant characteristics and adjusted odds ratios associated with IGRA-positivity

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1								
2								
3		Diabetes mellitus						
4		No/Unknown	5 670 (97 1)	1 721 (30 4)	3 906 (68 9)	43 (0.8)	Ref	
5		Yes	167 (2.9)	71 (42.5)	94 (56 3)	2(12)	1 15 [0 75. 1 76]	0 516
6		Duariana history of TD	107 (2.5)	, 1 (12.0)	51 (50.5)	2 (1.2)	1.10 [0.70, 1.70]	0.010
/		No/Linknown	5 775 (09 0)	1.7(1.(20.6))	20(7(697))	44 (0.9)	Def	
8		No/Unknown	5,775 (98.9)	1,/64 (30.6)	3,967 (68.7)	44 (0.8)		0.0(2
9		Yes	62 (1.1)	28 (45.2)	33 (53.2)	1 (1.6)	1.93 [0.96; 3.86]	0.063
10		Any TB symptoms ^{§,¶}						
11		No	3,531 (60.5)	1,012 (28.7)	2,499 (70.8)	20 (0.6)	Ref	
12		Yes	2,306 (39.5)	780 (33.8)	1,501 (65.1)	25 (1.1)	0.96 [0.80; 1.15]	0.635
13		Chest X-ray result						
15		Normal	5,502 (94,3)	1.693 (30.8)	3.768 (68.5)	41 (0.8)	Ref	
16		Abnormal	134 (2.3)	78 (58.2)	56 (41.8)	0 (0.0)	2.23 [1.38: 3.61]	0.001
17		No Chest X-ray	201(3.4)	21 (10.5)	176 (87.6)	4 (2.0)	0.28 [0.15: 0.51]	< 0.001
18	200	Notes:						
19	201	¶ N sizes listed due to missing values;						
20	202	§ Includes cough, fever, night sweats an	nd weight loss of any duration;					
21	203	+ Residency grade definitions: 1=Perma	inent resident; 2=Long-term intra-j	province temporary resident	t; 3=Short-term, intra-provi	nce temporary re	sident; 4=Short-term, ir	nter-province
22	204	© Percent of total						
23	206	+ Percent of row total						
24	207	¥ IGRA=Interferon-Gamma Release As	ssay; aOR=adjusted Odds Ratio					
25	208	† Wald test						
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
3/								
38								
39 40								
4U 41								
41 42								
4∠ ⊿2								
45 11								
44 15			For peer review only - hi	ttp://bmjopen.bmj.com	/site/about/quidelines.	khtml		
40					,,			

TB infection care cascade

Of the 16,652 individuals verbally screened in both provinces, 35.1% (n=5,837) agreed to be tested by OFT-Plus for the study (Figure 1). The overall indeterminate rate was 0.8% (n=45) and 30.7% (n=1,792) of participants were QFT-Plus-positive, of whom 97.5% (n=1,748) were eligible for TPT. About 63.3% (1,107/1,748) of eligible participants initiated TPT and 80.6% (892/1,107) completed therapy. The sample included 4,840 participants in HCMC and 997 in Hai Phong (Table 2). The indeterminate rate was 0.8% in both sites, while positivity rates were 33.1% (1,603/4,840) in HCMC and 19.0% (189/997) in Hai Phong. The respective TPT initiation and completion rates in the 9H cohort in HCMC were 63.6% (995/1,565) and 80.0% (796/995) compared to 61.2% (112/183) and 85.7% (96/112) in the 3HR cohort in Hai Phong. Neither initiation nor completion rates were significantly different between the two regimens (p=0.522 & p=0.147, respectively).

219 Table 2: TB infection care cascade by TPT cohort

	Total	HCMC	Hai Phong
	(N = 5,837)	(N = 4,840)	(N = 997)
	N (%)	N (%)	N (%)
IGRA result & TPT [¥]	5		
Indeterminate	45 (0.8)	37 (0.8)	8 (0.8)
Negative	4,000 (68.5)	3,200 (66.1)	800 (80.2)
Positive	1,791 (30.7)	1,603 (33.1)	189 (19.0)
Ineligible for TPT (% of positive)	44 (0.8)	38 (0.8)	6 (0.6)
No CXR	21 (0.4)	16 (0.3)	5 (0.5)
CXR(+), No MTB test	6 (0.1)	5 (0.1)	1 (0.1)
MTB(+)	17 (0.3)	17 (0.4)	0 (0.0)
Eligible for TPT (% of positive)	1,748 (97.6)	1,565 (97.6)	183 (97.3)
CXR(-)	1,702 (95.0)	1,524 (95.1)	178 (94.7)
CXR(+), MTB(-)	46 (2.6)	41 (2.6)	5 (2.7)
Initiated on TPT [¶] (% of eligible)	1,107 (63.3)	995 (63.6)	112 (61.2)
Completed TPT [¶] (% of initiated)	892 (80.6)	796 (80.0)	96 (85.7)

220 Notes:

¥ IGRA=Interferon-Gamma Release Assay; CXR=Chest X-Ray; TPT=TB Preventive Therapy; MTB=*M. tuberculosis*; HCMC=Ho
 Chi Minh City

223 ¶ TPT consisted of 9H in HCMC and of 3HR in Hai Phong

The sample included 46.6% (n=2,256) HHCs, 44.9% (n=2,173) vulnerable community members and 8.5% (n=411) HCWs in HCMC (Figure 2). In Hai Phong, the sample consisted of 17.6% (n=175) HHCs and 82.5% (n=822) community members. IGRA-positivity among HHCs was similar in both cities, but lower in community members in Hai Phong (123/822=15.0%) compared to HCMC (698/2173=32.1%). Similarly, positivity in HCWs was also comparatively lower (74/411=18.0%). TPT initiation rates in HHCs and community members were similar across sites ranging from 59.0% to 66.6%, and higher among HCWs (52/72=72.2%). Diagnostic delays in HCMC were shorter than in Hai Phong for both HHCs (17 vs. 59 days) and community members (15

Page 13 of 28

BMJ Open

1	
2	
3 4	232
5	233
7	234
8	225
9 10	235
11 12	236
13	237
14 15	238
16	239
17 18	240
19	241
20 21	2/2
22	242
23 24	213
25 26	245
27	246
28 29	240
30	247
31 32	240
33	249
34 35	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	

57 58

59

60

vs. 58 days), except among HCWs (40.5). Similarly, TPT completion rates were high among HHCs and
community members in both sites ranging from 77.3% to 90.5%, but only half of HCWs completed TPT.

234 Risk factors of IGRA-positivity

Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018), and exhibiting CXR abnormalities suggestive of TB (2.23 [1.38, 3.61]; p=0.001) were associated with higher QFT-Plus positivity (Table 2). Conversely, compared to the reference group (30-44 years), the risk of QFT-Plus-positivity was significantly lower among children under 15 years (0.18 [0.13, 0.26]; p<0.001) and persons aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), as well as among HCWs (0.34 [0.24, 0.48]; p<0.001) and individuals living in peri-urban areas (0.55 [0.36, 0.55]; p=0.007).

⁹ 241 Survival analysis and risk factors of TPT completion

A total of 1,107 participants were followed for a total of 8,211 person-months with 215 recorded LTFUs (Table 3). There were 7,904 and 307 person-months of observations with mean follow-up times of 7.9 [7.8, 8.1] months and 2.7 [2.6, 2.9] months, and 199 and 16 LTFUs in the 9H and 3HR cohorts, respectively. The respective LTFU incidence rates were 25.2 and 52.1 per 1,000 person-months. Most LTFUs occurred after the first month of TPT in both the 9H (79/199=39.7%) and 3HR (13/16=81.2%) cohorts (Figures 3a and 3b). The survival analysis showed that the 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) were strongly associated with higher risk of LTFU.

49 Table 3: Participant characteristics and adjusted risk factors associated with TPT loss to follow-up

	TPT		aHR of LTFU [¥]	p-value [†]
Total	completed [¥]	LTFU[¥]	(95% CI)	
= 1,107)	(N = 892)	(N = 215)		
N (%) [¤]	N (%) [‡]	N (%) [‡]		
5 (89.9)	796 (80.0)	199 (20.0)	Ref	
2 (10.1)	96 (85.7)	16 (14.3)	3.83 [1.49; 9.84]	0.005
5 (58.3)	512 (79.4)	133 (20.6)	Ref	
2 (41.7)	380 (82.3)	082 (17.8)	1.02 [0.94; 1.11]	0.608
86 (7.8)	72 (83.7)	14 (16.3)	0.63 [0.22; 1.79]	0.390
6 (10.5)	90 (77.6)	26 (22.4)	1.71 [0.88; 3.35]	0.116
9 (22.5)	195 (78.3)	54 (21.7)	Ref	
6 (38.5)	354 (83.1)	72 (16.9)	0.97 [0.56; 1.69]	0.911
0 (20.8)	181 (78.7)	49 (21.3)	1.14 [0.56; 2.32]	0.723
(35–58)	50 (35–58)	49 (35–59)		
7 (56.6)	523 (83.4)	104 (16.6)	Ref	
	Total 1,107) N (%) ^a 5 (89.9) 2 (10.1) 5 (58.3) 2 (41.7) 86 (7.8) 6 (10.5) 9 (22.5) 6 (38.5) 0 (20.8) (35–58) 7 (56.6)	Total completed¥ (N = 892) N (%)"TPT completed¥ (N = 892) N (%)*5 (89.9) 2 (10.1)796 (80.0) 96 (85.7)5 (58.3) 2 (41.7)512 (79.4) 380 (82.3)86 (7.8) 6 (10.5)72 (83.7) 90 (77.6) 90 (77.6) 90 (22.5)9 (22.5) 6 (38.5)195 (78.3) 354 (83.1) 0 (20.8)0 (20.8)181 (78.7) (35-58)7 (56.6)523 (83.4)	TPT completed¥ $(N = 892)$ LTFU¥ $(N = 215)$ $N (\%)^{\circ}$ N (\%)°N (\%)^{\dagger}N (%) [†] 5 (89.9)796 (80.0) 96 (85.7)199 (20.0) 16 (14.3)5 (58.3)512 (79.4) 380 (82.3)133 (20.6) 082 (17.8)5 (58.3)512 (79.4) 380 (82.3)133 (20.6) 082 (17.8)86 (7.8)72 (83.7) 90 (77.6)14 (16.3) 26 (22.4)9 (22.5)195 (78.3) 195 (78.3)54 (21.7) 54 (21.7)6 (38.5)354 (83.1) 172 (16.9) 0 (20.8)70 (35-58)49 (35-59)50 (35-58)49 (35-59)7 (56.6)523 (83.4)104 (16.6)	Total completed¥ (N = 892)TFU (N = 215) N (%)*aHR of LTFU¥ (95% CI) $(N = 892)$ N (%)* $(N = 215)$ N (%)* $(95\% CI)$ $(N (\%)^{re}$ $N (\%)^{tr}$ $N (\%)^{tr}$ (1101) $96 (80.0)$ $96 (85.7)199 (20.0)16 (14.3)Ref3.83 [1.49; 9.84](111)96 (85.7)16 (14.3)102 [0.94; 1.11](117)380 (82.3)380 (82.3)082 (17.8)082 (17.8)1.02 [0.94; 1.11](115)90 (77.6)26 (22.4)0.63 [0.22; 1.79]1.71 [0.88; 3.35]9 (22.5)195 (78.3)54 (21.7)0.63 [0.22; 1.79]1.71 [0.88; 3.35]9 (22.5)195 (78.3)54 (21.7)49 (21.3)Ref1.14 [0.56; 2.32](35-58)50 (35-58)49 (35-59)7 (56.6)523 (83.4)104 (16.6)Ref$

Primary care center	480 (43.4)	369 (76.9)	111 (23.1)	1.19 [0.62; 2.30]	0.593
Target group					
Household and close contacts	585 (52.9)	458 (78.3)	127 (21.7)	1.03 [0.75; 1.39]	0.874
Vulnerable community members	470 (42.5)	408 (86.8)	62 (13.2)	Ref	
Healthcare workers	52 (4.7)	26 (50.0)	26 (50.0)	1.38 [1.25; 1.53]	< 0.001
Urbanization					
Urban	729 (65.9)	598 (82.0)	131 (18.0)	Ref	
Peri-urban	378 (34.2)	294 (77.8)	84 (22.2)	1.00 [0.58; 1.73]	0.990
Diabetes mellitus					
No/Unknown	1,065 (96.2)	859 (80.7)	206 (19.3)	Ref	
Yes	42 (3.8)	33 (78.6)	9 (21.4)	0.74 [0.18; 3.11]	0.679
Previous history of TB					
No/Unknown	1,096 (99.0)	883 (80.6)	213 (19.4)	Ref	
Yes	11 (1.0)	9 (81.8)	2 (18.2)	1.03 [0.14; 7.63]	0.980

250 Notes: 251 Mode

[¶] Model stratified by health insurance and residency status, so these parameters were excluded; parameters of sex and target group fitted as time-varying covariates; includes a total of 8,211 person-months

253 ¤ Percent of total

254 + Percent of row total
 255 ¥ LTFU=Loss to follow

¥ LTFU=Loss to follow-up; aOR=adjusted Hazard Ratio

256 † Wald test

DISCUSSION

In the array of obstacles to scaling up TPT in Viet Nam, TBI diagnosis remains a critical step in the country's targeted approach. To date, however, it has also represented an insuperable bottleneck. This stems from an overreliance on TST from a single product (PPD-Bulbio), for which there is documented performance deviation compared to other TSTs and IGRA [32]. These issues are in addition to the well-understood range of confounders affecting clinical performance of TSTs in comparison to IGRAs.[33] Despite its shortcomings, TST remains the programmatic standard of care partly due to the perceived operational challenges in deploying IGRAs outside of hospital settings.

This evaluation builds on the evidence base that it is possible to deploy IGRAs at lower healthcare levels.[21] As shown previously, fidelity to manufacturer recommended procedures in terms of handling, timing and temperature-control throughout collection, transport and processing of specimens from the community to the laboratory resulted in positivity[34] and indeterminate rates[35,36] that were comparable to those of facility-based studies. Our measured positivity was also aligned with previously published IGRA-positivity measured in the community in Viet Nam (pooled positivity: 37.7%; n=2,706).[21,37] We also observed the expected dose-response pattern of rising positivity and risk of TBI in older individuals as well as the higher risk of QFT-Plus positivity in males.[20,21] Concordant with these results, our study highlighted that IGRA can be used at the community level as another option for TBI diagnosis and accelerating scale-up of TPT.

Page 15 of 28

BMJ Open

However, there were patterns in the TBI care cascade indicating that scale-up of available TBI diagnostic tools and regimens requires more than simply decentralization. Fewer than half of the individuals mobilized during these ACF campaigns agreed to or were eligible for an IGRA test and only six out of ten eligible persons initiated TPT, which was concordant with prior studies in Viet Nam.[34] One potential reason for the drop-off may be process related, since we embedded the study in a programmatic setting, which meant that in general over two weeks elapsed from when participants were tested until eligible persons initiated TPT. Nevertheless, slow turnaround time may only partially explain the pre-treatment LTFU, as TPT initiation rate was consistent across both settings despite the difference in turnaround time.

By fielding the study in two separate sites with different TPT regimen and TBI rates in the community, we recorded several noteworthy observations. Specifically, while initiation rates in both sites were similar, there was a slightly higher completion rate in the 3HR cohort. Thus, even though we did not observe a greater uptake of TPT as seen on prior studies, the shorter treatment duration of 3HR may have contributed to higher TPT completion rates.[38–40] However, the survival analysis showed that more persons were lost to follow-up than expected over the shorter period of treatment. Based on informal qualitative feedback from field staff, reasons for the large drop-offs in the cascade included a lack of understanding of the risk of progression from TBI to active TB and the benefits of TPT in the general population, but also among healthcare providers, which leads to the de-prioritization of TPT as optional prophylaxis rather than valuable intervention. Since the 3HR regimen was only used in one province which may have faced site-specific challenges, we cannot generalize these results to other areas of the country. However, they highlight the need for more education and advocacy for providers and participants to improve the acceptance and prioritization of TPT.[41,42]

Moreover, advocacy and awareness building may need to be tailored to individual subgroups. Even though positivity, initiation and completion rates did not vary substantially across sites, gender or age category, there were, however, notable differences across study populations. In our study, HCWs exhibited a lower proportion and risk of positivity, higher TPT initiation and significantly higher risk of LTFU compared to HHCs and community members in either site. The low positivity rate was particularly noteworthy for its discordance with published, albeit dated, evidence from Viet Nam[43] and WHO guidelines warranting intervention in this group due to higher occupational risk of TB infection.[44] A potential explanation for the discordance is that a sizeable proportion of HCWs were generalist primary care workers. The more recent EnTIC study (NCT02073240) measured lower TBI rates among Vietnamese HCWs in general hospitals compared to HCWs in TB hospitals (27.9% [22.8%, 33.6%] vs. 41.7% [26.2%, 58.9%]).[45] However, this TBI rate in general hospital HCWs is still higher than the rate among HCWs on this study; a future comparative analyses of TBI in HCWs in tertiary/quaternary general hospitals versus primary care workers may offer further insight.

The diagnostic delay was unacceptably long among HCWs and across all groups in Hai Phong. In Hai Phong, the lower burden and more limited TB care capacity as well as greater reliance on the lung hospital in TB care and prevention activities may have contributed to the long delay in treatment initiation. Meanwhile, upon investigation, HCWs indicated a preference to wait for the new 12-dose regimen of isoniazid and rifapentine (3HP), but then agreed to initiate TPT on 9H as concerns over nitrosamine impurities delayed scale-up of 3HP in Viet Nam. [46,47] Nevertheless, despite a delay of almost six weeks, the TPT initiation rate among HCWs was highest across all groups and also above rates measured on prior studies (39.0%-49.6%).[48,49] Conversely, the low completion rate measured on this study was on par with other studies on HCWs receiving 9H for TPT. However, this low rate may have been avoided with shorter regimen as adherence in this study at month 3 was 100% and month 8 was still at 80.0%. These results were in line with previous studies that indicated health workers were significantly more likely to complete TPT on 3HR compared to 9H (91.4% vs. 76.7%, p=0.02).[50-52]

The use of the 9H regimen in the majority of participants also highlights a key limitation of this study. By conducting it under routine program conditions, the study was exposed to external bias and confounding, such as the variability in the available TPT regimen. HCMC historically has had a substantially larger burden of TB and TBI, as evinced on this study. Thus, 9H was the local regimen of choice due to its greater availability and lower costs. Similarly, we relied on routine diagnostics to rule out active TB rather than more sensitive tools such as culture due to cost implications. With respect to costs, another limitation of our study was the lack of a formal assessment of the cost barrier of IGRAs in our low-resource setting with limited program budgets. Operationally, WHO recommends to integrate TPT into routine HHC investigations and ACF.[16] It stands to reason that such integration may also improve value for money as has been well-established for highly vulnerable people living with HIV.[53] There is ample evidence that HHC investigations and community-based ACF campaigns can reach those most vulnerable to active TB and thus most in need of TPT.[29,54,55] Nevertheless, given the lack of an accompanying health economic evaluation, future research should conduct impact evaluations and cost-effectiveness analyses of integrated TB and TBI testing and treatment on ACF campaigns and differences in incidence and disability-adjusted life years compared to a control cohort. Another limitation is that our cohort design did not include a post-treatment follow-up to assess incidence of TB in those with and without TPT, in part due to the social distancing measures launched in response to the pandemic. The study's convenience sampling and selection of HCMC and Hai Phong as study sites likely introduced bias towards densely populated urban settings, which consequently limits the generalizability of this study. Nevertheless, the study benefitted from its large sample size and integration into routine program operations that may help to translate the findings to recommendations for densely populated, high TB burden settings in general.

CONCLUSIONS

WHO's End TB Strategy highlights the need for increased testing and treatment of TB infection as a core intervention to reduce transmission and thus achieve incidence targets. While many high TB burden countries have incorporated this emphasis into their national strategic plans, operationalization of these plans is often hindered by the suboptimal application of available tools. IGRAs are the current gold standard for TBI testing, but are often underutilized, particularly at the lower healthcare levels. Shorter TPT regimen are recommended, but require further studies to assess their potential to support broad-scale TPT. This study elucidated the potential to decentralize and leverage these tools for wider and more cost-effective deployment towards meeting TPT targets, but also highlighted that scale-up of these tools, as well as overall TPT access and uptake, will likely require complementary, tailored advocacy and education for both beneficiaries and providers.

349 ACKNOWLEDGMENTS

We would like to acknowledge Viet Nam's National TB Programme, the HCMC and Hai Phong Provincial Departments of Health, and PLHs, the DHCs and commune health posts and participating public health staff for their support. We would also like to thank the Ho Chi Minh City Public Health Association for their support. Lastly, we feel a debt of gratitude to our patients, family members and communities for their participation and support. We would like to especially thank the site coordinators and CHWs for their tireless efforts to care for their patients and contribute to ending TB in Viet Nam.

COMPETING INTERESTS

357 The authors have no competing interests to declare.

358 FUNDING

This study and LNQV, AJC, RJF, NTTN and MC were supported by the European Commission's Horizon 2020 programme (grant number: 733174). The study and TTTD received additional financial support from the Government of Canada through the Stop TB Partnership's TB REACH initiative (grant number: STBP/TBREACH/GSA/W6SU-09). JC received support from the Government of Canada (grant number: CA-3-D000920001). Qiagen contributed the QFT-Plus kits to this study through an in-kind donation (grant number: N/A; clinical collaboration agreement dated 27 November 2017). None of these funding bodies had a role in the design of the study, in collection, analysis, and interpretation of data, or in writing the manuscript.

366 AUTHORS' CONTRIBUTIONS

LNQV, NN, VVT, HMD and THM contributed to the conceptualization of the study. The methodology was developed by LNQV, NTTN, TTTD, THM, HMD, and VVT. LNQV and PTL conducted the formal analysis. The investigation was conducted VVT, NTTN, TTTD and PTL. Resources for the study were provided by LHN, HMD, HTT, HBN and NVN. Data were curated by LNQV, AJC, PTL and KTT and LNQV visualized the data. LNQV, NTTN, TTTD wrote the original draft, while the manuscript was reviewed and edited by LNQV, AJC, JC, NN, HTT and MC. Study supervision was provided by JC, MC, LNOV, LHN, THM, HTT, HBN and NVN, while RJF, AJC, VVT, NTTN and TTTD were responsible for project administration. Funding acquisition was led by LNQV, RJF and AJC. All authors have read and approved the final manuscript.

375 DATA AVAILABILITY

The data that support the findings of this study are available from the Viet Nam National TB Control Program,
Hai Phong Provincial Lung Hospital and Pham Ngoc Thach Provincial TB Hospital, but restrictions apply to
their availability. Data are can be made available from the authors upon reasonable request and with permission
of the Viet Nam National TB Control Program, Hai Phong Provincial Lung Hospital and Pham Ngoc Thach
Provincial TB Hospital.

381 ETHICAL CONSIDERATIONS

This study was approved by the Pham Ngoc Thach Hospital ethics committee for biomedical research (897/HDDD-PNT). In addition, QFT-Plus testing is part of national guidelines and activities were approved by the NTP (1069/BVPTW-DAPCL). Participation was voluntary and did not affect the provision or standard of care. All personal identifying information was removed from the dataset prior to analysis.

1 2			
3 4	386	RE	FERENCES
5 6	387	1	World Health Organization. Global Tuberculosis Report 2022. Geneva, Switzerland: 2022.
7	388	2	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using
8 9	389		Mathematical Modelling. PLOS Med 2016;13:e1002152. doi:10.1371/journal.pmed.1002152
10	390	3	Esmail H, Barry CE, Young DB, et al. The ongoing challenge of latent tuberculosis. Philos Trans R Soc
12	391		<i>B Biol Sci</i> 2014; 369 :20130437–20130437. doi:10.1098/rstb.2013.0437
13 14	392	4	Matteelli A, Sulis G, Capone S, et al. Tuberculosis elimination and the challenge of latent tuberculosis.
15	393		Press Medicale 2017;46:e13-21. doi:10.1016/j.lpm.2017.01.015
16 17	394	5	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using
18	395		Mathematical Modelling. PLoS Med 2016;13:1–13. doi:10.1371/journal.pmed.1002152
19 20	396	6	Lewer D, Mulchandani R, Roche A, et al. Why has the incidence of tuberculosis not reduced in London
21	397		during the COVID-19 pandemic? Lancet Respir Med 2022;2600:1-2. doi:10.1016/s2213-
22	398		2600(22)00012-1
24 25	399	7	Shrestha S, Kendall EA, Chang R, et al. Achieving a "step change" in the tuberculosis epidemic through
26	400		comprehensive community-wide intervention: a model-based analysis. BMC Med 2021;19:1-15.
27 28	401		doi:10.1186/s12916-021-02110-5
29	402	8	Creswell J, Khan A, Bakker MI, et al. The TB REACH Initiative : Supporting TB Elimination Efforts in
30 31	403		the Asia-Pacific. Trop Med Infect Dis 2020;5:1–11. doi:10.3390/tropicalmed5040164
32 33	404	9	Hinderaker SG, Rusen ID, Chiang CY, et al. The FIDELIS initiative: Innovative strategies for increased
34	405		case finding. Int J Tuberc Lung Dis 2011;15:71–6.
35 36	406	10	The Global Fund. 2020-2022 Strategic Initiatives. 2020;:1–
37	407		6.https://www.theglobalfund.org/media/9228/fundingmodel_2020-2022strategicinitiatives_list_en.pdf
38 39	408		(accessed 14 Nov 2022).
40 41	409	11	Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: Diagnosis and
41	410		treatment of tuberculosis infection. Lancet 2015;386:2344-53. doi:10.1016/S0140-6736(15)00323-2
43 44	411	12	World Health Organization. Guidelines on the management of latent tuberculosis infection. 2015.
45	412		doi:WHO/HTM/TB/2015.01
46 47	413	13	World Health Organization. Report of the Global Consultation on the Programmatic Management of
48 40	414		Latent Tuberculosis Infection. 2016. 12.http://www.who.int/tb/challenges/consultation_meeting_ltbi/en/
49 50	415	14	Faust L, Ruhwald M, Schumacher S, et al. How are high burden countries implementing policies and
51 52	416		tools for latent tuberculosis infection? A survey of current practices and barriers. Heal Sci Reports
53	417		2020; 3 . doi:10.1002/hsr2.158
54 55	418	15	World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for
56	419		programmatic management. First edit. Geneva: : World Health Organization Press 2018.
57 58			18
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 20 of 28

BMJ Open

2			
3 4	420	16	World Health Organization. WHO operational handbook on tuberculosis - Module 1 : Prevention. 2022.
5	421		https://apps.who.int/iris/bitstream/handle/10665/340256/9789240022614-eng.pdf
6 7	422	17	Ministry of Health. Decision on the promulgation of the Guidelines on the detection and treatment of
8	423		Latent TB Infection [vietnamese]. Viet Nam: 2020.
9 10	424	18	National Tuberculosis Leprosy and Lung Disease Program. National Strategic Plan for Tuberculosis,
11 12	425		Leprosy and Lung Health 2019-2023. 2019.
12	426	19	Revised National Tuberculosis Control Programme. National Strategic Plan for tuberculosis elimination
14 15	427		2017–2025. New Delhi, India: 2017.
16	428	20	Hoa NB, Cobelens FGJ, Sy DN, et al. First national tuberculin survey in Viet Nam: Characteristics and
17 18	429		association with tuberculosis prevalence. Int J Tuberc Lung Dis 2013;17:738-44.
19	430		doi:10.5588/ijtld.12.0200
20 21	431	21	Marks GB, Nhung N V., Nguyen TA, et al. Prevalence of latent tuberculous infection among adults in
22	432		the general population of Ca Mau, Viet Nam. Int J Tuberc Lung Dis 2018;22:246-51.
23 24	433		doi:10.5588/ijtld.17.0550
25 26	434	22	Office of the Prime Minister. Approval of the National Strategy for TB prevention and control until 2020
20 27	435		with vision to 2030 [vietnamese]. Viet Nam, Viet Nam: 2014.
28 29	436	23	Stop TB Partnership. UN GA HLM on TB Political Declaration: Target for TB Preventive Therapy.
30	437		2018;:19.
31 32	438	24	Ganmaa D, Khudyakov P, Buyanjargal U, et al. Risk factors for active tuberculosis in 938
33	439		QuantiFERON-positive schoolchildren in Mongolia: A community-based cross-sectional study. BMC
34 35	440		Infect Dis 2019;19:1–9. doi:10.1186/s12879-019-4160-7
36 37	441	25	World Health Organization. Operational Handbooks, Module 1: Prevention, Annex 6. Answers to
38	442		frequently asked questions on IGRAs. WHO TB Knowl. Shar. Platf. 2021.https://tbksp.org/en/node/666
39 40	443		(accessed 14 Oct 2022).
41	444	26	Viet Nam National TB Control Programme. Viet Nam National Strategic Plan for TB 2021-2025. Ha
42 43	445		Noi, Viet Nam: 2020.
44	446	27	Nguyen LH, Codlin AJ, Vo LNQ, et al. An Evaluation of Programmatic Community-Based Chest X-ray
45 46	447		Screening for Tuberculosis in Ho Chi Minh City, Vietnam. Trop Med Infect Dis 2020;5:185.
47 48	448		doi:10.3390/tropicalmed5040185
49	449	28	Vo LNQ, Codlin AJ, Forse RJ, et al. Evaluating the yield of systematic screening for tuberculosis among
50 51	450		three priority groups in Ho Chi Minh City, Viet Nam. Infect Dis Poverty 2020;9:1-13.
52	451		doi:10.1186/s40249-020-00766-4
53 54	452	29	Mac TH, Phan TH, Nguyen V Van, et al. Optimizing Active Tuberculosis Case Finding : Evaluating the
55 56	453		Impact of Community Referral for Chest X-ray Screening and Xpert Testing on Case Notifications in
57			
58 59			19
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 28

BMJ Open

1 2			
3	454		Two Cities in Viet Nam. Trop Med Infect Dis 2020;221:1–15. doi:10.3390/tropicalmed5040181
4 5	455	30	Vo LNQ, Codlin AJ, Forse RJ, et al. Tuberculosis among economic migrants: a cross-sectional study of
6 7	456		the risk of poor treatment outcomes and impact of a treatment adherence intervention among temporary
8	457		residents in an urban district in Ho Chi Minh City, Viet Nam. BMC Infect Dis 2020;20:134.
9 10	458		doi:10.1186/s12879-020-4865-7
11	459	31	Viet Nam Ministry of Health. Decision on the promulgation of the Guidelines for Diagnosis, Treatment
12 13	460		and Prevention of Tuberculosis [Vietnamese]. Viet Nam: 2018.
14	461	32	Mulder C, Erkens C, Kouw P, et al. Tuberculin skin test reaction depends on type of purified protein
15 16	462		derivative: Implications for cut-off values. Int J Tuberc Lung Dis 2019;23:1327-34.
17 18	463		doi:10.5588/ijtld.18.0838
19	464	33	Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, et al. Diagnosis for Latent Tuberculosis
20 21	465		Infection: New Alternatives. Front Immunol 2020;11:1-13. doi:10.3389/fimmu.2020.02006
22	466	34	Khan A, Phares CR, Phuong HL, et al. Overseas Treatment of Latent Tuberculosis Infection in US-
23 24	467		Bound Immigrants. Emerg Infect Dis 2022;28:582-90. doi:10.3201/eid2803.212131
25 26	468	35	Sharninghausen JC, Shapiro AE, Koelle DM, et al. Risk factors for indeterminate outcome on interferon
20 27	469		gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum
28 29	470		Infect Dis 2018;5:1-8. doi:10.1093/ofid/ofy184
30	471	36	Banach DB, Harris TG. Indeterminate QuantiFERON ® -TB Gold results in a public health clinic setting.
31 32	472		Int J Tuberc Lung Dis 2011;15:1623-30. doi:10.5588/ijtld.11.0017
33	473	37	International Union Against Tuberculosis and Lung Disease. Abstract Book. In: 53rd World Conference
34 35	474		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2022.
36 37	475		S1–468.
38	476	38	Oxlade O, Boon S Den, Menzies D, et al. TB preventive treatment in high- and intermediate-incidence
39 40	477		countries : research needs for scale-up. 2021; 25 :823–31.
41	478	39	McClintock AH, Eastment MK, McKinney CM, et al. Treatment completion for latent tuberculosis
42 43	479		infection: A retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3
44 45	480		months of isoniazid and rifapentine. BMC Infect Dis 2017;17:1-8. doi:10.1186/s12879-017-2245-8
43 46	481	40	World Health Organization. Consolidated guidelines on tuberculosis: Module 1: Prevention. Geneva,
47 48	482		Switzerland: 2020.
49	483	41	Mølhave M, Wejse C. Historical review of studies on the effect of treating latent tuberculosis. Int J Infect
50 51	484		Dis 2020;92:S31–6. doi:10.1016/j.ijid.2020.03.011
52	485	42	Paton NI, Borand L, Benedicto J, et al. Diagnosis and management of latent tuberculosis infection in
53 54	486		Asia: Review of current status and challenges. Int J Infect Dis 2019;87:21-9.
55 56	487		doi:10.1016/j.ijid.2019.07.004
57			
58 59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว			
2	488	43	Lien LT, Hang NT Le, Kobayashi N, et al. Prevalence and risk factors for tuberculosis infection among
4 5	489		hospital workers in Hanoi, Viet Nam. PLoS One 2009;4:1–7. doi:10.1371/journal.pone.0006798
6 7	490	44	Ngo CQ, Manabe T, Vu G Van, et al. Difficulties in tuberculosis infection control in a general hospital
8	491		of Vietnam: a knowledge, attitude, and practice survey and screening for latent tuberculosis infection
9 10	492		among health professionals. BMC Infect Dis 2019;19:1-11. doi:10.1186/s12879-019-4593-z
11	493	45	nternational Union Against Tuberculosis and Lung Disease. Abstract Book. In: 48th World Conference
12 13	494		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2017.
14 15	495		S123.http://www.abstractserver.com/TheUnion2017/TheUnion2017_Abstracts_Web.pdf
15 16	496	46	U.S. Food & Drug Administration (FDA). FDA Updates and Press Announcements on Nitrosamine in
17 18	497		Rifampin and Rifapentine. 2021.https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-
19	498		and-press-announcements-nitrosamines-rifampin-and-rifapentine (accessed 7 Nov 2022).
20 21	499	47	World Health Organization. Nitrosamine concerns for rifapentine and rifampicin Update and FAQs.
22	500		2020.https://extranet.who.int/pqweb/sites/default/files/documents/FAQ_Nitrosamine_18Dec2020.pdf
23 24	501		(accessed 7 Nov 2022).
25 26	502	48	Arguello Perez E, Seo SK, Schneider WJ, et al. Management of Latent Tuberculosis Infection among
27	503		Healthcare Workers: 10-Year Experience at a Single Center. Clin Infect Dis 2017;65:2105-11.
28 29	504		doi:10.1093/cid/cix725
30	505	49	Han SS, Lee SJ, Yim JJ, et al. Evaluation and treatment of latent tuberculosis infection among healthcare
31	506		workers in Korea: A multicentre cohort analysis. PLoS One 2019;14:1-11.
33 34	507		doi:10.1371/journal.pone.0222810
35	508	50	Park SY, Lee E, Lee EJ, et al. Screening and treatment of latent tuberculosis infection among healthcare
36 37	509		workers at a referral hospital in Korea. Infect Chemother 2019;51:355-64. doi:10.3947/ic.2019.51.4.355
38	510	51	Lardizabal A, Passannante M, Kojakali F, et al. Enhancement of treatment completion for latent
39 40	511		tuberculosis infection with 4 months of rifampin. <i>Chest</i> 2006; 130 :1712–7. doi:10.1378/chest.130.6.1712
41 42	512	52	Horsburgh CR, Goldberg S, Bethel J, et al. Latent TB infection treatment acceptance and completion in
43	513		the United States and Canada. Chest 2010;137:401-9. doi:10.1378/chest.09-0394
44 45	514	53	Uppal A, Rahman S, Campbell JR, et al. Economic and modeling evidence for tuberculosis preventive
46	515		therapy among people living with HIV: A systematic review and meta-analysis. PLoS Med 2021;18:1-
47 48	516		24. doi:10.1371/journal.pmed.1003712
49 50	517	54	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of Tuberculosis in
51	518		Vietnam - Supplementary Appendix. N Engl J Med 2018;378:221-9. doi:10.1056/NEJMoa1700209
52 53	519	55	Morishita F, Garfin AMCG, Lew W, et al. Bringing state-of-The-Art diagnostics to vulnerable
54	520		populations: The use of a mobile screening unit in active case finding for tuberculosis in Palawan, the
55 56	521		Philippines. PLoS One 2017;12:1-21. doi:10.1371/journal.pone.0171310
57 58			
59			21

2 3 4	522	FIGURE LEGENDS
5	523	Figure 1. Aggregate TB infection care cascade.
6 7	524	Figure 2. TB infection care cascade by site and target group.
8	525	Figure 3 Kaplan-Mejer TPT survival curves a) for all participants and b) by TPT regimen
9 10	525	rigure 5. Ruptan-Weier 11.1 Survival curves a) for an participants and 6) by 11.1 regimen.
11		
12 13		
14		
15 16		
17		
18 10		
20		
21		
22		
24 25		
25 26		
27 28		
28 29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1582x659mm (96 x 96 DPI)

Notes: ¶ Median number of days between QFT-Plus testing and treatment initiation

219x187mm (150 x 150 DPI)

95%CI 95%CI

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Item No	Recommendation]]
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	_
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			-
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
-		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	6
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	n
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	n
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
L		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	1
-		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	1
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	1

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
20
50 21
51
32
33
34
35
36
37
38
39
40
41
ר עע
ד∠ ⊿ר
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

1 2

		(b) Report category boundaries when continuous variables were				
		categorized				
		(c) If relevant, consider translating estimates of relative risk into absolute	10-12			
		risk for a meaningful time period				
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	n/a			
		and sensitivity analyses				
Discussion						
Key results	18	Summarise key results with reference to study objectives	13			
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15			
		bias or imprecision. Discuss both direction and magnitude of any potential				
		bias				
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	13-15			
		limitations, multiplicity of analyses, results from similar studies, and other				
		relevant evidence				
Generalisability	21	Discuss the generalisability (external validity) of the study results	15			
Other information						
Funding	22	Give the source of funding and the role of the funders for the present study	16			
		and, if applicable, for the original study on which the present article is				
		based 🚺				

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

SUPPLEMENTAL MATERIAL

Model specification validation results

Figure S1: Kaplan-Meier observed survival curve of TPT regimen

The log-rank test result to assess the equality of survival between the two TPT regimen was p=0.319.

The p-value of the global postestimation proportional hazards test 0.644 and tests of individual parameters produced p-values of 0.112 .

BMJ Open

Optimizing diagnosis and treatment of tuberculosis infection in community and primary care settings in two urban provinces of Viet Nam: a cohort study

Journal:	BMJ Open		
Manuscript ID	bmjopen-2022-071537.R2		
Article Type:	Original research		
Date Submitted by the Author:	20-Jan-2023		
Complete List of Authors:	Vo, Luan ; Friends for International TB Relief, Nguyen, Viet Nhung; National Lung Hospital , National TB Program Nguyen, Nga Thi Thuy; Friends for International TB Relief Dong, Thuy Thi Thu; Friends for International TB Relief Codlin, Andrew; Friends for International TB Relief Forse, Rachel; Friends for International TB Relief, TB Programs; Karolinska Institutet, Department of Global Public Health, The Health and Social Protection Action Research & Knowledge Sharing network (SPARKS) Truong, Huyen Thanh; National Lung Hospital Nguyen, Hoa Binh; National Lung Hospital Dang, Ha Thi Minh; Pham Ngoc Thach Hospital Truong, Vinh Van; Pham Ngoc Thach Hospital Nguyen, Lan Huu; Pham Ngoc Thach Hospital Mac, Tuan Huy; Hai Phong Lung Hospital Le, Phong Thanh; IRD VN Social Enterprise LLC Tran, Khoa Tu; Friends for International TB Relief Ndunda, Nduku; Former Qiagen Employee Caws, Maxine; Liverpool School of Tropical Medicine, Clinical Sciences; Birat Nepal Medical Trust Creswell, Jacob; Stop TB Partnership		
Primary Subject Heading :	Infectious diseases		
Secondary Subject Heading:	Global health, Public health, Epidemiology		
Keywords:	Tuberculosis < INFECTIOUS DISEASES, PREVENTIVE MEDICINE, PUBLIC HEALTH		

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Optimizing diagnosis and treatment of tuberculosis infection in community and primary care settings in two urban provinces of Viet

Nam: a cohort study

Luan Nguyen Quang Vo^{1,*}, Nhung Viet Nguyen², Nga Thi Thuy Nguyen¹, Thuy Thi Thu Dong¹, Andrew Codlin¹, Rachel Forse¹, Huyen Thanh Truong², Hoa Binh Nguyen², Ha Thi Minh Dang³, Vinh Van Truong³, Lan Huu Nguyen³, Tuan Huy Mac⁴, Phong Thanh Le⁵, Khoa Tu Tran¹, Nduku Ndunda⁶, Maxine Caws⁷ and

- Jacob Creswell⁸
- 1 Friends for International TB Relief, Ha Noi, Viet Nam
- 2 National Lung Hospital, Ha Noi, Viet Nam
- 3. Pham Ngoc Thach Hospital, Ho Chi Minh City, Viet Nam
- 4 Hai Phong Lung Hospital, Hai Phong, Viet Nam
- 5 IRD VN Social Enterprise LLC, Ho Chi Minh City, Viet Nam
- 6 Former Qiagen employee, Dubai, UAE
- 7 Liverpool School of Tropical Medicine, Liverpool, UK 6207J
- 8 Stop TB Partnership, Geneva, Switzerland
- * Corresponding author:
- Luan Nguyen Quang Vo
- Friends for International TB Relief
- 6th Floor, 1/21 Le Van Luong St., Nhan Chinh Ward, Thanh Xuan District, Ha Noi, Viet Nam
- luan.vo@tbhelp.org; +84 902908004

Word count: 3,954

24 ABSTRACT

Objectives: To end tuberculosis (TB), the vast reservoir of 1.7-2.3 billion TB infections (TBI) must be addressed but achieving global TB preventive therapy (TPT) targets seems unlikely. This study assessed the feasibility of using interferon-gamma release assays (IGRA) at lower healthcare levels and the comparative performance of 3- and 9-month daily TPT regimens (3HR/9H).

Design, setting and participants: This cohort study was implemented in two provinces of Viet Nam from May-2019 to Sept-2020. Participants included household contacts (HHC), vulnerable community members and healthcare workers (HCW) recruited at community-based TB screening events or HHC investigations at primary care centers, who were followed up throughout TPT.

Primary and secondary outcomes: We constructed TBI care cascades describing indeterminate and positivity
 rates to assess feasibility, and initiation and completion rates to assess performance. We fitted mixed-effect
 logistic and stratified Cox models to identify factors associated with IGRA-positivity and loss to follow-up
 (LTFU).

Results: Among 5,837 participants, the indeterminate rate was 0.8% and 30.7% were IGRA-positive. TPT initiation and completion rates were 63.3% (3HR=61.2% vs. 9H=63.6%; p=0.147) and 80.6% (3HR=85.7% vs. 9H=80.0%; p=0.522), respectively. Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018) and exhibiting TB-related abnormalities on X-ray (2.23 [1.38, 3.61]; p=0.001) were associated with positive IGRA results. Risk of IGRA-positivity was lower in peri-urban districts (0.55 [0.36, 0.55]; p=0.007), aged <15 years (0.18 [0.13, 0.26]; p<0.001), aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), and HCWs (0.34 [0.24, 0.48]; p<0.001). The 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) showed higher hazards of LTFU.

45 Conclusion: Providing IGRA at lower healthcare levels is feasible and along with shorter regimen may expand
 46 access and uptake towards meeting TPT targets, but scale-up may require complementary advocacy and
 47 education for beneficiaries and providers.

Keywords: tuberculosis, infection, community, urban, interferon-gamma release assay, short-course,
 tuberculosis preventive therapy

51 Running head: Optimizing diagnosis and treatment of TB infection in Viet Nam

52 STRENGTHS AND LIMITATIONS OF THIS STUDY

• A strength of the study was the large sample size of persons tested by interferon-gamma release assay across two sites with varying characteristics in background tuberculosis infection as well as demographic and clinical characteristics, which enabled comparative analyses of subsegments of the sample.

The community setting in which participants were recruited and tested using sophisticated diagnostics
 decentralized to lower care levels further contributes to the evidence base for scale-up of tuberculosis
 prevention, especially given the size of the sample.

Embedding the study in routine tuberculosis program activities exposed it to common limitations such as
 heterogeneity in supply chain as well as health worker knowledge, attitudes and practices commonly
 experienced by the program.

beet exite only

INTRODUCTION

After a brief relegation due to the COVID-19 pandemic, tuberculosis (TB) is once again the world's leading infectious disease killer.[1] One of the key reasons is the estimated 1.7–2.3 billion people infected with TB without suffering from active disease, whose activation continues to fuel incidence.[2,3] An estimated 5-15% of people with TB infection (TBI) develop active TB disease in their lifetimes, serving as a vast reservoir for future TB disease, even if new TB transmission were completely eliminated today.[4,5] This was also observed by a study in London at the height of the pandemic which showed that social distancing mitigated incidence of several respiratory diseases, but not of TB.[6] Thus, research and modeling suggest that increased emphasis on TBI is needed in order to reduce worldwide TB incidence.[7] However, while efforts to find and treat people with TB who are missed by existing TB care programs have been launched in most high TB burden countries, relatively few are addressing the burden of TBI at scale.[8–11]

This muted response was historically linked to World Health Organization (WHO) guidelines recommending TB preventive therapy (TPT) in high TB burden settings only for people living with HIV (PLHIV), under-5 household contacts (HHC) of persons with bacteriologically-confirmed, pulmonary TB and persons with occupational risk factors for progression to active TB.[12] Beyond conservative guidelines, other commonly cited bottlenecks have included shortages in commodities and particularly diagnostic consumables such as tuberculin, high health system costs of diagnosis, treatment and follow-up depressing TPT uptake, and lack of patient-friendly treatment regimen negatively affecting adherence.[13,14]

In recent years, the WHO has issued updated technical and operational guidelines with expanded TPT eligibility criteria, such as HIV-negative household contacts of all ages. [15,16] However, a key recommendation for this expanded eligibility was the inclusion of an appropriate clinical and laboratory evaluation, which in select settings translated to the prerequisite of immunological confirmation of TBI by tuberculin skin test (TST) or interferon-gamma release assay (IGRA) for TPT within national guidelines.[14,17] The updated WHO guidelines also introduced new short-course TPT regimens with better tolerability and safety profiles, which high TB burden countries have eagerly integrated into national TBI guidelines and national strategic plans.[18,19]

One of these countries is Viet Nam, which ranks 11th among the 30 high TB burden countries. During the first prevalence survey, the annual rate of TB infection was measured to be 1.7% with a TBI prevalence of 16.7% in children aged 6–14 years using TST with a threshold of 10mm.[20] A subsequent study in rural Ca Mau province measured a TBI rate of 36.8% using IGRA.[21] In 2014, Viet Nam passed legislation codifying its goals to drastically reduce TB prevalence in alignment with the WHO End TB Strategy.[22] On World TB Day 2020, the Ministry of Health introduced the country's inaugural guidelines on diagnosis and treatment of TBI. These

guidelines expanded TPT eligibility to all adults with TBI confirmed by recommended diagnostic tools and
excluding active TB, permitted the use of various shortened regimen, and described contact investigation and
follow-up requirements. Viet Nam further demonstrated its focus on TB prevention by committing at the UN
High-Level Meeting on Ending TB to scale-up provision of TPT to 291,500 people by 2022.[23]

However, the country has experienced many of the challenges related to the scale-up of TPT as described above. Specifically, Viet Nam requires TBI confirmation within the expanded eligibility criteria prior to treatment, but has experienced tuberculin supply chain shortages and batch-variance in the positivity threshold. While WHO-recommended IGRAs are commercially available, the National TB Control Programme (NTP) has consigned this assay class to tertiary care facilities due to the delicate specimen handling and sophistical laboratory requirements, [24,25] which is underscored by the lack of published evidence of the assay's deployment at the point-of-care domestically and worldwide. In addition, the prohibitively high costs per test have precluded serious consideration for routine TB program activities.

Nevertheless, the NTP remains committed to the scale-up of TPT through the optimal use of available and new diagnostics and regimens.[26] Given tuberculin supply and staff capacity challenges, and lack of evidence on the impact of recently introduced shorter TPT regimen on uptake and completion, this study assessed the use of the QuantiFERON-TB Gold Plus assay (QFT-Plus; Qiagen, Hilden, Germany) at the community level and the performance of shorter TPT regimen under programmatic conditions. The goal was to inform NTP of Viet Nam and other high TB burden countries in their ambitions to meet their TPT goals.

112 METHODS

37
38 113 Study design and objectives

This was a cohort study to measure the feasibility of employing IGRA at the community and primary care levels for the diagnosis of TBI. Feasibility was defined by comparing indeterminate and positivity rates with those demonstrated in facility-based studies (primary endpoints). Secondary objectives included measuring the rate of TPT initiation and completion (secondary endpoints) in cohorts provided with two different TPT regimens, and to identify participant covariates associated with IGRA-positivity and loss to follow-up. The study followed the STROBE guideline for reporting observational studies (Supplemental material 1).

120 Study setting

The study was conducted in six districts of Ho Chi Minh City (HCMC) and Hai Phong municipal provinces. In
 HCMC, study sites included Districts 6, 8, 12, Binh Chanh, Go Vap, and Tan Binh with a cumulative population

Page 7 of 28

BMJ Open

of 2,387,052 and 3,598 TB notifications in 2019. In Hai Phong, the study took place in Do Son with a population of 49,029 and 52 persons with drug-susceptible TB notified in 2019.

Study population and recruitment

The study was embedded into routine contact investigations at primary care commune health posts and community-based active TB case finding (ACF) events. Details of the ACF events are provided elsewhere.[27] The study population included HHC and close contacts, and vulnerable community members at elevated risk of active TB, such as the elderly, urban poor and economic migrants. Briefly, elderly persons were \geq 55 years, urban poor were based on national poverty definitions and economic migrants were categorized based on residency registration in rural provinces outside of the intervention districts. [28–30] The HCMC site also included a subgroup of primary- and secondary-level healthcare workers (HCW) based on the request from local authorities. Recruitment and follow-up occurred from May-2019 to Sep-2020. All individuals presenting for screening provided routine demographic and clinical information including age, sex, residency status, history of TB, comorbidities and symptomatic presentation. Following intake, persons belonging to the study population with residency in the study districts were invited to participate in the study. Persons living outside of or intending to relocate away from the study sites, or who declined to consent were excluded. Eligible, consenting participants were recruited consecutively until the quota of available OFT-Plus tests was reached (n=5.000 in HCMC and n=1,000 in Hai Phong). Parents consented on behalf of their children under 18 years.

Sample size

We calculated the sample size to power a 1-sample Z-test of proportions for non-inferiority between a literature-based indeterminate rate of p=2.9% and a null hypothesis of $p_0=3.5\%$ with a non-inferiority margin $\delta=0.1\%$. With a confidence level of α =95% and a power of β =90%, the estimated sample size was n=4,915. We included a 15% contingency for attrition, data losses and post-hoc exclusion for a final sample size of n=5,653.

Specimen collection and processing

Provincial lung hospital (PLH) laboratory staff hosted training sessions on specimen collection and processing for the District TB Unit (DTU) and district-level laboratory staff. The District Health Center (DHC) mobilized participants to attend ACF events or to present at commune health posts. All attendants were systematically screened for TB symptoms and directed to undergo chest radiography (CXR) to rule out active TB. Persons with parenchymal abnormalities suggestive of TB on CXR or strong clinical suspicion of TB were referred for molecular sputum testing, as per contemporary national TB treatment guidelines.[31] Attendants were counseled on TBI and invited to participate. Study staff collected blood specimens from consenting, eligible individuals as per manufacturer recommended procedures. Each participant provided 4ml of venous whole blood in four separate tubes. Blood specimens were processed and analyzed per manufacturer's recommendations. Briefly,

all four tubes were immediately shaken ~10 times to dissolve all antigens on the tube's wall coating. Tubes were stored inside dry ice coolers at 17–25°C, which were transported to the PLH biochemistry–hematology departments within six hours, twice a day. Samples were incubated at 37°C for 20 hours (\pm 1 hour) and centrifuged within one hour of completing the incubation stage at 2000-3000g for 14 minutes at room temperature. The twelve-step enzyme linked immunosorbent assay was conducted within 16-24 hours. Results were analyzed by using proprietary QuantiFERON software v2.7.1.

161 TPT initiation and participant follow-up

QFT-Plus test results were returned to the DHC two days after receipt of the blood specimens. Individuals with negative results were informed via phone by DHC staff. Those with positive results and eligible for preventive treatment (i.e., with confirmed TBI and active TB ruled out by CXR and symptomatic presentation) were invited to present at their respective DTU for pre-treatment counseling and TPT initiation as per national guidelines.[17] TPT regimen varied by province. In HCMC, TPT consisted of nine months of daily isoniazid (9H), while in Hai Phong eligible persons received three months of daily isoniazid and rifampicin (3HR). Individuals on TPT received in-person follow-up during monthly drug pick-up at the DTU. Community TB officers conducted phone or in-person follow-up in regular intervals or as needed, as recommended in national guidelines. Participants experiencing adverse events were asked to present at the DTU for check-up.

¹ 171 Statistical analyses

The primary measures of interest were QFT-Plus positivity and indeterminate rates. Secondary variables of interest included TPT initiation and completion rates within the study population. Missing data were retrieved through post-event follow-up of participants or excluded from individual analyses. We constructed TBI care cascades in aggregate and segmented by site ranging from persons recruited to participants with a successful TPT completion. We documented losses along the cascade and reported median and interguartile ranges of diagnostic delay, i.e., time from testing to TPT initiation. We calculated descriptive statistics for key sample characteristics by QFT-Plus result and TPT completion and fitted a saturated, mixed-effect logistic regression to assess associations between positivity and participant covariates to adjust for confounding and inherent bias. Study district was the random effect to account for intra-cluster correlation. The survival analysis designated loss to follow-up (LTFU) a failure and censored adherent participants on 3HR and 9H at three and nine months, respectively. We constructed Kaplan-Meier survival curves and conducted log-rank tests to assess the equality of survival between the two TPT regimen. We fitted a saturated Cox model and assessed validity of the proportionality assumption using log-log plots and Schoenfeld residuals. Violations were addressed via stratification or modeling of time-variance for parameters of interest. The final model passed both the global postestimation proportional hazards test and tests of individual parameters. P-values of validation tests were

BMJ Open

provided in the Supplemental material 2. Hypothesis tests were two-tailed. A threshold of p<0.05 was
considered significant. Analyses were conducted using STATA v17 (Stata Corp.; College Station, TX, USA).

189 Patient and public involvement

While TB patients and their families were not involved in setting the research question, a consensus building meeting was held at the beginning of the study for government stakeholders and community members to provide feedback and recommendations and reach consensus about the study design and implementation. Patients, their families and public stakeholders were also central to dissemination of study information, which helped to motivate community involvement during and beyond the study.

RESULTS

196 Sample characteristics

Of the 5.837 participants in the sample, 59.3% (n=3,463) were female (Table 1). Children under 15 years constituted 19.5% (1,136/5,834) of the sample and the median participant age was 40 (IQR: 20–55). Overall, most participants were recruited at community-based ACF events (55.8%; n=3,257), lived in urban areas (65.6%; n=3,827), were permanent residents (90.5%; 3,116/3,444) and were enrolled on social health insurance (90.4%; 5.269/5.832). About 2.9% (n=167) were diabetics and 1.1% (n=62) reported a history of TB. Moreover, 39.5% (n=2,306) reported experiencing at least one of the four core TB symptoms (cough, weight loss, fever, and/or night sweats) during recruitment, while 2.3% (n=134) participants exhibited TB-related CXR abnormalities.

	Total	IGRA(+) [¥]	IGRA (-) [¥]	Indeterminate	aOR¥	p-value [†]
	(N = 5,837)	(N = 1,792)	(N = 4,000)	(N = 45)	(95% CI)	•
	N (%) [°]	N (%)	N (%)	N (%)	, , ,	
Sex						
Female	3,463 (59.3)	1,048 (30.3)	2,392 (69.1)	23 (0.7)	Ref	
Male	2,374 (40.7)	744 (31.3)	1,608 (67.7)	22 (0.9)	1.51 [1.28; 1.78]	< 0.001
Age [¶]						
<15 years	1,136 / 5,834 (19.5)	134 / 1,792 (11.8)	997 / 3,997 (87.8)	5 / 45 (0.4)	0.18 [0.13; 0.26]	< 0.001
15-29 years	891 / 5,834 (15.3)	195 / 1,792 (21.9)	687 / 3,997 (77.1)	9 / 45 (1.0)	0.56 [0.42; 0.75]	< 0.001
30-44 years	1,290 / 5,834 (22.1)	418 / 1,792 (32.4)	864 / 3,997 (67.0)	8 / 45 (0.6)	Ref	
45-59 years	1,679 / 5,834 (28.8)	704 / 1,792 (41.9)	957 / 3,997 (57.0)	18 / 45 (1.1)	1.30 [1.05; 1.60]	0.018
\geq 60 years	838 / 5,834 (14.4)	341 / 1,792 (40.7)	492 / 3,997 (58.7)	5 / 45 (0.6)	1.06 [0.80; 1.40]	0.673
Median age (IQR)	40 (20–55)	49 (35–58)	35 (15–52)	45 (24–54)		
Study site						
Ho Chi Minh City	4,840 (82.9)	1,603 (33.1)	3,200 (66.1)	37 (0.8)	Ref	
Hai Phong	997 (17.1)	189 (19.0)	800 (80.2)	8 (0.8)	0.69 [0.40; 1.20]	0.186
Screening location						
Community screening event	3,257 (55.8)	993 (30.5)	2,244 (68.9)	20 (0.6)	Ref	
Primary care center	2,580 (44.2)	799 (31.0)	1,756 (68.1)	25 (1.0)	0.88 [0.69; 1.13]	0.325
Farget group						
Household and close contacts	2,431 (41.7)	897 (36.9)	1,495 (61.5)	39 (1.6)	1.11 [0.67; 1.82]	0.690
Vulnerable community members	2,995 (51.3)	821 (27.4)	2,168 (72.4)	6 (0.2)	Ref	
Healthcare workers	411 (7.0)	74 (18.0)	337 (82.0)	0 (0.0)	0.34 [0.24; 0.48]	< 0.001
Urbanization						
Urban	3,827 (65.6)	1,135 (29.7)	2,669 (69.7)	23 (0.6)	Ref	
Peri-urban	2,010 (34.4)	657 (32.7)	1,331 (66.2)	22 (1.1)	0.55 [0.36; 0.85]	0.007
Residency status ^{+,¶}						
Grade 1	3,116 / 3,444 (90.5)	799 / 907 (25.6)	2,294 / 2,511 (73.6)	23 / 26 (0.7)	Ref	
Grade 2	91 / 3,444 (2.6)	27 / 907 (29.7)	62 / 2,511 (68.1)	2 / 26 (2.2)	1.08 [0.66; 1.74]	0.765
Grade 3	202 / 3,444 (5.9)	68 / 907 (33.7)	134 / 2,511 (66.3)	0 / 26 (0.0)	1.36 [0.96; 1.92]	0.083
Grade 4	35 / 3,444 (1.0)	13 / 907 (37.1)	21 / 2,511 (60.0)	1 / 26 (2.9)	1.54 [0.73; 3.26]	0.260
Social health insurance [¶]						
No	563 / 5,832 (9.7)	180 / 1,790 (32.0)	376 / 3,997 (66.8)	7 / 45 (1.2)	Ref	
Yes	5,269 / 5,832 (90.4)	1,610 / 1,790 (30.6)	3,621 / 3,997 (68.7)	38 / 45 (0.7)	1.11 [0.84; 1.46]	0.473

205 Table 1: Participant characteristics and adjusted odds ratios associated with IGRA-positivity

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1								
2								
3		Diabatas mallitus						
4		No/Unknown	5 670 (07 1)	1.721(20.4)	2,006,(68,0)	12 (0.8)	Dof	
5		No/ Ulikilowii	167 (2.0)	1,721(30.4) 71(42.5)	5,900(08.9)	43(0.8)		0.516
6		1 05	107 (2.9)	/1 (42.3)	94 (30.3)	2 (1.2)	1.15 [0.75, 1.70]	0.510
7		Previous history of TB						
8		No/Unknown	5,775 (98.9)	1,764 (30.6)	3,967 (68.7)	44 (0.8)	Ref	
9		Yes	62 (1.1)	28 (45.2)	33 (53.2)	1 (1.6)	1.93 [0.96; 3.86]	0.063
10		Any TB symptoms ^{§,¶}						
11		No	3,531 (60.5)	1,012 (28.7)	2,499 (70.8)	20 (0.6)	Ref	
12		Yes	2.306 (39.5)	780 (33.8)	1.501 (65.1)	25(1.1)	0.96 [0.80: 1.15]	0.635
13		Chost V roy rosult			-,()			
14		Normal	5 502 (04 2)	1 602 (20 8)	2 769 (69 5)	41 (0.8)	Dof	
15		Abrormal	3,302(94.3)	1,095 (50.8)	5,708 (08.5)	41(0.8)		0.001
16		Abilofillai	134(2.3)	78(38.2)	30 (41.8)	0(0.0)	2.25 [1.38, 5.01]	0.001
1/	200	No Chest X-ray	201 (3.4)	21 (10.5)	1/6 (87.6)	4 (2.0)	0.28 [0.15; 0.51]	<0.001
10	200	¶ N sizes listed due to missing values:						
20	208	§ Includes cough, fever, night sweats and v	veight loss of any duration;					
21	209	+ Residency grade definitions: 1=Permaner	nt resident; 2=Long-term intra-p	province temporary resident	t; 3=Short-term, intra-provi	nce temporary re	sident; 4=Short-term, ir	nter-province
22	210	temporary resident						
23	211	A Percent of total						
24	213	¥ IGRA=Interferon-Gamma Release Assay	aOR=adjusted Odds Ratio					
25	214	† Wald test	, activitation can traine					
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
TB infection care cascade

Of the 16,652 individuals verbally screened in both provinces, 35.1% (n=5,837) agreed to be tested by OFT-Plus for the study (Figure 1). The overall indeterminate rate was 0.8% (n=45) and 30.7% (n=1,792) of participants were QFT-Plus-positive, of whom 97.5% (n=1,748) were eligible for TPT. About 63.3% (1,107/1,748) of eligible participants initiated TPT and 80.6% (892/1,107) completed therapy. The sample included 4,840 participants in HCMC and 997 in Hai Phong (Table 2). The indeterminate rate was 0.8% in both sites, while positivity rates were 33.1% (1,603/4,840) in HCMC and 19.0% (189/997) in Hai Phong. The respective TPT initiation and completion rates in the 9H cohort in HCMC were 63.6% (995/1,565) and 80.0% (796/995) compared to 61.2% (112/183) and 85.7% (96/112) in the 3HR cohort in Hai Phong. Neither initiation nor completion rates were significantly different between the two regimens (p=0.522 & p=0.147, respectively).

225 Table 2: TB infection care cascade by TPT cohort

	Total	HCMC	Hai Phong
	(N = 5,837)	(N = 4,840)	(N = 997)
\sim	N (%)	N (%)	N (%)
IGRA result & TPT [¥]	6		
Indeterminate	45 (0.8)	37 (0.8)	8 (0.8)
Negative	4,000 (68.5)	3,200 (66.1)	800 (80.2)
Positive	1,791 (30.7)	1,603 (33.1)	189 (19.0)
Ineligible for TPT (% of positive)	44 (0.8)	38 (0.8)	6 (0.6)
No CXR	21 (0.4)	16 (0.3)	5 (0.5)
CXR(+), No MTB test	6 (0.1)	5 (0.1)	1 (0.1)
MTB(+)	17 (0.3)	17 (0.4)	0 (0.0)
Eligible for TPT (% of positive)	1,748 (97.6)	1,565 (97.6)	183 (97.3)
CXR(-)	1,702 (95.0)	1,524 (95.1)	178 (94.7)
CXR(+), MTB(-)	46 (2.6)	41 (2.6)	5 (2.7)
Initiated on TPT [¶] (% of eligible)	1,107 (63.3)	995 (63.6)	112 (61.2)
Completed TPT [®] (% of initiated)	892 (80.6)	796 (80.0)	96 (85.7)

226 Notes:

4 227 ¥ IGRA=Interferon-Gamma Release Assay; CXR=Chest X-Ray; TPT=TB Preventive Therapy; MTB=*M. tuberculosis*; HCMC=Ho
 228 Chi Minh City

1229 ¶ TPT consisted of 9H in HCMC and of 3HR in Hai Phong

The sample included 46.6% (n=2,256) HHCs, 44.9% (n=2,173) vulnerable community members and 8.5% (n=411) HCWs in HCMC (Figure 2). In Hai Phong, the sample consisted of 17.6% (n=175) HHCs and 82.5% (n=822) community members. IGRA-positivity among HHCs was similar in both cities, but lower in community members in Hai Phong (123/822=15.0%) compared to HCMC (698/2173=32.1%). Similarly, positivity in HCWs was also comparatively lower (74/411=18.0%). TPT initiation rates in HHCs and community members were similar across sites ranging from 59.0% to 66.6%, and higher among HCWs (52/72=72.2%). Diagnostic delays in HCMC were shorter than in Hai Phong for both HHCs (17 vs. 59 days) and community members (15

Page 13 of 28

BMJ Open

1 2	
3	23
4 5	23
6 7	24
8 9	24
10	- 24
11	- 24
13 14	24
15	24
16 17	24
18	
19 20	24
21	24
22	24
24 25	25
26	25
27 28	25
29	25
30 31	25
32	24
33 34	23
35 36	
30 37	
38 30	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56	

57 58

59

60

vs. 58 days), except among HCWs (40.5). Similarly, TPT completion rates were high among HHCs and
community members in both sites ranging from 77.3% to 90.5%, but only half of HCWs completed TPT.

240 Risk factors of IGRA-positivity

Being male (adjusted Odds Ratio=1.51; 95% confidence interval: [1.28, 1.78]; p<0.001), aged 45-59 years (1.30 [1.05, 1.60]; p=0.018), and exhibiting CXR abnormalities suggestive of TB (2.23 [1.38, 3.61]; p=0.001) were associated with higher QFT-Plus positivity (Table 2). Conversely, compared to the reference group (30-44 years), the risk of QFT-Plus-positivity was significantly lower among children under 15 years (0.18 [0.13, 0.26]; p<0.001) and persons aged 15-29 years (0.56 [0.42, 0.75]; p<0.001), as well as among HCWs (0.34 [0.24, 0.48]; p<0.001) and individuals living in peri-urban areas (0.55 [0.36, 0.55]; p=0.007).

⁹ 247 Survival analysis and risk factors of TPT completion

A total of 1,107 participants were followed for a total of 8,211 person-months with 215 recorded LTFUs (Table 3). There were 7,904 and 307 person-months of observations with mean follow-up times of 7.9 [7.8, 8.1] months and 2.7 [2.6, 2.9] months, and 199 and 16 LTFUs in the 9H and 3HR cohorts, respectively. The respective LTFU incidence rates were 25.2 and 52.1 per 1,000 person-months. Most LTFUs occurred after the first month of TPT in both the 9H (79/199=39.7%) and 3HR (13/16=81.2%) cohorts (Figures 3a and 3b). The survival analysis showed that the 3HR regimen (adjusted Hazard Ratio=3.83 [1.49, 9.84]; p=0.005) and HCWs (1.38 [1.25, 1.53]; p<0.001) were strongly associated with higher risk of LTFU.

Table 3: Participant characteristics and adjusted risk factors associated with TPT loss to follow-up

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ue [†]
Total $(N = 1,107)$ completed¥ $(N = 892)$ LTFU¥ $(N = 215)$ (95% CI)TPT regimen $N (\%)^{rr}$ $N (\%)^{t}$ $N (\%)^{t}$ $N (\%)^{t}$ 9H995 (89.9)796 (80.0)199 (20.0)Ref3HR112 (10.1)96 (85.7)16 (14.3)3.83 [1.49; 9.84]0.0SexFemale645 (58.3)512 (79.4)133 (20.6)RefMale462 (41.7)380 (82.3)082 (17.8)1.02 [0.94; 1.11]0.6Age $466 (7.8)$ 72 (83.7)14 (16.3)0.63 [0.22; 1.79]0.315-29 years116 (10 5)90 (77 6)26 (22 4)1 71 [0 88; 3 35]0 1)05
(N = 1,107) N (%)* $(N = 892)$ N (%)* $(N = 215)$ N (%)*TPT regimen 9H 3HR995 (89.9) 112 (10.1)796 (80.0) 96 (85.7)199 (20.0) 16 (14.3)Ref 3.83 [1.49; 9.84]Sex Female Male645 (58.3) 462 (41.7)512 (79.4) 380 (82.3)133 (20.6) 082 (17.8)Ref 1.02 [0.94; 1.11]Age <15 years)05
N (%) ⁿ N (%) ⁺ N (%) ⁺ TPT regimen 9H 3HR995 (89.9) 112 (10.1)796 (80.0) 96 (85.7)199 (20.0) 16 (14.3)Ref 3.83 [1.49; 9.84]Sex Female645 (58.3) 462 (41.7)512 (79.4) 380 (82.3)133 (20.6) 082 (17.8)Ref 1.02 [0.94; 1.11]Age <15 years86 (7.8) 116 (10.5)72 (83.7) 90 (77.6)14 (16.3) 26 (22.4)0.63 [0.22; 1.79] 0.30.3)05
TPT regimen 995 (89.9) 796 (80.0) 199 (20.0) Ref 3HR 112 (10.1) 96 (85.7) 16 (14.3) 3.83 [1.49; 9.84] 0.0 Sex 645 (58.3) 512 (79.4) 133 (20.6) Ref Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 115 years 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10 5) 90 (77 6) 26 (22 4) 1 71 [0 88; 3 35] 0 1)05
9H 995 (89.9) 796 (80.0) 199 (20.0) Ref 3HR 112 (10.1) 96 (85.7) 16 (14.3) 3.83 [1.49; 9.84] 0.0 Sex Female 645 (58.3) 512 (79.4) 133 (20.6) Ref Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 116 (10.5) 90 (77.6) 26 (22.4) 1.71 [0.88; 3.35] 0.1)05
3HR 112 (10.1) 96 (85.7) 16 (14.3) 3.83 [1.49; 9.84] 0.0 Sex Female 645 (58.3) 512 (79.4) 133 (20.6) Ref Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10 5) 90 (77 6) 26 (22 4) 1 71 [0 88; 3 35] 0 1)05
Sex 645 (58.3) 512 (79.4) 133 (20.6) Ref Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10 5) 90 (77 6) 26 (22 4) 1 71 [0 88; 3 35] 0 1	
Female 645 (58.3) 512 (79.4) 133 (20.6) Ref Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10.5) 90 (77.6) 26 (22.4) 1.71 [0.88: 3.35] 0.1	
Male 462 (41.7) 380 (82.3) 082 (17.8) 1.02 [0.94; 1.11] 0.6 Age 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10 5) 90 (77 6) 26 (22 4) 1 71 [0.88; 3.35] 0.1	
Age 86 (7.8) 72 (83.7) 14 (16.3) 0.63 [0.22; 1.79] 0.3 15-29 years 116 (10 5) 90 (77 6) 26 (22 4) 1 71 [0 88: 3 35] 0 1	508
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
15-29 years $116(105) 90(776) 26(224) 171[0.88:3.35] 01$	390
	16
30-44 years 249 (22.5) 195 (78.3) 54 (21.7) Ref	
45-59 years 426 (38.5) 354 (83.1) 72 (16.9) 0.97 [0.56; 1.69] 0.9) 11
$\geq 60 \text{ years}$ 230 (20.8) 181 (78.7) 49 (21.3) 1.14 [0.56; 2.32] 0.7	723
Median age (IQR) 50 (35–58) 50 (35–58) 49 (35–59)	
Screening location	
Community screening event 627 (56.6) 523 (83.4) 104 (16.6) Ref	

Primary care center	480 (43.4)	369 (76.9)	111 (23.1)	1.19 [0.62; 2.30]	0.593
Target group					
Household and close contacts	585 (52.9)	458 (78.3)	127 (21.7)	1.03 [0.75; 1.39]	0.874
Vulnerable community members	s 470 (42.5)	408 (86.8)	62 (13.2)	Ref	
Healthcare workers	52 (4.7)	26 (50.0)	26 (50.0)	1.38 [1.25; 1.53]	< 0.001
Urbanization					
Urban	729 (65.9)	598 (82.0)	131 (18.0)	Ref	
Peri-urban	378 (34.2)	294 (77.8)	84 (22.2)	1.00 [0.58; 1.73]	0.990
Diabetes mellitus					
No/Unknown	1,065 (96.2)	859 (80.7)	206 (19.3)	Ref	
Yes	42 (3.8)	33 (78.6)	9 (21.4)	0.74 [0.18; 3.11]	0.679
Previous history of TB					
No/Unknown	1,096 (99.0)	883 (80.6)	213 (19.4)	Ref	
Yes	11 (1.0)	9 (81.8)	2 (18.2)	1.03 [0.14; 7.63]	0.980

256 Notes: 257 ¶Mode

¹ Model stratified by health insurance and residency status, so these parameters were excluded; parameters of sex and target group fitted as time-varying covariates; includes a total of 8,211 person-months

259 ¤ Percent of total

+ Percent of row total

261 ¥ LTFU=Loss to follow-up; aOR=adjusted Hazard Ratio

test † Wald test

DISCUSSION

In the array of obstacles to scaling up TPT in Viet Nam, TBI diagnosis remains a critical step in the country's targeted approach. To date, however, it has also represented an insuperable bottleneck. This stems from an overreliance on TST from a single product (PPD-Bulbio), for which there is documented performance deviation compared to other TSTs and IGRA [32]. These issues are in addition to the well-understood range of confounders affecting clinical performance of TSTs in comparison to IGRAs.[33] Despite its shortcomings, TST remains the programmatic standard of care partly due to the perceived operational challenges in deploying IGRAs outside of hospital settings.

This evaluation builds on the evidence base that it is possible to deploy IGRAs at lower healthcare levels.[21] As shown previously, fidelity to manufacturer recommended procedures in terms of handling, timing and temperature-control throughout collection, transport and processing of specimens from the community to the laboratory resulted in positivity[34] and indeterminate rates[35,36] that were comparable to those of facility-based studies. Our measured positivity was also aligned with previously published IGRA-positivity measured in the community in Viet Nam (pooled positivity: 37.7%; n=2,706).[21,37] We also observed the expected dose-response pattern of rising positivity and risk of TBI in older individuals as well as the higher risk of QFT-Plus positivity in males.[20,21] Concordant with these results, our study highlighted that IGRA can be used at the community level as another option for TBI diagnosis and accelerating scale-up of TPT.

Page 15 of 28

BMJ Open

However, there were patterns in the TBI care cascade indicating that scale-up of available TBI diagnostic tools and regimens requires more than simply decentralization. Fewer than half of the individuals mobilized during these ACF campaigns agreed to or were eligible for an IGRA test and only six out of ten eligible persons initiated TPT, which was concordant with prior studies in Viet Nam.[34] One potential reason for the drop-off may be process related, since we embedded the study in a programmatic setting, which meant that in general over two weeks elapsed from when participants were tested until eligible persons initiated TPT. Nevertheless, slow turnaround time may only partially explain the pre-treatment LTFU, as TPT initiation rate was consistent across both settings despite the difference in turnaround time.

By fielding the study in two separate sites with different TPT regimen and TBI rates in the community, we recorded several noteworthy observations. Specifically, while initiation rates in both sites were similar, there was a slightly higher completion rate in the 3HR cohort. Thus, even though we did not observe a greater uptake of TPT as seen on prior studies, the shorter treatment duration of 3HR may have contributed to higher TPT completion rates.[38–40] However, the survival analysis showed that more persons were lost to follow-up than expected over the shorter period of treatment. Based on informal qualitative feedback from field staff, reasons for the large drop-offs in the cascade included a lack of understanding of the risk of progression from TBI to active TB and the benefits of TPT in the general population, but also among healthcare providers, which leads to the de-prioritization of TPT as optional prophylaxis rather than valuable intervention. Since the 3HR regimen was only used in one province which may have faced site-specific challenges, we cannot generalize these results to other areas of the country. However, they highlight the need for more education and advocacy for providers and participants to improve the acceptance and prioritization of TPT.[41,42]

Moreover, advocacy and awareness building may need to be tailored to individual subgroups. Even though positivity, initiation and completion rates did not vary substantially across sites, gender or age category, there were, however, notable differences across study populations. In our study, HCWs exhibited a lower proportion and risk of positivity, higher TPT initiation and significantly higher risk of LTFU compared to HHCs and community members in either site. The low positivity rate was particularly noteworthy for its discordance with published, albeit dated, evidence from Viet Nam[43] and WHO guidelines warranting intervention in this group due to higher occupational risk of TB infection.[44] A potential explanation for the discordance is that a sizeable proportion of HCWs were generalist primary care workers. The more recent EnTIC study (NCT02073240) measured lower TBI rates among Vietnamese HCWs in general hospitals compared to HCWs in TB hospitals (27.9% [22.8%, 33.6%] vs. 41.7% [26.2%, 58.9%]).[45] However, this TBI rate in general hospital HCWs is still higher than the rate among HCWs on this study; a future comparative analyses of TBI in HCWs in tertiary/quaternary general hospitals versus primary care workers may offer further insight.

BMJ Open

The diagnostic delay was unacceptably long among HCWs and across all groups in Hai Phong. In Hai Phong, the lower burden and more limited TB care capacity as well as greater reliance on the lung hospital in TB care and prevention activities may have contributed to the long delay in treatment initiation. Meanwhile, upon investigation, HCWs indicated a preference to wait for the new 12-dose regimen of isoniazid and rifapentine (3HP), but then agreed to initiate TPT on 9H as concerns over nitrosamine impurities delayed scale-up of 3HP in Viet Nam. [46,47] Nevertheless, despite a delay of almost six weeks, the TPT initiation rate among HCWs was highest across all groups and also above rates measured on prior studies (39.0%-49.6%).[48,49] Conversely, the low completion rate measured on this study was on par with other studies on HCWs receiving 9H for TPT. However, this low rate may have been avoided with shorter regimen as adherence in this study at month 3 was 100% and month 8 was still at 80.0%. These results were in line with previous studies that indicated health workers were significantly more likely to complete TPT on 3HR compared to 9H (91.4% vs. 76.7%, p=0.02).[50-52]

The use of the 9H regimen in the majority of participants also highlights a key limitation of this study. By conducting it under routine program conditions, the study was exposed to external bias and confounding, such as the variability in the available TPT regimen. HCMC historically has had a substantially larger burden of TB and TBI, as evinced on this study. Thus, 9H was the local regimen of choice due to its greater availability and lower costs. Similarly, we relied on routine diagnostics to rule out active TB rather than more sensitive tools such as culture due to cost implications. With respect to costs, another limitation of our study was the lack of a formal assessment of the cost barrier of IGRAs in our low-resource setting with limited program budgets. Operationally, WHO recommends to integrate TPT into routine HHC investigations and ACF.[16] It stands to reason that such integration may also improve value for money as has been well-established for highly vulnerable people living with HIV.[53] There is ample evidence that HHC investigations and community-based ACF campaigns can reach those most vulnerable to active TB and thus most in need of TPT.[29,54,55] Nevertheless, given the lack of an accompanying health economic evaluation, future research should conduct impact evaluations and cost-effectiveness analyses of integrated TB and TBI testing and treatment on ACF campaigns and differences in incidence and disability-adjusted life years compared to a control cohort. Another limitation is that our cohort design did not include a post-treatment follow-up to assess incidence of TB in those with and without TPT, in part due to the social distancing measures launched in response to the pandemic. The study's convenience sampling and selection of HCMC and Hai Phong as study sites likely introduced bias towards densely populated urban settings, which consequently limits the generalizability of this study. Nevertheless, the study benefitted from its large sample size and integration into routine program operations that may help to translate the findings to recommendations for densely populated, high TB burden settings in general.

CONCLUSIONS

WHO's End TB Strategy highlights the need for increased testing and treatment of TB infection as a core intervention to reduce transmission and thus achieve incidence targets. While many high TB burden countries have incorporated this emphasis into their national strategic plans, operationalization of these plans is often hindered by the suboptimal application of available tools. IGRAs are the current gold standard for TBI testing, but are often underutilized, particularly at the lower healthcare levels. Shorter TPT regimen are recommended, but require further studies to assess their potential to support broad-scale TPT. This study elucidated the potential to decentralize and leverage these tools for wider and more cost-effective deployment towards meeting TPT targets, but also highlighted that scale-up of these tools, as well as overall TPT access and uptake, will likely require complementary, tailored advocacy and education for both beneficiaries and providers.

355 ACKNOWLEDGMENTS

We would like to acknowledge Viet Nam's National TB Programme, the HCMC and Hai Phong Provincial Departments of Health, and PLHs, the DHCs and commune health posts and participating public health staff for their support. We would also like to thank the Ho Chi Minh City Public Health Association for their support. Lastly, we feel a debt of gratitude to our patients, family members and communities for their participation and support. We would like to especially thank the site coordinators and CHWs for their tireless efforts to care for their patients and contribute to ending TB in Viet Nam.

COMPETING INTERESTS

363 The authors have no competing interests to declare.

364 FUNDING

This study and LNQV, AJC, RJF, NTTN and MC were supported by the European Commission's Horizon 2020 programme (grant number: 733174). The study and TTTD received additional financial support from the Government of Canada through the Stop TB Partnership's TB REACH initiative (grant number: STBP/TBREACH/GSA/W6SU-09). JC received support from the Government of Canada (grant number: CA-3-D000920001). Qiagen contributed the QFT-Plus kits to this study through an in-kind donation (grant number: N/A; clinical collaboration agreement dated 27 November 2017). None of these funding bodies had a role in the design of the study, in collection, analysis, and interpretation of data, or in writing the manuscript.

372 AUTHORS' CONTRIBUTIONS

LNQV, NN, VVT, HMD and THM contributed to the conceptualization of the study. The methodology was developed by LNQV, NTTN, TTTD, THM, HMD, and VVT. LNQV and PTL conducted the formal analysis. The investigation was conducted VVT, NTTN, TTTD and PTL. Resources for the study were provided by LHN, HMD, HTT, HBN and NVN. Data were curated by LNQV, AJC, PTL and KTT and LNQV visualized the data. LNQV, NTTN, TTTD wrote the original draft, while the manuscript was reviewed and edited by LNQV, AJC, JC, NN, HTT and MC. Study supervision was provided by JC, MC, LNOV, LHN, THM, HTT, HBN and NVN, while RJF, AJC, VVT, NTTN and TTTD were responsible for project administration. Funding acquisition was led by LNQV, RJF and AJC. All authors have read and approved the final manuscript.

381 DATA AVAILABILITY

The data that support the findings of this study are available from the Viet Nam National TB Control Program, Hai Phong Provincial Lung Hospital and Pham Ngoc Thach Provincial TB Hospital, but restrictions apply to their availability. Data are can be made available from the authors upon reasonable request and with permission of the Viet Nam National TB Control Program, Hai Phong Provincial Lung Hospital and Pham Ngoc Thach Provincial TB Hospital.

387 ETHICAL CONSIDERATIONS

This study was approved by the Pham Ngoc Thach Hospital ethics committee for biomedical research (897/HDDD-PNT). In addition, QFT-Plus testing is part of national guidelines and activities were approved by the NTP (1069/BVPTW-DAPCL). Participation was voluntary and did not affect the provision or standard of care. All personal identifying information was removed from the dataset prior to analysis.

1 2							
- 3 4	392	RE	REFERENCES				
5	393	1	World Health Organization. Global Tuberculosis Report 2022. Geneva, Switzerland: 2022.				
7	394	2	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using				
8 9	395		Mathematical Modelling. PLOS Med 2016;13:e1002152. doi:10.1371/journal.pmed.1002152				
10	396	3	Esmail H, Barry CE, Young DB, et al. The ongoing challenge of latent tuberculosis. Philos Trans R Soc				
11 12	397		<i>B Biol Sci</i> 2014; 369 :20130437–20130437. doi:10.1098/rstb.2013.0437				
13 14	398	4	Matteelli A, Sulis G, Capone S, et al. Tuberculosis elimination and the challenge of latent tuberculosis.				
14	399		Press Medicale 2017;46:e13-21. doi:10.1016/j.lpm.2017.01.015				
16 17	400	5	Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using				
18	401		Mathematical Modelling. PLoS Med 2016;13:1–13. doi:10.1371/journal.pmed.1002152				
19 20	402	6	Lewer D, Mulchandani R, Roche A, et al. Why has the incidence of tuberculosis not reduced in London				
21	403		during the COVID-19 pandemic? Lancet Respir Med 2022;2600:1-2. doi:10.1016/s2213-				
22 23	404		2600(22)00012-1				
24 25	405	7	Shrestha S, Kendall EA, Chang R, et al. Achieving a "step change" in the tuberculosis epidemic through				
26	406		comprehensive community-wide intervention: a model-based analysis. BMC Med 2021;19:1-15.				
27 28	407		doi:10.1186/s12916-021-02110-5				
29	408	8	Creswell J, Khan A, Bakker MI, et al. The TB REACH Initiative : Supporting TB Elimination Efforts in				
30 31	409		the Asia-Pacific. Trop Med Infect Dis 2020;5:1–11. doi:10.3390/tropicalmed5040164				
32	410	9	Hinderaker SG, Rusen ID, Chiang CY, et al. The FIDELIS initiative: Innovative strategies for increased				
33 34	411		case finding. Int J Tuberc Lung Dis 2011;15:71–6.				
35 36	412	10	The Global Fund. 2020-2022 Strategic Initiatives. 2020;:1–				
37	413		6.https://www.theglobalfund.org/media/9228/fundingmodel_2020-2022strategicinitiatives_list_en.pdf				
38 39	414		(accessed 14 Nov 2022).				
40	415	11	Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: Diagnosis and				
41 42	416		treatment of tuberculosis infection. Lancet 2015;386:2344-53. doi:10.1016/S0140-6736(15)00323-2				
43 44	417	12	World Health Organization. Guidelines on the management of latent tuberculosis infection. 2015.				
45	418		doi:WHO/HTM/TB/2015.01				
46 47	419	13	World Health Organization. Report of the Global Consultation on the Programmatic Management of				
48	420		Latent Tuberculosis Infection. 2016. 12.http://www.who.int/tb/challenges/consultation_meeting_ltbi/en/				
49 50	421	14	Faust L, Ruhwald M, Schumacher S, et al. How are high burden countries implementing policies and				
51 52	422		tools for latent tuberculosis infection? A survey of current practices and barriers. Heal Sci Reports				
52 53	423		2020; 3 . doi:10.1002/hsr2.158				
54 55	424	15	World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for				
56	425		programmatic management. First edit. Geneva: : World Health Organization Press 2018.				
57 58			18				
59 60			For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml				
00							

Page 20 of 28

BMJ Open

2			
3 ∡	426	16	World Health Organization. WHO operational handbook on tuberculosis - Module 1 : Prevention. 2022.
5	427		https://apps.who.int/iris/bitstream/handle/10665/340256/9789240022614-eng.pdf
6 7	428	17	Ministry of Health. Decision on the promulgation of the Guidelines on the detection and treatment of
8	429		Latent TB Infection [vietnamese]. Viet Nam: 2020.
9 10	430	18	National Tuberculosis Leprosy and Lung Disease Program. National Strategic Plan for Tuberculosis,
11 12	431		Leprosy and Lung Health 2019-2023. 2019.
12	432	19	Revised National Tuberculosis Control Programme. National Strategic Plan for tuberculosis elimination
14 15	433		2017–2025. New Delhi, India: 2017.
16	434	20	Hoa NB, Cobelens FGJ, Sy DN, et al. First national tuberculin survey in Viet Nam: Characteristics and
17 18	435		association with tuberculosis prevalence. Int J Tuberc Lung Dis 2013;17:738-44.
19	436		doi:10.5588/ijtld.12.0200
20 21	437	21	Marks GB, Nhung N V., Nguyen TA, et al. Prevalence of latent tuberculous infection among adults in
22	438		the general population of Ca Mau, Viet Nam. Int J Tuberc Lung Dis 2018;22:246-51.
23 24	439		doi:10.5588/ijtld.17.0550
25 26	440	22	Office of the Prime Minister. Approval of the National Strategy for TB prevention and control until 2020
27	441		with vision to 2030 [vietnamese]. Viet Nam, Viet Nam: 2014.
28 29	442	23	Stop TB Partnership. UN GA HLM on TB Political Declaration: Target for TB Preventive Therapy.
30	443		2018;:19.
31 32	444	24	Ganmaa D, Khudyakov P, Buyanjargal U, et al. Risk factors for active tuberculosis in 938
33	445		QuantiFERON-positive schoolchildren in Mongolia: A community-based cross-sectional study. BMC
34 35	446		Infect Dis 2019;19:1–9. doi:10.1186/s12879-019-4160-7
36 37	447	25	World Health Organization. Operational Handbooks, Module 1: Prevention, Annex 6. Answers to
38	448		frequently asked questions on IGRAs. WHO TB Knowl. Shar. Platf. 2021.https://tbksp.org/en/node/666
39 40	449		(accessed 14 Oct 2022).
41	450	26	Viet Nam National TB Control Programme. Viet Nam National Strategic Plan for TB 2021-2025. Ha
42 43	451		Noi, Viet Nam: 2020.
44 45	452	27	Nguyen LH, Codlin AJ, Vo LNQ, et al. An Evaluation of Programmatic Community-Based Chest X-ray
43 46	453		Screening for Tuberculosis in Ho Chi Minh City, Vietnam. Trop Med Infect Dis 2020;5:185.
47 48	454		doi:10.3390/tropicalmed5040185
49	455	28	Vo LNQ, Codlin AJ, Forse RJ, et al. Evaluating the yield of systematic screening for tuberculosis among
50 51	456		three priority groups in Ho Chi Minh City, Viet Nam. Infect Dis Poverty 2020;9:1-13.
52	457		doi:10.1186/s40249-020-00766-4
53 54	458	29	Mac TH, Phan TH, Nguyen V Van, et al. Optimizing Active Tuberculosis Case Finding : Evaluating the
55 56	459		Impact of Community Referral for Chest X-ray Screening and Xpert Testing on Case Notifications in
57			
58 59			19
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 28

1

BMJ Open

2			
3	460		Two Cities in Viet Nam. Trop Med Infect Dis 2020;221:1-15. doi:10.3390/tropicalmed5040181
4 5	461	30	Vo LNQ, Codlin AJ, Forse RJ, et al. Tuberculosis among economic migrants: a cross-sectional study of
6 7	462		the risk of poor treatment outcomes and impact of a treatment adherence intervention among temporary
8	463		residents in an urban district in Ho Chi Minh City, Viet Nam. BMC Infect Dis 2020;20:134.
9 10	464		doi:10.1186/s12879-020-4865-7
11	465	31	Viet Nam Ministry of Health. Decision on the promulgation of the Guidelines for Diagnosis, Treatment
12 13	466		and Prevention of Tuberculosis [Vietnamese]. Viet Nam: 2018.
14 15	467	32	Mulder C, Erkens C, Kouw P, et al. Tuberculin skin test reaction depends on type of purified protein
16	468		derivative: Implications for cut-off values. Int J Tuberc Lung Dis 2019;23:1327-34.
17 18	469		doi:10.5588/ijtld.18.0838
19	470	33	Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, et al. Diagnosis for Latent Tuberculosis
20 21	471		Infection: New Alternatives. Front Immunol 2020;11:1-13. doi:10.3389/fimmu.2020.02006
22	472	34	Khan A, Phares CR, Phuong HL, et al. Overseas Treatment of Latent Tuberculosis Infection in US-
23 24	473		Bound Immigrants. Emerg Infect Dis 2022;28:582–90. doi:10.3201/eid2803.212131
25 26	474	35	Sharninghausen JC, Shapiro AE, Koelle DM, et al. Risk factors for indeterminate outcome on interferon
27	475		gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum
28 29	476		Infect Dis 2018;5:1–8. doi:10.1093/ofid/ofy184
30	477	36	Banach DB, Harris TG. Indeterminate QuantiFERON ® -TB Gold results in a public health clinic setting.
31 32	478		Int J Tuberc Lung Dis 2011;15:1623-30. doi:10.5588/ijtld.11.0017
33 34	479	37	International Union Against Tuberculosis and Lung Disease. Abstract Book. In: 53rd World Conference
35	480		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2022.
36 37	481		S1–468.
38	482	38	Oxlade O, Boon S Den, Menzies D, et al. TB preventive treatment in high- and intermediate-incidence
39 40	483		countries : research needs for scale-up. 2021;25:823–31.
41 42	484	39	McClintock AH, Eastment MK, McKinney CM, et al. Treatment completion for latent tuberculosis
42	485		infection: A retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3
44 45	486		months of isoniazid and rifapentine. BMC Infect Dis 2017;17:1-8. doi:10.1186/s12879-017-2245-8
46	487	40	World Health Organization. Consolidated guidelines on tuberculosis : Module 1 : Prevention. Geneva,
47 48	488		Switzerland: 2020.
49 50	489	41	Mølhave M, Wejse C. Historical review of studies on the effect of treating latent tuberculosis. Int J Infect
50 51	490		Dis 2020;92:S31-6. doi:10.1016/j.ijid.2020.03.011
52 53	491	42	Paton NI, Borand L, Benedicto J, et al. Diagnosis and management of latent tuberculosis infection in
54	492		Asia: Review of current status and challenges. Int J Infect Dis 2019;87:21-9.
55 56	493		doi:10.1016/j.ijid.2019.07.004
57 58			
59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1 2			
2	494	43	Lien LT, Hang NT Le, Kobayashi N, et al. Prevalence and risk factors for tuberculosis infection among
4 5	495		hospital workers in Hanoi, Viet Nam. PLoS One 2009;4:1–7. doi:10.1371/journal.pone.0006798
6 7 8 9 10 11 12 13 14	496	44	Ngo CQ, Manabe T, Vu G Van, et al. Difficulties in tuberculosis infection control in a general hospital
	497		of Vietnam: a knowledge, attitude, and practice survey and screening for latent tuberculosis infection
	498		among health professionals. BMC Infect Dis 2019;19:1-11. doi:10.1186/s12879-019-4593-z
	499	45	nternational Union Against Tuberculosis and Lung Disease. Abstract Book. In: 48th World Conference
	500		on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union). 2017.
	501		S123.http://www.abstractserver.com/TheUnion2017/TheUnion2017_Abstracts_Web.pdf
15 16	502	46	U.S. Food & Drug Administration (FDA). FDA Updates and Press Announcements on Nitrosamine in
17 18	503		Rifampin and Rifapentine. 2021.https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-
19	504		and-press-announcements-nitrosamines-rifampin-and-rifapentine (accessed 7 Nov 2022).
20 21	505	47	World Health Organization. Nitrosamine concerns for rifapentine and rifampicin Update and FAQs.
22	506		2020.https://extranet.who.int/pqweb/sites/default/files/documents/FAQ_Nitrosamine_18Dec2020.pdf
23 24	507		(accessed 7 Nov 2022).
25 26	508	48	Arguello Perez E, Seo SK, Schneider WJ, et al. Management of Latent Tuberculosis Infection among
20 27 28 29 30 31 32	509		Healthcare Workers: 10-Year Experience at a Single Center. Clin Infect Dis 2017;65:2105-11.
	510		doi:10.1093/cid/cix725
	511	49	Han SS, Lee SJ, Yim JJ, et al. Evaluation and treatment of latent tuberculosis infection among healthcare
	512		workers in Korea: A multicentre cohort analysis. PLoS One 2019;14:1-11.
33 34	513		doi:10.1371/journal.pone.0222810
35	514	50	Park SY, Lee E, Lee EJ, et al. Screening and treatment of latent tuberculosis infection among healthcare
36 37	515		workers at a referral hospital in Korea. Infect Chemother 2019;51:355-64. doi:10.3947/ic.2019.51.4.355
38	516	51	Lardizabal A, Passannante M, Kojakali F, et al. Enhancement of treatment completion for latent
39 40	517		tuberculosis infection with 4 months of rifampin. <i>Chest</i> 2006; 130 :1712–7. doi:10.1378/chest.130.6.1712
41 42	518	52	Horsburgh CR, Goldberg S, Bethel J, et al. Latent TB infection treatment acceptance and completion in
43	519		the United States and Canada. Chest 2010;137:401-9. doi:10.1378/chest.09-0394
44 45	520	53	Uppal A, Rahman S, Campbell JR, et al. Economic and modeling evidence for tuberculosis preventive
46	521		therapy among people living with HIV: A systematic review and meta-analysis. PLoS Med 2021;18:1-
47 48	522		24. doi:10.1371/journal.pmed.1003712
49 50	523	54	Fox GJ, Nhung N V., Sy DN, et al. Household-Contact Investigation for Detection of Tuberculosis in
51	524		Vietnam - Supplementary Appendix. N Engl J Med 2018;378:221-9. doi:10.1056/NEJMoa1700209
52 53	525	55	Morishita F, Garfin AMCG, Lew W, et al. Bringing state-of-The-Art diagnostics to vulnerable
54	526		populations: The use of a mobile screening unit in active case finding for tuberculosis in Palawan, the
55 56	527		Philippines. PLoS One 2017;12:1–21. doi:10.1371/journal.pone.0171310
57 58			
59			21

2 3	528	FIGURE LEGENDS
4 5	520	Eigure 1. A agregate TD infection care accorde
6	529	Figure 1. Aggregate 1B infection care cascade.
7 8	530	Figure 2. TB infection care cascade by site and target group.
9	531	Figure 3. Kaplan-Meier TPT survival curves a) for all participants and b) by TPT regimen.
10		
12		
13		
14 15		
16		
17		
18 19		
20		
21		
22 23		
24		
25 26		
27		
28		
29 30		
31		
32 33		
34		
35		
30 37		
38		
39 40		
41		
42		
45 44		
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1582x659mm (96 x 96 DPI)

Notes: ¶ Median number of days between QFT-Plus testing and treatment initiation

219x187mm (150 x 150 DPI)

95%CI 95%CI

BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Item No	Recommendation]]
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	_
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			-
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
-		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	6
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	n
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	n
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8
L		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	8
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	1
-		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	1
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	1

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
10
עו רי
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
<u>⊿1</u>
יד ⊿ר
4Z 42
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

1 2

		(b) Report category boundaries when continuous variables were	10, 12
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	10-12
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	n/a
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential	15
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	13-15
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	16
		and, if applicable, for the original study on which the present article is	
		based 🚺	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

SUPPLEMENTAL MATERIAL

Model specification validation results

Figure S1: Kaplan-Meier observed survival curve of TPT regimen

The log-rank test result to assess the equality of survival between the two TPT regimen was p=0.319.

The p-value of the global postestimation proportional hazards test 0.644 and tests of individual parameters produced p-values of 0.112 .