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Supplementary Information: Single-sample network module 

biomarkers (sNMB) reveals the pre-deterioration stage of disease 

progression 
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A. The detailed theory of dynamical system for numerical simulation 

A regulatory network with 8 genes (see Fig. 3A in the main text) is applied to conduct a 

numerical simulation for detecting the pre-disease stage based on sDNM method. Such 

molecular regulatory networks are usually employed to study various biological processes, 

such as transcription, translation, and diffusion (Chen et al., 2002; Chen et al., 2009). The 

following 8 differential equations represent a gene regulation of a network with 8 genes. In this 

network, the gene regulation represented in the Michaelis-Menten form is linearly proportional 

to the concentrations of the corresponding genes. 
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( )1S  

where p  represents a scalar control parameter and ( )i t (i = 1, 2, ..., 8) are Gaussian 

noises with zero means and covariances k ( , )ij i jCov  = . ( )iz t (i = 1, 2, ..., 8) represents 

the concentrations of mRNA-i. In Eq.(S1), the degradation rates of mRNAs is

6 7 8 19 19
R=( , ,1, , , , , ).
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the stable equilibrium point of the differential equations Eq.(S1) . Based on the Euler scheme 

(Kloeden et al., 1999), the differential equations Eq.(S1) is transformed into the difference 

equations ( 1) ( ( ), )Z k f Z k S+ =  with a small time interval t . The result is as follows: 
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Where )Z k（  is the vector Z t（） at the time instant k t . The Jacobian matrix of Eq.(S2) is 

defined as 
( ( ); )

=
Z Z

f Z k S
J

Z =




, with 

•t AJ e=                                              ( )3S  

By taking 1t = , we can obtain eight distinct eigenvalues from Eq.(S3), in which the largest 

eigenvalue satisfies 
| |0.66 p

→ 1 when p → 0. Therefore, if (0,1]p , the equilibrium point 

Z is stable. The special point 0p =  is a bifurcation point, at which the system undergoes a 

critical transition. Based on the theoretical model Eq.(S2), the numerical simulation dataset of 

the 8-gene expressions was collected under varying parameter p ranging from -0.45 to 0.15.  

Besides, by using the simulated dataset generated from Eq. (S1), we have analyzed the 

critical signals when the number of reference samples varies. It can be seen from Figure S1 

that the sNMB index accurately indicates the tipping point under different reference sample 

sizes. Therefore, the number of reference samples within a range barely affects the evolution 

tendency of the signal curve (e.g., abrupt increase when approaching the tipping point). 
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Figure S1: The critical signals under different reference sample sizes. 

 

B.  The verification of identified critical stage by the Kaplan-Meier 

(log-rank) survival analysis 

B1. A schematic illustration for the verification of the identified critical stage 

To validate the identification of the critical stage, the prognosis results respectively for 

before-transition and after-transition samples were exhibited and compared through 

Kaplan-Meier (log-rank) survival analysis. For example, we carried out the following steps to 

validate a critical transition of tumor disease at stage IIIB. Specifically, the survival time of 

samples from the before-transition stage is significantly longer than that of after-transition 

samples. However, there was no statistical difference in survival time between before and after 

any other stages. An illustrative process for validating the identified critical stage is shown as 

follows.  
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Figure S2: A schematic illustration for the verification of the identified critical stage. 

 

B2. Validating the identified critical stage for three tumor disease 

In this study, the proposed method is applied to three tumor datasets, including stomach 

adenocarcinoma (STAD), Esophageal carcinoma (ESCA), and Rectum adenocarcinoma 

(READ) from the cancer genome atlas (TCGA). Each tumor dataset was composed of tumor 

and tumor-adjacent samples. We grouped the tumor samples into different cancer stages 

according to corresponding clinical staging information of TCGA. Specifically, The tumor 

samples were grouped into seven stages (stage IA, IB, IC, IIA, IIB, IIIA, IIIB, and IV) for STAD, 

six stages (stage I, IB, IC, IIA, IIB, IIIA, IIIB, and IV) for ESCA, and four stages (stage I, II, III, 

and IV) for the READ. Overall, there are three criteria for the dataset selection: 1, they are all 

fine stages datasets, which indicate the state of cancer; 2, both tumor and tumor-adjacent 

samples are available in these datasets; 3, clinical information is available in all these datasets 

so as to carry out the survival analysis. The detailed number of samples within each stage is 

shown as the following table S1.  

Table S1 The detailed number of samples within each stage of tumor disease dataset. 

  STAD ESCA READ 

Stage I 

Stage IA 9 

15 34 

Stage IB 18 

Stage II 

Stage IIA 23 31 

53 

Stage IIB 29 28 
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Stage III 

Stage IIIA 27 11 

53 

Stage IIIB 20 14 

Stage IV Stage IV 15 8 26 

TA samples TA samples 33 10 11 

Based on before-transition and after-transition samples, we carried out the Kaplan-Meier 

(log-rank) survival analysis to validate the critical stage identified by sDNM method. The 

prognostic results were seen from the following Figure S3, which consistently indicated that 

the survival time of before-transition samples is significantly longer than that of after-transition 

samples. Besides, there is no significant difference among the survival time of 

before-transition samples. These results illustrated that the early-warning signals of a critical 

transition of survival time can be accurately detected by the sDNM method, that is, the 

identified critical stage can be validated by the sDNM method. 
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Figure S3: A. The critical point (IIIB) of STAD vs the next stage of critical point (IV) of STAD in survival 

analysis. B. Any two stages in before-transition period (IA-IIIA) of STAD in survival analysis. C. The 

critical point (IIIB) of ESCA vs the next stage of critical point (IV) of ESCA in survival analysis. D. Any two 

stages in before-transition period (I-III) of ESCA in survival analysis. E. The critical point (III) of READ vs 

the next stage of critical point (IV) of READ in survival analysis. F. Two stages in before-transition period 

(I-II) of READ in survival analysis. 

In addition, at identified pre-deterioration stage (the critical point), the top 5% genes with the 

highest local sNMB scores were picked out as the signaling genes for further functional 

analyses. As shown in Figure S4, we performed the KEGG enrichment analysis of the specific 

signaling genes for three tumors (STAD, READ, and ESCA). 

 

Figure S4: KEGG enrichment analysis of the specific signaling genes for (A) STAD, (B) READ, and (C) 

ESCA. 

 

B3. The critical signals under different settings of the adjustable parameter T. 

Three TCGA datasets (STAD, ESCA, and READ) have been employed to analyze the critical 

signals when the adjustable parameter T ranges from the top 1% to top 10%. It can be seen 

from Figure S5 that the sNMB index accurately indicates the tipping point with a similar 

tendency. Therefore, different settings of the adjustable parameter T do not affect the evolution 

tendency of the signal curve. 
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Figure S5: The critical signals of three TCGA datasets under different settings of the adjustable 

parameter T. 

 

C. Compared the sNMB method with other two single-sample methods  

We have compared the proposed sNMB method with the previously published single-sample 

methods, including the single-sample-based hidden Markov model (sHMM) (Liu et al., 2019) 

and single-sample Kullback-Leibler divergence (sKLD) (Zhong et al., 2020). Specifically, these 

three methods (sNMB, sHMM, and sKLD) are applied to detect the pre-deterioration stage 

based on the TCGA-READ dataset, the clinical staging information of which can be seen from 

Table S2. 

For sHMM method, the time-series data need to be divided into the training part ranging 

from t=1 to t=T-1, and a time point t=T (T>2) is used for detecting the critical point 

(pre-deterioration stage). Therefore, compare with the proposed sNMB method, the time point 

of detection from the sHMM method is only available starting from stage II within the 

time-series data since the time-series data from the initial two-time points, i.e., tumor-adjacent 

(TA) samples and stage I samples, are used to train the model. As shown in Figure S6A and B, 

the sudden increase of sNMB score was detected in stage III, but there is no abrupt increase 

in SSI curve, that is, the proposed sNMB method can detect the critical transition point, while 
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the sHMM method fails. 

In contrast to the proposed sNMB method, the sKLD method requires greater numbers of 

normal/reference samples to fit a Gaussian distribution for each gene. Thus, the sKLD method 

may fail to detect the pre-deterioration stage of complex diseases when fewer reference 

samples are available. Specifically, for the TCGA-READ dataset containing 11 reference 

samples, any drastic increase is not observed in sKLD curve (Figure S6C), i.e. the sKLD 

method cannot provide an early-warning signal of critical transition for the READ. 

 

Figure S6: The performance of the three single-sample approaches (i.e., sNMB, sHMM, and 

sKLD method) in detecting the pre-deterioration stage of READ. 

Table S2. the number of tumor samples within each stage in TCGA-READ dataset. 

Stage TA I II III IV 

Samples 11 34 53 53 26 

TA refers to the tumor-adjacent samples. 
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D. The “dark genes” for three tumor datasets  

The “dark genes” for STAD 
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The “dark genes” for ESCA 
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The “dark genes” for READ 

                   

                      



S13 
 

           

 

References 

Chen, L. & Aihara, K. Stability of genetic regulatory networks with time delay, IEEE Trans. Circuits Syst. I 49, 602–

608(2002). 

Chen, L., Wang, R. & Zhang, X. Biomolecular Networks: Methods and Applications in Systems Biology, (John Wiley & 

Sons, Hoboken, New Jersey,2009). 

Kloeden, P. & Platen, E. Numerical Solution of Stochastic Differential Equations, (Springer, 1999) 

Liu R, Zhong J, Yu X, Li Y, Chen P. Identifying critical state of complex diseases by single-sample-based hidden 

markov model. Frontiers in genetics. 2019;10:285. 

Zhong J, Liu R, Chen P. Identifying critical state of complex diseases by single-sample Kullback-Leibler divergence. 

BMC genomics. 2020;21(1):87-. 

 

 


