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A. The detailed theory of dynamical system for numerical simulation

A regulatory network with 8 genes (see Fig. 3A in the main text) is applied to conduct a
numerical simulation for detecting the pre-disease stage based on sDNM method. Such
molecular regulatory networks are usually employed to study various biological processes,
such as transcription, translation, and diffusion (Chen et al., 2002; Chen et al., 2009). The
following 8 differential equations represent a gene regulation of a network with 8 genes. In this
network, the gene regulation represented in the Michaelis-Menten form is linearly proportional

to the concentrations of the corresponding genes.

dz,(t) _ (4-3[pNz,(t) _(4+3[pl)
dt 100+, (1) o a0+l

dz,(t) _ (4=3[pNz(t) _(4+3]pDz,()

dt 10 tea(t)
(1+2,(t)) 10(1+7,(t))
dzét(t):(6|p1|()_10) 1(05 3pl) . (5-3[p)) _20)+4, ()
1+ 17,(t)) 10(1 7,(t))
dz,(t) _(6lp[-12) (6-3[phz®)  (6-3|p)z®) 6z(t)+§(t)
dt 10 10(1+z,(t)) 10(1+1z,(t) 5 *
dzgt(t) (6Ip1|0 14) (7103|p|)2(t) (7-3|pPz,(t) 7 2.0)+4o(0)
A+ 7,(t)) 100+z,(t) 5
dzg(t) _ 3, 1, 1 P S
dt 5 10(+z(t)) 10(1+z,(t)) 5@+z(t)) 51+ 1z (t))
_ 50 __8; 9+4,0

S(L+z,(t)) 5
dz,(t) _  z(t) 19

dt  10(l+z,(t) 10 z )+ (1)
dzg(t) _  z,(t) 19

dt  10(1+z(t) 10 %))

where P represents a scalar control parameter and ¢, (t) (i = 1, 2, ..., 8) are Gaussian

noises with zero means and covariances K; =Cov(¢;,5;). z(t) (i=1, 2, ..., 8) represents

the concentrations of mRNA-i. In Eq.(S1), the degradation rates of mRNAs is
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the stable equilibrium point of the differential equations Eq.(S1) . Based on the Euler scheme

(Kloeden et al., 1999), the differential equations Eq.(S1) is transformed into the difference

equations Z(k+1) = f(Z(k),S) with a small time interval At . The result is as follows:
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Where Z(K) is the vector Z(t) at the time instant kAt . The Jacobian matrix of Eq.(S2) is

of (2(k); S)
oz

defined as J= , with

By taking At =1, we can obtain eight distinct eigenvalues from Eq.(S3), in which the largest

eigenvalue satisfies 0.66" — 1 when p— 0. Therefore, if P € (0,1], the equilibrium point

Z is stable. The special point P =0 is a bifurcation point, at which the system undergoes a

critical transition. Based on the theoretical model Eq.(S2), the numerical simulation dataset of

the 8-gene expressions was collected under varying parameter p ranging from -0.45 to 0.15.

Besides, by using the simulated dataset generated from Eq. (S1), we have analyzed the
critical signals when the number of reference samples varies. It can be seen from Figure S1
that the sNMB index accurately indicates the tipping point under different reference sample

sizes. Therefore, the number of reference samples within a range barely affects the evolution
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tendency of the signal curve (e.g., abrupt increase when approaching the tipping point).
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Figure S1: The critical signals under different reference sample sizes.

B. The verification of identified critical stage by the Kaplan-Meier

(log-rank) survival analysis

B1. A schematic illustration for the verification of the identified critical stage

To validate the identification of the critical stage, the prognosis results respectively for
before-transition and after-transition samples were exhibited and compared through
Kaplan-Meier (log-rank) survival analysis. For example, we carried out the following steps to
validate a critical transition of tumor disease at stage IlIB. Specifically, the survival time of
samples from the before-transition stage is significantly longer than that of after-transition
samples. However, there was no statistical difference in survival time between before and after
any other stages. An illustrative process for validating the identified critical stage is shown as

follows.
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Figure S2: A schematic illustration for the verification of the identified critical stage.

B2. Validating the identified critical stage for three tumor disease

In this study, the proposed method is applied to three tumor datasets, including stomach
adenocarcinoma (STAD), Esophageal carcinoma (ESCA), and Rectum adenocarcinoma
(READ) from the cancer genome atlas (TCGA). Each tumor dataset was composed of tumor
and tumor-adjacent samples. We grouped the tumor samples into different cancer stages
according to corresponding clinical staging information of TCGA. Specifically, The tumor
samples were grouped into seven stages (stage IA, IB, IC, lIA, 11B, llIA, llIB, and IV) for STAD,
six stages (stage |, IB, IC, 1A, IIB, IlIA, 1B, and IV) for ESCA, and four stages (stage |, 1, lll,
and IV) for the READ. Overall, there are three criteria for the dataset selection: 1, they are all
fine stages datasets, which indicate the state of cancer; 2, both tumor and tumor-adjacent
samples are available in these datasets; 3, clinical information is available in all these datasets
so as to carry out the survival analysis. The detailed number of samples within each stage is

shown as the following table S1.

Table S1 The detailed number of samples within each stage of tumor disease dataset.

STAD ESCA READ
Stage IA 9
Stage | 15 34
Stage 1B 18
Stage IIA 23 31
Stage Il 53
Stage IIB 29 28
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Stage IlIA 27 11
Stage Il 53
Stage IIIB 20 14
Stage IV Stage IV 15 8 26
TA samples TA samples 33 10 11

Based on before-transition and after-transition samples, we carried out the Kaplan-Meier
(log-rank) survival analysis to validate the critical stage identified by sDNM method. The
prognostic results were seen from the following Figure S3, which consistently indicated that
the survival time of before-transition samples is significantly longer than that of after-transition
samples. Besides, there is no significant difference among the survival time of
before-transition samples. These results illustrated that the early-warning signals of a critical
transition of survival time can be accurately detected by the sDNM method, that is, the

identified critical stage can be validated by the sDNM method.
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Figure S3: A. The critical point (l1IB) of STAD vs the next stage of critical point (V) of STAD in survival
analysis. B. Any two stages in before-transition period (IA-1lIA) of STAD in survival analysis. C. The
critical point (I11B) of ESCA vs the next stage of critical point (IV) of ESCA in survival analysis. D. Any two
stages in before-transition period (I-1ll) of ESCA in survival analysis. E. The critical point (lll) of READ vs
the next stage of critical point (IV) of READ in survival analysis. F. Two stages in before-transition period

(I-11) of READ in survival analysis.

In addition, at identified pre-deterioration stage (the critical point), the top 5% genes with the
highest local sNMB scores were picked out as the signaling genes for further functional
analyses. As shown in Figure S4, we performed the KEGG enrichment analysis of the specific
signaling genes for three tumors (STAD, READ, and ESCA).
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Figure S4: KEGG enrichment analysis of the specific signaling genes for (A) STAD, (B) READ, and (C)
ESCA.

B3. The critical signals under different settings of the adjustable parameter T.

Three TCGA datasets (STAD, ESCA, and READ) have been employed to analyze the critical
signals when the adjustable parameter T ranges from the top 1% to top 10%. It can be seen
from Figure S5 that the sNMB index accurately indicates the tipping point with a similar
tendency. Therefore, different settings of the adjustable parameter T do not affect the evolution

tendency of the signal curve.
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Figure S5: The critical signals of three TCGA datasets under different settings of the adjustable
parameter T.

C. Compared the sNMB method with other two single-sample methods

We have compared the proposed sNMB method with the previously published single-sample
methods, including the single-sample-based hidden Markov model (sHMM) (Liu et al., 2019)
and single-sample Kullback-Leibler divergence (skKLD) (Zhong et al., 2020). Specifically, these
three methods (sNMB, sHMM, and sKLD) are applied to detect the pre-deterioration stage
based on the TCGA-READ dataset, the clinical staging information of which can be seen from
Table S2.

For sHMM method, the time-series data need to be divided into the training part ranging
from t=1 to t=T-1, and a time point t=T (T>2) is used for detecting the critical point
(pre-deterioration stage). Therefore, compare with the proposed sNMB method, the time point
of detection from the sHMM method is only available starting from stage Il within the
time-series data since the time-series data from the initial two-time points, i.e., tumor-adjacent
(TA) samples and stage | samples, are used to train the model. As shown in Figure S6A and B,
the sudden increase of SNMB score was detected in stage lll, but there is no abrupt increase

in SSI curve, that is, the proposed sNMB method can detect the critical transition point, while
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the sHMM method fails.

In contrast to the proposed sNMB method, the sKLD method requires greater numbers of
normal/reference samples to fit a Gaussian distribution for each gene. Thus, the sKLD method
may fail to detect the pre-deterioration stage of complex diseases when fewer reference
samples are available. Specifically, for the TCGA-READ dataset containing 11 reference
samples, any drastic increase is not observed in sKLD curve (Figure S6C), i.e. the sKLD

method cannot provide an early-warning signal of critical transition for the READ.
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Figure S6: The performance of the three single-sample approaches (i.e., sSNMB, sHMM, and
sKLD method) in detecting the pre-deterioration stage of READ.

Table S2. the number of tumor samples within each stage in TCGA-READ dataset.

Stage TA I I 1 v

Samples 11 34 53 53 26

TA refers to the tumor-adjacent samples.
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D. The “dark genes” for three tumor datasets
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