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S1 ∆SCF approaches and their implementation

In this section, we present with greater detail the two ∆SCF methods we focused on, i.e. initial
Maximum Overlap Method (iMOM) and State-Targeted Energy Projection (STEP).

In iMOM1, reference orbitals are that of the excited guess determinant and new occupied
orbitals are selected following a similarity criterion. Let us define the overlap O between current
MOs and reference MOs as

O = (Creference)†SCcurrent. (S1)

The sum over the row index of the overlap matrix O produces pj , which indicates the projection
of the j-th new orbital onto the space of old occupied orbitals:

pj =

nocc∑
i

Oij =

Nb∑
ν

[
Nb∑
µ

(
nocc∑
i

Creference
iµ

)
Sµν

]
Ccurrent
νj . (S2)

In eq. S2, i and j are occupied MOs indices and µ and ν refer to atomic orbital basis functions.
New occupied orbitals are selected as the orbitals that have the highest values of pj , which means
orbitals that are “similar” to reference orbitals. The advantage of iMOM is that the information
contained in the guess, namely the reference determinant that is orthogonal to the ground state
and that targets a specific excitation, is retained through the iterative optimization. Therefore, no
gradual collapse of the wavefunction onto the ground state is possible.

STEP was presented by Carter-Fenk et al.2 as a robust and efficient alternative to iMOM. This
is a completely different approach because it employs the Aufbau principle to choose new occupied
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orbitals. However, the constraint which allows the solution to remain in the excited state is a level
shift of the virtual orbital energies2. Let us consider the operator Q̂, which is a projector onto the
virtual space:

Q̂ =

nvirt∑
a

|ψa〉 〈ψa| . (S3)

This projector can be expressed in the atomic orbital basis set as follows:

Q̂ =

nvirt∑
a

|ψa〉 〈ψa| =
Nb∑
µν

nvirt∑
a

|µ〉CµaC∗νa 〈ν| =
Nb∑
µν

|µ〉Q 〈ν| . (S4)

The level shift is performed by adding the matrix form of eq. S4 to the Fock (or Kohn-Sham) matrix,
with a parameter η which establishes the amount of level shifting. The new Fock matrix F ′ is
written in eq. S5 and replaces the conventional Fock matrix during the whole iterative procedure.

F ′ = F + ηSQS. (S5)

This expedient can be used to facilitate the convergence to the excited state solution when an
excited determinant is given as a guess. Indeed, if the energy of virtual orbitals is increased such
that all virtual orbital energies of the excited guess determinant are greater then all the occupied
ones, the desired set of occupied orbitals is simply retained with the Aufbau occupation. At the
first step, the projector Q̂ is chosen on the basis of the reference orbitals, which are usually the
same as the ground-state orbitals but with a different occupation targeting an excited state.

Note that the level shift parameter η must be carefully chosen, because a high level shift
can reduce excessively the occupied-virtual orbital rotations, resulting in a slower convergence.
Conversely, a too small level shift cannot avoid the wavefunction collapse to the ground state. The
equation for η suggested by Carter-Fenk et al.2 is

η = |εHOMO − εLUMO|+ ε′ (S6)

where ε′ is an empirical parameter and it is often set to 0.1 Hartree.

S2 Details on the Grassmann extrapolation for open-shell

systems

In this section we briefly present the details of the generalization of Grassmann extrapolation3 to
open-shell systems. This allows us to use this procedure for reducing the computational cost of
∆SCF/MM excited-state simulations. The theory behind the extrapolation can be easily extended
to unrestricted SCF by working separately on α and β electrons. The new extrapolation problem
can be formulated as follows: there are two sets of pairs (Ri, D

α
i ) and (Ri, D

β
i ) and a new position

vector Rn. The gaol is to guess density matrices Dα
R and Dβ

R for that geometry.
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R dR

ΓαR → Dα
R = ExpDα

0
(ΓαR)

ΓβR → Dβ
R = ExpDβ

0
(ΓβR)

In the scheme, R is the current geometry and dR are molecular descriptors (we use the Coulomb
matrix). As for the closed-shell case, we find the coefficients cR that provide the best approximation
of dR, and we use these coefficients to perform a linear combination of vectors in the tangent
space. There are two tangent spaces, identified by the Grassmann Logarithm based on Dα

0 and
Dβ

0 , which are α and β density matrices at the first MD step. ΓαR and ΓβR are the results of linear
combinations in the tangent spaces. Extrapolated density matrices (Dα

R and Dβ
R) are recovered

by means of Grassmann Exponential mappings.

Ideally, this extrapolation procedure produces converged density matrices at the current step
of simulation. Since we perform some approximations, we can state that Dα

R and Dβ
R are the best

approximation of converged density matrices, and we can use these matrices as a guess for ∆SCF
iterations.

S3 Supplementary Figures

S3



1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0
r (

N D
-H

) (
Å)

GS

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0

LE

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0

CT

0.00

0.72

1.44

2.16

2.88

3.60

4.32

5.04

5.76

6.48

GS/0PT

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

r (
N D

-H
) (

Å)

GS

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

LE

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

CT

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

4.32

GS/2PT

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0

r (
N D

-H
) (

Å)

GS

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0
LE

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0
CT

0.00
0.72
1.44
2.16
2.88
3.60
4.32
5.04
5.76
6.48

CT/0PT

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0

r (
N D

-H
) (

Å)

GS

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0
LE

1.0 1.2 1.4 1.6
r (OD-H) (Å)

1.0

1.2

1.4

1.6

1.8

2.0
CT

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

CT/2PT

Figure S1: Two-dimensional PESs performed on a rigid scan of the proton transfer coordinates starting
from the structures of Ref.4. The PESs were computed in gas phase at the (∆)SCF-ωB97X-D/6-31G(d)
level. All energies are given in eV and are calculated relative to the GS before the double proton transfer.
The x-axis represents the Tyr-Gln PT coordinate, and the y-axis represents the Gln-FMN PT coordinate.
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Figure S2: Modulus of the excited-state dipole moment (µexc) along the successful TDA/AMOEBA
simulation. Grey lines in the background reproduce the same plot for all the TDA/AMOEBA trajectories.

Figure S3: Modulus of the transition dipole moment (µtr) along the successful TDA/AMOEBA simula-
tion. Grey lines in the background reproduce the same plot for all the TDA/AMOEBA trajectories.
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Figure S4: Evolution of the depicted dihedral angle for two representative CT-state MDs. The dihedral
involves the atoms depicted in orange in the imidic acid residue, namely the oxygen, the imidic carbon,
Cα, and Cβ . Grey lines in the background reproduce the same plot for all the CT-state MDs.

Figure S5: Top panel: ∆E = ECT −ELE along the first 150 fs of a CT-state simulation. ECT values are
extracted from the simulation, whereas ELE values are obtained from ∆SCF single-point calculations on the
LE determinant, which is constructed by moving an electron from πFMN to π∗

FMN. These calculations have
been perfomed on 60 geometries extracted from the CT trajectory with 2.5 fs spacing between them. The
black vertical line indicates the time of the intersection between LE and CT state and the grey dotted line
indicates the time of the first proton transfer. Bottom panel: modulus of the excited-state dipole moment
(µexc) along the first 150 fs of a CT-state simulation. The brown line refers to the values extracted from
the dynamics (CT state) and the orange one indicates µexc values for the LE state at the same geometry.
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S4 Supplementary Tables

Table S1: Time stamps for the first and the second proton transfer in the CT-state MDs. The first PT
is defined as the time where the Tyr(O)-H bonds becomes longer than the H-Gln(O) bond, whereas the
second PT is defined from the Gln(N)-H and FMN(N)-H bonds. The time for the second proton transfer
(∆t = tsecond − tfirst) is also indicated. The trajectory name refers to the original ground-state sampling
trajectory.

Trajectory tfirst (fs) tsecond (fs) ∆t (fs)

B 44 75 30
D 208 420 212
E 45 655 610
F 113 178 65
G 201 293 92
H 307 360 52
I 56 178 122
J 78 225 147
C ′ 32 104 72
D′ 34 215 181
E′ 90 160 70
F ′ 37 96 59
H ′ 53 84 31
B′′ 22 228 206
D′′ 24 88 64
E′′ 68 101 33
F ′′ 139 206 67
G′′ 58 68 10
H ′′ 25 102 77
I ′′ 30 289 259

Mean 83 207 123
St. Dev. 76 145 134
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Table S2: Time stamps for the first and the second proton transfer in the ground-state MDs. Only the
ground-state MDs that started from the ZE tautomer are reported here. The time for the second proton
transfer (∆t = tsecond − tfirst) is also indicated. The trajectory name refers to the original ground-state
sampling trajectory.

Trajectory tfirst (fs) tsecond (fs) ∆t (fs)

B 118 717 599
G 216 288 71
H 38 74 36
H ′ 54 71 17
H ′′ 62 93 31

Mean 98 249 151
St. Dev. 73 277 251
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