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S1 Supporting methodology.

S1.1 Anatomical mesh construction.

The software Fiji1 [1] was used to carry out high resolution MRI segmentation, with the
maximum entropy-based thresholding algorithm [2]. The images were characterized by
excellent contrasting gray scales, which permitted thresholding to achieve biventricular
heart models with highly detailed endocardiums (endocardial structures included were
≥ 1 mm2 in cross-section). The reconstruction of four biventricular meshes including
detailed endocardial structures was accomplished utilizing Seg3D [3] marching cubes
algorithm. The obtained surface meshes were uniformly remeshed with the platform
Remesh [4] and volumetric tetrahedral meshes were generated using ANSYS ICEM
CFD (ANSYS® Academic Research Mechanical, USA). Wireframe images showing the
element distribution within each heart anatomy are shown in Fig. 1.

S1.2 Electrophysiology solver.

Finite Element Method (FEM) and Finite Difference Method (FDM) were used for the
space and time discretisation of the electrical activation potential propagation equation:(

M

∆t
+ θG

)
∆φ+MdI ion = −Gφn (1)

where ∆φ = φn+1 − φn is the unknown difference between two time steps, M is the mass
matrix, G is the electrophysiological stiffness matrix, and θ determines whether the time
integration scheme is first order explicit, Forward Euler (θ = 0), first order implicit,
Backward Euler (θ = 1) or second order implicit, Crank-Nicholson (θ = 0.5).

The discrete equation is then solved using a first order Yanenko operator splitting as
follows:

1https://imagej.net/Fiji
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Fig 1. Male (A-B) and female (C-D) anatomically detailed biventricular wire-frame
meshes, mid-cavity sections. Elements are tetrahedral and regularly sized throughout
the whole anatomy. Element size is the same in all four anatomies.

Cell model(∆φ∗) :
∆φ∗

∆t
+ Iion(φ) = 0 (2)

Tissue model(∆φ̃) :

(
M

∆t
+G

)
∆φ̃ = −Gφ∗ (3)

Update(φn+1) : φn+1 = φn + ∆φ∗ + ∆φ̃ (4)

where the Cell model is solved explicitly using a Forward Euler scheme and the Tissue
model is solved implicitly with either a Backward Euler or a Crank-Nicholson scheme s
described by [5].

S1.3 Sex phenotypes.

Table 1. Ion channel conductances ratios relative to male endocardial cell.
No change on mid-myocardial cells was applied.

Ion channel
Endocardium Epicardium
Male Female Male Female

IKs 1 0.83 1.04 0.87
IKr 1 0.79 1.09 0.875
IK1 1 0.86 0.98 0.74
Ito,s 1 0.64 0.6 0.26
INaK 1 0.79 0.94 0.7
IpCa 1 1.6 0.88 1.6
Iup 1 1.15 1.42 1.97
Calm 1 1.21 1.01 1.41

S1.4 Pseudo-ECG calculation.

The calculation of the pseudo-ECGs derived from the calculation of the unipolar potentials
(φe) as follows:
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Fig 2. Effect of sex-specific ion channel kinetics on the action potential celltypes
employed to define transmural heterogeneity in this study. From left to right:
endocardial, mid-myocardial M and epicardial celltypes coloured by sex (green: female;
blue: male). Note that the M-cell was not modified with sex-specific ion channel
kinetics given that no experimental information regarding sex differences exist.

φe(x
′, y′, z′) =

∫
D[−∇V m · (∇

1

r
)]dx+

∫
D[−∇V m · (∇

1

r
)]dy (5)

+

∫
D[−∇V m · (∇

1

r
)]dz

r = [(x− x′)2 + (y − y′)2 + (z − z′)2]
1
2 (6)

where D is the diffusion tensor at every Gauss point, ∇Vm is the spatial gradient of
the transmembrane potential and r is the distance from a source point (x,y,z), which
represents a point on the heart geometry, and a field point (x′,y′,z′), which represents
the position of one of the electrodes used to calculate the pseudo-ECG (LA, RA, LL).
Electrical potential difference was defined as the difference in electric potential between
two electrodes; these potential differences are represented as ”leads”. There is always one
exploring (positive) and one recording (negative) electrode. In this way, a propagation
wave going towards the exploring electrode produces a positive wave and vice versa. The
three leads were defined as:

LeadI = φLA − φRA, (7)

LeadII = φLL − φRA, (8)

LeadIII = φLL − φLA (9)

S1.5 Numerical verification.

Numerical verification is essential, and it was performed following an electrophysiology
N-version verification benchmark [6]. To that end, a very similar methodology was
implemented with the O’Hara-Rudy cell model. Briefly, a slab was employed, where
elements were subdivided to analyse spatial and temporal convergence of conduction
velocity [7]. The problem was setup as follows. The slab length of the initial mesh was
divided in three sections, where the three different celltypes were defined (endo, M and
epi), the first layer of elements on the endocardial edge of the slab were assigned higher
diffusion coefficients to replicate the fast activation of the conduction system employed
in this study. The diffusion coefficients employed were 5.8 cm2/s in the longitudinal and
1.9 cm2/s in the transverse direction. Results show that the convergence of the element
size 0.348 varies only by 3% from an element side length of 0.0175 cm, as observed in
Table 2. Data is plotted in Fig. 4. Notice that the fast initial activation is due to the
increased diffusion of the fast-activating layer. An extended analysis of convergence
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Fig 3. Isochrones of the activation propagation in all anatomies for male and female
phenotypes.

given a variety of diffusion coefficients using Alya can be found in [8]. Based on these
results, the verification of the convergence of the model was ensured.

Table 2. Numerical verification.

No. Elements Edge Length Conduction
(cm) Velocity (cm/s)

Initial mesh 20664 0.07 44.375
Subdivision 1 (div1) 165312 0.035 71.0
Subdivision 2 (div2) 1322496 0.0175 73.44

S1.6 Scar registration.

To register scar from patient MRI to detailed anatomy MRI, ANTS [9] was used. The
registration was applied to the segmentation masks (0-background, 100-foreground)
resampled at 0.1mm isotropic voxel size using bicubic interpolation. The transformations
were rigid, affine, followed by the deformable SyN [10] with 3 stages. The default
parameters of the ”antsRegistrationSyNQuick.sh” script were used, except the SyN
parameters that were changed to [0.1, 8, 0] to obtain a visually acceptable alignment of
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Fig 4. Electrophysiological model verification. Activation time is plotted against the
distance to the origin on the diagonal direction in a slab. The curves corresponding to
div1 and div 2 only show a 3% difference.

the dense myocardium. The calculated transform was used to warp the scar information.
Fig. 5 shows the registered masks (MRI with scar to detailed MRI). The resulting
registered scars on both the detailed and smooth anatomies can be observed in Fig. 6. It
is clear that differences between the scars registered in the two anatomies are negliglible.

Fig 5. Overlaid registered masks (MRI with scar to detailed MRI).
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Fig 6. Overlaid scar registered on the smooth and detailed anatomies. Green
corresponds to the scar in the smooth anatomy, red to the detailed anatomy.

S3 Video. Ventricular tachycardia media.

All videos are publically available at the following DOI for Figshare data: 10.6084/m9.
figshare.11908029

Video S1: Ventricular Tachycardia generated on a female phenotype simulation after RV
Apex S1-S4 programmed stimulation protocol. Anatomical data was obtained from high
resolution MRI ex-vivo human hearts.
Video S2: Ventricular Tachycardia generated on a female phenotype simulation on a
smoothed geometry after RV Apex S1-S4 programmed stimulation protocol.
Video S3: Ventricular Tachycardia generated on a male phenotype simulation on a
detailed geometry after LV Apex S1-S4 programmed stimulation protocol.
Video S4: Ventricular Tachycardia generated on a male phenotype simulation on a
smoothed geometry after RV Apex S1-S4 programmed stimulation protocol.
Video S5: Ventricular Tachycardia generated on a male phenotype simulation on a
smoothed geometry after RVOT Apex S1-S4 programmed stimulation protocol.
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models. UPC, Facultat de Matemàtiques i Estad́ıstica; 2018. Available from:
http://hdl.handle.net/2117/124702.

9. Avants B, Tustison N, Song G. Advanced Normalization Tools: V1.0. The Insight
Journal. 2009;doi:10.54294/uvnhin.

10. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image
registration with cross-correlation: evaluating automated labeling of elderly and
neurodegenerative brain. Medical Image Analysis. 2008;12(1):26–41.

October 14, 2022 7/7

http://hdl.handle.net/10803/667670
http://hdl.handle.net/2117/124702

