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Dear Professor Cooper, 

 

Your Analysis entitled "SpliceVault: predicting the precise nature of variant-associated mis-splicing." 

has now been seen by 3 referees, whose comments are attached. While they find your work of 

potential interest, they have raised serious concerns which in our view are sufficiently important that 

they preclude publication of the work in Nature Genetics, at least in its present form. 

 

While the referees find your work of some interest, they raise concerns about the strength of the novel 

conclusions that can be drawn at this stage. 

 

As you will see, Reviewer #1 thinks that the idea is of interest, but highlights some major limitations. 

Reviewer #2 also thinks that this has the potential to be a valuable contribution, but also has multiple 

major concerns. Reviewer #3 thinks that the advance here would be in the clinical diagnostic space, 

but that there are major shortcomings in the current analysis. 

Importantly, all reviewers note that there needs to be the use of receiver operating characteristic 

curve or precision-recall curve to calculate the area under the curve for performance comparisons, not 

just PPV. 

Reviewer #1 and Reviewer #2 have concerns about batch effects. Reviewer #2 also thinks that the 

data need to be harmonized through a single pipeline (which we agree is an important suggestion, but 

we recognize that this would entail a great deal of work). 

Reviewer #1 thinks that there needs to be further (larger) validation datasets, Reviewer #2 suggests 

that the data should be sub-divided by source sample, and Reviewer #3 thinks that more needs to be 

done to show that this will be clinically useful. 

 

We think that these issues are substantial enough to preclude publication at Nature Genetics. 

 

Should further experimental data or analyses allow you to fully address these criticisms we would be 

willing to consider an appeal of our decision (unless, of course, something similar has by then been 
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accepted at Nature Genetics or appeared elsewhere). This includes submission or publication of a 

portion of this work someplace else. 

 

If you are interested in attempting to revise this manuscript for submission to Nature Genetics in the 

future, please contact me to discuss a potential appeal. Otherwise, we hope that you find our referees' 

comments helpful when preparing your manuscript for resubmission elsewhere. 

 

Thank you very much. 

 

All the best, 

 

Catherine 

 

--- 

 

Catherine Potenski, PhD 

Chief Editor 

Nature Genetics 

1 NY Plaza, 47th Fl. 

New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 

 

 

Referee expertise: 

 

Referee #1: bioinformatics, computational biology 

 

Referee #2: genomics, transciptomics, rare genetic disease 

 

Referee #3: genetics, genomics, transcriptomics 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Remarks to the Author: 

 

Alternative splicing is one of the most important posttranscriptional regulations, while its misregulation 

is closely relevant to human disease. A large proportion of disease-related Mis-splicing is caused by 

genetic variations. In this study, Dawes et al proposed a hypothesis that genetic variant-associated 

Mis-spliced transcripts could be also detected in control RNA-seq samples from healthy individuals. 

This idea is very interesting, but also rational as it might share a similar philosophy as the previous 

finding, which reported that many mutations in the key cancer driver genes could also be observed in 

physiologically normal tissues. Based on this hypothesis, the author collates all unannotated splicing 

events surrounding each splice site by analyzing splicing junctions from 335,301 RNA-seq samples 

(300K-RNA). For each splicing site, they ranked all unannotated splicing events based on the number 
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of samples, in which the event is detected/present. They used the four most common ones (300K-RNA 

Top4) to identify Mis-splicing caused by genetic variants, in which they found 96% of exon-skipping 

events and 82% of cryptic splice-sites induced by 86 clinically reported variants could be identified. By 

comparing with the predictions from the other two methods, SpliceAI and MMsplice, they claimed that 

300K-RNA Top4 outperforms these two to correctly identify multiple Mis-splicing events. Finally, they 

developed SpliceVault, a web portal to access unannotated splicing events in 300K-RNA Top4. In 

general, the idea is interesting, the flow of the manuscript is clear and straightforward. However, the 

limitations are also obvious, and some points should be addressed. 

1, Some sentence in the abstract is very unfriendly to readers without background knowledge. For 

instance, Line 16-17, ‘In comparison, applying interpretative rules to SpliceAI D-scores correctly 

identifies 55% of …’. It will make people confused about what’s the SpliceAI and what’s the delta-

scores? In addition, the authors did comparisons between 300K-RNA Top4 and SpliceAI and MMSplice. 

It would be rather weird to only mention SpliceAI in the abstract but did not mention MMSplice at all. 

 

2, The author analyzed 86 variants across 72 genes to demonstrate the capacity of 300K-RNA Top4 

for the identification of variant-induced Mis-splicing events. They should give a clear explanation about 

how they selected these variants. Do they include all current experimentally confirmed, splicing-

related genetic variants? The author should provide a table to show details of these variants and 

genes. In addition, the author classified these variants into different categories (Fig. 1A), what’s the 

purpose of this analysis? Is there any expectation that variants from different categories show 

different validation rates by 300K-RNA Top 4? 

 

3, The largest limitation of 300K-RNA Top4 is that the positive predictive value (PPV) is very low 

compared to other methods, which means FDR is very high in the other words. For instance, the FDR 

of exon skipping prediction by 300K-RNA is 67%. The author also claimed that ‘300K-RNA Top4 

outperforms SpliceAI (and MMSplice)’ in Line 232. Based on Fig. 2E, under similar PPV/FDR, for 

instance (69% for 300K-RNA, 65% for SpliceAI), sensitivity/recall of two methods (50% and 59% 

respectively) are very closed and 300K-RNA performs even slightly worse than SpliceAI. A fair 

comparison should use the receiver operating characteristic (ROC) curve or precision-recall curve to 

calculate the area under the curve (AUC). 

 

4, As the precision of 300K-RNA Top 4 is relatively low, even only using the Top 1 splicing events, 

40% of the prediction could be false positives, the author should provide a deeper investigation 

regarding what’s the difference between those ‘Seen in RNA studies’ and those not. For instance, do 

those skipped exons Seen in RNA studies are shorter than those not? Do these events have relative 

stronger/weaker splicing strength? Are they more GC/AT enriched et al? 

 

5, The authors showed the performance on Mis-splicing prediction with three methods, respectively. 

What’s the overlap between each other? What’re the characteristics of the events that could be 

identified by all three methods or could only be identified by each of them? 

 

6, In Line 153, the author claimed that intron retention cannot be predicted by 300K-RNA. It’s not 

correct as there are no significant differences between the detection of intron retention and other 

types of splicing events from RNA-seq data. Theoretically, detection of reads spanning across the 

exon-intron boundary, if it’s not easier, it’s quite similar to the detection of splicing junctions spanning 

two exons. Almost all well-known computational tools for splicing analysis based on RNA-seq data 

have the capacity of intron retention identification, such as MISO (Katz, Yarden, et a. 2010), rMATS 

(Shen, Shihao, et al.2014), and PSI-Sigma (Lin, Kuan-Ting, and Adrian R. Krainer. 2019). Moreover, 
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some tools specifically for the detection of intron retention have also been developed, for instance, 

IRFinder (Wong, Justin J-L., et al. 2013). As 20% of the Mis-splicing events induced by the 86 variants 

are intron retention, which is not a negligible proportion. The author should characterize the intron 

retention events, at least for these 29 events (Line 89), in RNA-seq samples with a relatively large 

sample size to get robust Top-ranked events. 

 

7, The authors analyzed 335,301RNA-seq samples from GTEx and SRA. They should clarify if any 

batch effect correction should be considered? They should also include an ablation study to show the 

robustness of those top-ranked splicing events. For instance, using 5K, 10K,50K, 100K, and 300K 

samples, what’s the overlap of the top identified unannotated splicing events. Especially, for the 147 

variants induced Mis-splicing events, what’s the PPV and sensitivity if only using 10K, 50K, 100K 

samples? 

 

8, As the key finding of this study, is that 300K-RNA Top 4 could accurately predict 90% of the 

variants-associated Mis-splicing events. Only using a single dataset (147 events) might be not 

sufficient to prove its true sensitivity. The author should either apply the analysis on another 

independent dataset (if it’s possible) or experimentally validate the predictions beyond the 86 

variants. For instance, they can use CRISPR to mutate several splice sites and check whether the 

mutation-induced splicing variants indeed could be identified by 300K-RNA Top4. 

 

Minor Points 

1, Line 80, the authors mentioned that multiple experimental approaches have been performed to 

characterize aberrant splicing events arising from 86 genetic variants. It would be better to make a 

table to show how many of them were confirmed by each approach, including RT-PCR, RNA-seq, 

and/or minigene assay. 

2, Line 84, ‘77 SNVs were included in the dataset’ is contradict to 78 SNVs (59 + 19) shown in Figure 

1B. The author should clarify which number is correct. In addition, it’d be better to also show the 

relative position of “2 insertions, 5 deletions, and 2 deletion-insertion variants“ to the splice sites in 

the figure. 

3, Line 223, the authors claimed that ‘no previous method can predict the nature of variant-induced 

mis-splicing’. However, both SpliceAI and MMSplice are public methods. Did the authors want to 

conclude that the prediction from SpliceAI and MMSplice is not ‘the nature of variant-induced mis-

splicing’? 

4, Since the authors performed RNA reanalysis for 4 cases, it would be interesting to characterize full-

length of those mis-spliced transcripts using the third-generation sequencing technology. The results 

could be more convincing compared to bands in the gel which only amplified parts of the mis-splcied 

transcripts. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I read the paper by Dawes et al with great interest. The notion that mis-splicing events caused by 

genomic variant can be predicted through reference to known mis-splicing events in the general 

population is intuitive. Whilst data resources to complete these types of analyses are publicly 

available, I am not aware of an existing resource of the scale described in this manuscript. 

 

The authors utilized RNA-seq datasets from GTEx and SRA to identify mis-splicing events in the 
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general population, and present an analysis of 40,000 samples to show the capability of this acquired 

knowledge of mis-splicing events to identify cryptic splice sites (Nat Comms paper), and an analysis of 

300,000 samples in the context of cryptic splice sites and exon skipping (Nat Genetics paper). I have 

read both papers, but have restricted this review to encompass only the information presented in the 

300K splice vault (Nature Genetics) paper. I note some areas of natural complementarity and overlap 

between the papers, but feel that the 300K SpliceVault lacks significant detail in areas, some of which 

is covered to some extent in the 40K paper, but when considered as a standalone manuscript isn’t 

acceptable in its current state for publication. I believe this resource and manuscript could be of broad 

interest and an informative resource for variant interpretation, but have noted major issues with the 

methodologies which should be addressed before further consideration: 

 

 

1. The data utilized to generate the 300K resource will be diverse, with a number of different 

tissues/cell-types/biosamples used and created through different wet laboratory and bioinformatics 

pipelines. The authors state that the ‘splice-junction read counts were summarised’ using a program 

called Datamash. I am not familiar with Datamash but believe it to be a simple command-line unix 

system programme capable of generating summary statistics. This is the extent of the description of 

data curation, but this is the most important part of the manuscript in my opinion. There is no 

explanation of the data curation and/or attempts to harmonize raw datasets through a single 

uniformed bioinformatics pipeline. Drawing analogies with human genomic resources, e.g. gnomAD 

(https://gnomad.broadinstitute.org/), the power of these databases lies to some extent in the unified 

data processing and analysis approaches applied to the data and to thereby identify and filter for 

artefactual findings. Such approaches for data harmonization will make the 300K resource more 

powerful, and whilst practically difficult, is to some extent why such a resource is yet to be realised. 

My suggestions are two-fold: (1) a summary of the different biosamples and wet laboratory 

approaches used in the analysis should be added; and (2) harmonization of the data through a single 

pipeline, e.g. the GTEx RNA-seq pipeline (https://github.com/broadinstitute/gtex-pipeline) or a 

harmonised use of algorithms to statistically identify mis-spliced events from RNA-seq, e.g. FRASER 

(https://www.nature.com/articles/s41467-020-20573-7) or DROP 

(https://www.nature.com/articles/s41596-020-00462-5). The authors should also expand their 

description of mis-splicing events to include quality metrics and appropriate thresholds (e.g. read 

depth, quality and mapping thresholds). 

 

2. In addition to comment #1, there is no attempt to sub-divide mis-splicing events in the 300K 

resource by biosample sources. Such an analysis could lead to interesting and important observations 

in the data, and contribute to how to expand the resource going forward, e.g. does the use of tissue-

shared Vs tissue-specific mis-splicing events impact the accuracy of the Top-4 approach? Do certain 

biosamples exhibit higher levels of mis-splicing than others? Is the expression of isoform X in tissue A 

associated with higher levels of mis-splicing than in isoform Y in tissue B? Whilst the composite 

resource presented here provides power by numbers, an analysis enabling the calculation of mis-

splicing events by biosample type may enable further improvements to the algorithm and I think this 

is an area the authors should explore. In addition, the authors remark that their RNA analyses 

performed in blood and fibroblasts were informed by the diverse biosample resource, can the authors 

also comment on the suitability of their investigated genes in clinically accessible tissues? e.g. through 

isoform similarity evaluated through MAJIQ-CAT? (https://pubmed.ncbi.nlm.nih.gov/32225167/) – can 

the authors comment on the utility of the 300K resource for genes that aren’t appropriate for 

surveillance from clinically accessible tissues? 
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3. The 300K manuscript uses specific thresholds for each of the approaches for prioritization (Top-4, 

0.05, -2), but makes no attempt to explain why the Top-4 approach is selected. Whilst there is 

presentation of sensitivity and PPV information in Figure 2E (which is assumed to be the 86 

experimentally validated splice-altering varians – this isn’t declared in the figure gene), a formal 

analysis of optimal thresholds could be performed using the Precision-Recall or Receiver Operator 

Curve. The authors already declare that PPV isn’t their primary objective, and they place more 

emphasis on sensitivity (lines 236-239), so why isn’t a Top-7 approach used with 97% sensitivity and 

~25% PPV (Figure 2E)? In addition to comment #2, consideration of optimal thresholds for tissue-

shared Vs tissue-specific mis-splicing events may be informative, and an interesting analysis to add 

here. 

 

4. The interpretative rules for SpliceAI require greater explanation in the text section of the methods. 

While figure 1 and explanation in the results section enables greater clarity, the methods are not clear 

as a standalone piece of text. Some explicit justifications for the use of 0.05 thresholds are also 

required. 

 

5. There are two fairly recent algorithms that the authors should also consider in their comparative 

analysis (CADD-Splice, https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-021-

00835-9 & SQUIRLS, https://www.cell.com/ajhg/pdfExtended/S0002-9297(21)00238-X). 

 

6. The authors note that over half of the variants included two or more mis-splicing events (line 87). 

This is an interesting observation which would benefit from further elaboration and discussion. Can the 

authors demonstrate the relative dosage of each aberrant junction to the canonical junction? How 

does the relative dosage of the mis-splicing events impact the accuracy of the algorithms to predict 

multiple mis-splicing events? E.g. Rowlands et al (https://doi.org/10.1016/j.ajhg.2021.12.014) 

describe a normalized read count applied during the Cummings et al pipeline 

(10.1126/scitranslmed.aal5209) to rank mis-splicing events. Recent updates to ACMG guidelines have 

suggested that partial impacts are an important aspect of variant interpretation 

(https://doi.org/10.1101/2021.12.28.21267792), and the authors have an opportunity to quantify 

these important observations in over 40 cases and to put this in greater context with the existing 

literature around variant interpretation. 

 

7. Figure 4 suggests use of PVS1 ACMG codes in the context of the presented evidence. Whilst this is 

a natural and relevant extension of the presented work, I would suggest that these recommendations 

are more relevant for incorporation through ongoing work in the ClinGen community. This will enable 

wider panels of experts to evaluate and comment on guidance before it is made available in literature, 

and to link these seamlessly with other updates to guidance on PVS1 for splicing variants, which can 

result in rapid uptake of guidance across diagnostic genomic centres: 

https://clinicalgenome.org/working-groups/sequence-variant-interpretation/. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Overview 

Dawes et al propose a new method addressing an unmet need: predicting the splice isoform outcome 

of essential splice-site variants. To this end, the authors suggest that mis-splicing events are typically 
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resolved into an alternative splice isoform that can be detected, though at a low level, in unaffected 

samples. As a corollary, variants affecting splicing of genes that do not express non-functional splicing 

isoforms are unlikely to affect gene function. 

 

The idea is original and goes conceptually beyond what sequence-based variant predictors (SpliceAi, 

MMSplice, etc.) have been addressing so far. However, the presented results lack important analyses, 

leading to concerns about the actual relevance for rare disease diagnostics. At this stage, the 

relevance of the methods and of the endeavor itself is not substantiated enough. 

 

Major points 

------------- 

The groundwork of extensively mapping weak splice junctions was done previously by the authors 

(Dawes et al. 2021). The added value of this paper should be to provide a justification of the new 

diagnostic guidelines proposed in Fig. 4. However: 

- The paper should provide estimates of how frequently essential splicing variants do not result in IR, 

PTC or frameshift. Unless this represents a substantial fraction of essential splicing variants, the need 

for a new guideline is not so impactful. It may well be large, but this number is lacking. 

 

- Assuming this fraction is indeed substantial, the authors should then provide estimates as to how 

frequent it is that the proposed very strong evidence criteria does not apply (i.e. that not all 300 K- 

RNA top-4 result in IR, PTC or frameshift). Introducing the new guideline is relevant only if this 

fraction is substantial. Here too, the fraction may well be large, but this number is lacking. 

 

- The analysis focuses on sensitivity alone using a benchmark dataset consisting of pathogenic 

variants only. Pathogenic variants are biased for variants resulting in loss-of-function splice isoforms. 

While sensitivity may matter most, the study needs to also assess a substantial set of splice variants 

that do not resolve in loss-function isoforms to justify the utility of the tool and demonstrate that 

those would be often appropriately discarded. 

 

- The authors should discuss whether, according to their guidelines, very strong predictions would not 

need an RNA-seq or RT-PCR validation anyways. If so, then the added value is limited. 

 

Going now through the manuscript: 

- Fig 2A-C. There are striking mismatches between the reported numbers used to compute sensitivity 

and PPV, and the actual number of points displayed on the figure. An obvious example is the number 

“5” below cutoff for SpliceAi in Fig 2A. That is pervasive (are there 128 data points not seen in RNA 

studies and below cutoff for top-K RNA in Fig 2A?). There are probably reasons for this, e.g. what is 

plotted are splice-site levels scores, and what is counted are splicing events but this should be 

explained. I would suggest to show on the plot what is actually counted and to provide a clear 

rationale about how “things” are counted for each method. The same “philosophy” should be applied 

to each method. 

 

- Fig 2A is based on fixed cutoffs. Instead, precision-recall curves should be shown. This is a major 

concern because the authors have adjusted the cutoff of their method to increase sensitivity but did 

not investigate changes of cutoff of other methods. The authors argue that sensitivity matters and 

should make use of the precision-recall curve to compare the performance of all tools at same recall 

(i.e. sensitivity). 
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- it is incorrect to state that “All approaches have limited or no ability to predict intron retention”. The 

MMSplice software can be used to predict splicing efficiency which models intron retention. This should 

be tried. 

 

- It is excessive to state “Whereas SpliceAI predicted only a single mis-splicing event for 17/20 

variants”. It would be more appropriate to state that the algorithm the authors proposed on top of 

SpliceAI “predicted only a single mis-splicing event….”. Technically, SpliceAI outputs scores for 

creation or loss of splice sites. One could propose several ways of predicting isoform outcomes from 

these scores. Here, the authors propose a greedy approach considering every site with score>0.2 to 

be used. It is not expected that the authors over-engineer a method on top of SpliceAI. However, 

since they value sensitivity so high, they should use SpliceAI in a way that maximizes the number of 

isoform predictions. For instance, one could consider drawing independently sites using the Splice 

scores and obtaining thereby a distribution of isoforms from which one could retain the most probable 

ones. This would be more comparable to the “top-4” approach proposed by the authors. 

 

- 300K Top-4 relies on a genome annotation but no detail is given about this. The choice of the 

genome annotation could be critical. If the genome annotation of splice isoforms is too stringent, say, 

limited to a single major isoform per gene, then the most frequent non-annotated isoform (top-1) 

could often be a genuine, biologically functional splice isoform. At the other extreme, if the genome 

annotation is too inclusive then it can contain rare, non-functional splice isoforms, exactly those one 

would instead like to retain. On what basis did the authors decide which isoforms were “annotated”? 

Some assessment would be insightful. 

 

Minor points 

------------- 

 

- Line 50, the observation that aberrant splicing junctions are typically detected at weak levels in 

other samples was already reported by Kremer et al., Nat commun, 2017, with a quantification of the 

prevalence of this phenomenon consistent with the much more extensive and recent analyses by 

Dawes et al., 2021. Also, Kremer et al. also formulated the hypothesis of the present study described 

l. 64-66. This prior work should be cited in this respect. 

 

- Figure 2 is entitled “Accuracy” but what is assessed is sensitivity. 

 

- Designing targeted RT-PCR follow-ups guided by the predictions have moderate value as they 

require specific primer designs and are blind to not-predicted isoforms. Would not the authors suggest 

RNA-seq, potentially with cycloheximide, in any case? This should be discussed. 
 

 

Author Appeal   

Reviewer Comments: 

 

Author’s Response to all reviewers: 
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All reviewers acknowledged the clinical importance and our discovery and offered several constructive 

suggestions how we could improve evidence supporting the rigour and robustness of the 300K-RNA Top 

4 method.    All three reviewers unanimously highlighted; 1) precision-recall analyses, 2) evidence for 

concordance among the ranking of unannotated splicing events between tissues and sources, and 3) 

additional validation and identification of sources of bias; as suggested areas for improvement.  

 

Thus, we now include additional Figures and Supplemental Figures: 

1. Precision-recall analyses 
2. Updated SpliceVault and 300K-RNA source data to utilise RNA-Seq splice-junction data processed 

using the unified Monorail pipeline.  
3. Updated the SpliceVault portal to enable users the flexibility to access ranked, unannotated 

splicing events within different tissue specimen subtypes within GTEx.   
4. Further validation of the Top-4 method using two additional, independent cohorts of clinical 

variants curated from literature (61 variants studied in patient specimens and 63 variants studied 
through midi-gene assays). 

5. Concordance analyses of the ranking of unannotated splicing events for the 88 splice-sites 
affected by our cohort of 88 splice-altering clinical variants, and for all unannotated splicing 
events detected for 98,810 annotated splice-sites across 3,668 clinically relevant Mendelian 
disease genes (the Mendeliome) – between different biospecimen subtypes within GTEx, and, 
between GTEx and SRA datasets.  

6. For 19/88 variants associated with muscle disorders and where RNA testing was performed using 
muscle, we showed that GTEx Muscle Top-4* (n = 881 muscle samples) results in lower sensitivity 
and PPV than using 300K-RNA Top-4* (though discuss that higher sequencing depth of human 
tissues may ultimately result in improved accuracy). 

7. Conducted deep analysis of features that help to discriminate ‘true-positive’ from ‘false-positive’ 
events to inform prospective improvement of the ranking method. 

8. Quantified that ~50% of essential splice site variants are associated with one or more in-frame 
event (across all three validation cohorts) – confirming the clinical importance of using SpliceVault 
to accurately consider the probable nature of variant-associated mis-splicing for informed use of 
PVS1, PM4 and PP3 criteria of the ACMG-AMP guidelines. 

 

With a large body of additional data, though we conducted side-by-side comparative analyses with 

MMSplice and SPANR as recommended, it became very cumbersome to include and discuss 

comparisons for multiple algorithms.  As an additional note to R3, CADD-Splice does not use an 

independent algorithmic approach, rather, it integrates SpliceAI and MMSplice along with other 

features.   
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As this manuscript that seeks to validate the diagnostic utility and predictive accuracy of the 300K-RNA 

Top-4 approach, we remove all comparative reference to MMSplice and SPANR.  We maintain 

comparative evaluation between 300K-RNA and Splice AI, due to their mutual ability to predict both 

cryptic activation and exon skipping to enable precision-recall analyses.  We also feel the comparison of 

an evidence-based approach with a sophisticated, deep learning approach, is of broad general interest 

to the Nature Genetics readership. Our point-by-point rebuttal to your comments follows below.  We 

are very appreciative of the constructive suggestions offered, which have improved the body of 

evidence supporting the rigour and accuracy of our Top-4* method. 

 

Reviewer #1: 

1.  Some sentence in the abstract is very unfriendly to readers without background knowledge. For 
instance, Line 16-17, ‘In comparison, applying interpretative rules to SpliceAI D-scores correctly 
identifies 55% of …’. It will make people confused about what’s the SpliceAI and what’s the 
delta-scores? In addition, the authors did comparisons between 300K-RNA Top4 and SpliceAI 
and MMSplice. It would be rather weird to only mention SpliceAI in the abstract but did not 
mention MMSplice at all.  

 

Author’s Response 

We have edited the abstract to be friendlier to readers not familiar with the terminology of SpliceAI 

scores, simply saying “300K-RNA showed higher sensitivity and positive predictive value than SpliceAI in 

predicting exon-skipping and cryptic-activation events”.   

 

Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 

to MMSplice within this manuscript.   

 

2. The author analyzed 86 variants across 72 genes to demonstrate the capacity of 300K-RNA Top4 
for the identification of variant-induced Mis-splicing events. They should give a clear explanation 
about how they selected these variants. Do they include all current experimentally confirmed, 
splicing-related genetic variants? The author should provide a table to show details of these 
variants and genes. In addition, the author classified these variants into different categories (Fig. 
1A), what’s the purpose of this analysis? Is there any expectation that variants from different 
categories show different validation rates by 300K-RNA Top 4?  

 

Author’s Response 
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Ascertainment criteria are clearly defined in the first paragraph of results (see manuscript text lines 87-

90).  We add Table S1 that details all variants confirmed to disrupt splicing and the detected splicing 

outcomes. The purpose of Figure 1A is to show that our cohort of 88 variants encompasses a wide range 

of disorders with different tissue-specific or multi-system involvement. 

 

3. The largest limitation of 300K-RNA Top4 is that the positive predictive value (PPV) is very low 
compared to other methods, which means FDR is very high in the other words. For instance, the 
FDR of exon skipping prediction by 300K-RNA is 67%. The author also claimed that ‘300K-RNA 
Top4 outperforms SpliceAI (and MMSplice)’ in Line 232. Based on Fig. 2E, under similar 
PPV/FDR, for instance (69% for 300K-RNA, 65% for SpliceAI), sensitivity/recall of two methods 
(50% and 59% respectively) are very close and 300K-RNA performs even slightly worse than 
SpliceAI. A fair comparison should use the receiver operating characteristic (ROC) curve or 
precision-recall curve to calculate the area under the curve (AUC). 

 

Author’s Response 

We agree.  New Figure 2B shows precision-recall curves for 300K-RNA and SpliceAI at -score thresholds 

that offer the same, total number of predictions as offered by 300K-RNA at each rank cut-off – such that 

true/false positive rates can be compared.  This demonstrates 300K-RNA has higher sensitivity and 

comparable positive predictive value at every cut-off except 300K-RNA top-1, where the scores are 

similar. Further analyses of precision and recall are provided in Figures 2C, 2D, S1C, S1E, S1F, S4E. 

 

4. As the precision of 300K-RNA Top 4 is relatively low, even only using the Top 1 splicing events, 
40% of the prediction could be false positives, the author should provide a deeper investigation 
regarding what’s the difference between those ‘Seen in RNA studies’ and those not. For 
instance, do those skipped exons Seen in RNA studies are shorter than those not? Do these 
events have relative stronger/weaker splicing strength? Are they more GC/AT enriched et al?  

 

Author’s Response 

We conducted evaluation of Top-4* true/false positives in new Figures S1B and S2A-D and manuscript 

commentary in Lines 164 – 168 and 175 – 184.  RNA re-analyses detecting Top-4 events suggest 

precision may be a little higher than we currently report.  We determined in Figure S2 that true positives 

tend to be associated with: 

- Higher sample count i.e. seeing an event in more samples.  We don’t wish to over emphasize this 
point, given so many variant-activated events are only seen in a few samples. 

- Double-exon skipping is substantially less likely to occur than single exon skipping. 
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- Double versus single exon skipping is not related to the overall length (in nt) of the excised region 
(or exon length, not shown). 

- We do not compare or present analyses of splice-site strength or use of GC/AT enrichment among 
unannotated splicing events as this was investigated in detail in Dawes et al. 2022 NCOMMS21-
28137 (proofs returned to NCOMMS. Online publication imminent).   
 

5. The authors showed the performance on Mis-splicing prediction with three methods, 
respectively. What’s the overlap between each other? What’re the characteristics of the events 
that could be identified by all three methods or could only be identified by each of them?  

 

Author’s Response 

Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 

to additional algorithms.  We agree this is an interesting question and feel comparative evaluation of 

multiple contemporary splicing prediction tools warrants investigation as an entire publication in its own 

right.  Our focus here is the diagnostic utility and predictive accuracy of the 300K-RNA Top-4 evidence-

based approach.   

 

6. In Line 153, the author claimed that intron retention cannot be predicted by 300K-RNA. It’s not 
correct as there are no significant differences between the detection of intron retention and 
other types of splicing events from RNA-seq data. Theoretically, detection of reads spanning 
across the exon-intron boundary, if it’s not easier, it’s quite similar to the detection of splicing 
junctions spanning two exons. Almost all well-known computational tools for splicing analysis 
based on RNA-seq data have the capacity of intron retention identification, such as MISO (Katz, 
Yarden, et a. 2010), rMATS (Shen, Shihao, et al.2014), and PSI-Sigma (Lin, Kuan-Ting, and Adrian 
R. Krainer. 2019). Moreover, some tools specifically for the detection of intron retention have 
also been developed, for instance, IRFinder (Wong, Justin J-L., et al. 2013). As 20% of the Mis-
splicing events induced by the 86 variants are intron retention, which is not a negligible 
proportion. The author should 
characterize the intron retention events, at least for these 29 events (Line 89), in RNA-seq 
samples with a relatively large sample size to get robust Top-ranked events.  

 

Author’s Response 

300K-RNA is a database of detected splice-junctions from split-reads in RNA-seq data.  Intron retention 

is inferred by non-split reads spanning the exon-intron boundary; absence of a splice-junction cannot be 

calculated from the 300K-RNA data sources. Quantification of intron retention is confounded by the 

presence of non-split reads corresponding to pre-mRNA and splicing intermediates.  We suspect intron 
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retention quantification may differ between RNA-Seq data derived using ribosomal depleted total RNA 

versus polyA depletion, because:  

a) transcripts with retained introns can be non-adenylated and retained in the nucleus 

b) introns can be long.  Transcripts with retained introns can be particularly impacted by 3’bias 

associated with PolyA enrichment protocols.  

 

Thus, herein we recommend pathology consideration of intron retention in addition to Top-4.  But we 

do not advise or recommend how it may be used in a Top-4 style ranking method to predict the nature 

of probable mis-splicing. 

 

7. The authors analyzed 335,301RNA-seq samples from GTEx and SRA. They should clarify if any 
batch effect correction should be considered? They should also include an ablation study to 
show the robustness of those top-ranked splicing events. For instance, using 5K, 10K,50K, 100K, 
and 300K samples, what’s the overlap of the top identified unannotated splicing events. 
Especially, for the 147 variants induced Mis-splicing events, what’s the PPV and sensitivity if only 
using 10K, 50K, 100K samples? 

 

Author’s Response 

We adapted SpliceVault to source data processed using the monorail approach of Wilks et al.1  Inherent 

robustness and reproducibility of the 300K-RNA Top-4* method is shown by highly similar statistical 

metrics using both sets of source data.  We further conducted correlative analyses of the ranking of 

unannotated splicing events around: i) the 88 splice sites impacted by our cohort of variants (Figure 3A-

B) and ii) 98,810 annotated splice-sites in 3,668 clinically relevant Mendelian disease genes (the 

Mendeliome) (Figure S4A-B), comparing: 

1) biospecimen subtypes within GTEx  
2) GTEx and SRA datasets 

including overall correlation of sample counts for each unannotated splicing event.  

 

- We confirm the number of mis-splicing events detected in each individual tissue in GTEx is 
correlated with the number of samples present for that tissue (Figure S4D). 

- We show the overlap of the top-4 300K-RNA events with the top-4 events present in four clinically 
accessible tissues in GTEx (Figure 3D) 

- We show that using GTEx muscle Top-4 shows lower sensitivity than using 300K-RNA Top-4 for 
19 variants associated with muscle disorders where RNA testing was conducted using muscle 
RNA (Figure S4E). 
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However, our overall opinion is the best predictive accuracy of a ranking approach may be garnered via a 

balance of breadth and depth i.e. high sequencing read depth of a reasonable number of specimens (e.g. 

hundreds but not thousands).  We are keenly investigating this, as well as potential benefits of using 

human primary cell lines treated with cycloheximide to inhibit NMD, which may influence event ranking. 

 

8. As the key finding of this study, is that 300K-RNA Top 4 could accurately predict 90% of the 
variants-associated Mis-splicing events. Only using a single dataset (147 events) might be not 
sufficient to prove its true sensitivity. The author should either apply the analysis on another 
independent dataset (if it’s possible) or experimentally validate the predictions beyond the 86 
variants. For instance, they can use CRISPR to mutate several splice sites and check whether the 
mutation-induced splicing variants indeed could be identified by 300K-RNA Top4.  

 

Author’s Response 

We agree and conducted validation of the sensitivity and positive predictive value of 300K-RNA Top-4* 

predictions on two additional and independent datasets: 121 variants from published patient-derived 

RNA (n=58) and midi-gene (n=63) studies are also now included in Table S1.  We scrutinised the 

technical design of the midi-genes, to ensure multi-exon skipping and distal cryptics, if activated, could 

be detected.   Importantly, we obtained a similar average sensitivity of 92% and average PPV of 29%.  

 

Minor Points 

9. Line 80, the authors mentioned that multiple experimental approaches have been performed to 
characterize aberrant splicing events arising from 86 genetic variants. It would be better to 
make a table to show how many of them were confirmed by each approach, including RT-PCR, 
RNA-seq, and/or minigene assay.  

 

Author’s Response 

We provide Table S1 that details all variants evaluated in this study, the experimental approaches used, 

RNA source and splicing outcomes. 

 

10. Line 84, ‘77 SNVs were included in the dataset’ is contradict to 78 SNVs (59 + 19) shown in 
Figure 1B. The author should clarify which number is correct. In addition, it’d be better to also 
show the relative position of “2 insertions, 5 deletions, and 2 deletion-insertion variants“ to the 
splice sites in the figure.  
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Author’s Response 

Figure 1B has been corrected and now represents an updated list of experimentally-verified variants, 

details provided in Table S1. 

 

11. Line 223, the authors claimed that ‘no previous method can predict the nature of variant-
induced mis-splicing’. However, both SpliceAI and MMSplice are public methods. Did the 
authors want to conclude that the prediction from SpliceAI and MMSplice is not ‘the nature of 
variant-induced mis-splicing’? 
 

Author’s Response 

We have removed this sentence and reference to MMSplice.   

 

12. Since the authors performed RNA reanalysis for 4 cases, it would be interesting to characterize 
full-length of those mis-spliced transcripts using the third-generation sequencing technology. 
The results could be more convincing compared to bands in the gel which only amplified parts of 
the mis-spliced transcripts. 

 

Author’s Response 

We can only redress this comment by advising that we agree entirely - and are currently conducting a 

collaborative (via SpliceACORD) clinical evaluation trial of PCR followed by long-read sequencing of 

amplicons to see if it: 1) improves sequencing clarity of multi-template PCRs, which are inherent in a 

subject with a heterozygous splice-altering variant, and common for homozygous or hemizygous 

variants that elicit more than one mis-splicing outcome; 2) presents cost-savings over Sanger 

sequencing.   

 

 

 

 

 

Reviewer #2: 
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1. The data utilized to generate the 300K resource will be diverse, with a number of different 
tissues/cell-types/biosamples used and created through different wet laboratory and 
bioinformatics pipelines. The authors state that the ‘splice-junction read counts were 
summarised’ using a program called Datamash. I am not familiar with Datamash but believe it to 
be a simple command-line unix system programme capable of generating summary statistics. 
This is the extent of the description of data curation, but this is the most important part of the 
manuscript in my opinion. There is no explanation of the data curation and/or attempts to 
harmonize raw datasets through a single uniformed bioinformatics pipeline. Drawing analogies 
with human genomic resources, e.g. gnomAD (https://gnomad.broadinstitute.org/), the power 
of these databases lies to some extent in the unified data processing and analysis approaches 
applied to the data and to thereby identify and filter for artefactual 
findings. Such approaches for data harmonization will make the 300K resource more powerful, 
and whilst practically difficult, is to some extent why such a resource is yet to be realised. My 
suggestions are two-fold: (1) a summary of the different biosamples and wet laboratory 
approaches used in the analysis should be added; and (2) harmonization of the data through a 
single pipeline, e.g. the GTEx RNA-seq pipeline (https://github.com/broadinstitute/gtex-
pipeline) or a harmonised use of algorithms to statistically identify mis-spliced events from RNA-
seq, e.g. FRASER (https://www.nature.com/articles/s41467-020-20573-7) or DROP 
(https://www.nature.com/articles/s41596-020-00462-5). The authors should also expand their 
description of mis-splicing events to include quality metrics and appropriate thresholds (e.g. 
read depth, quality and mapping thresholds).  

 

Author’s Response 

We appreciate this constructive suggestion and contemporised SpliceVault to source data processed 

identically using the monorail processing pipeline1.  In line with suggestions by R1 and R2, we provide 

Table S1 that details all variants, the wet-lab approaches and the source of the RNA.  We have also 

provided improved clarity in Methods and Results regarding specific procedural steps to ascertain 

variants, rank the events etc.  See response to R1 Q7 regarding our extensive validation of method 

sensitivity and positive predictive value, which is not substantially influenced by RNA-Seq method or 

sample sub-type for exon-skipping and cryptic splice site junctional reads.  We do feel there will be 

influence of technical pipeline for quantification of intron retention – underpinning our decision to not 

comment at this early stage on use of IR non-split reads in our Top-4 ranking method for clinical use. 

2. In addition to comment #1, there is no attempt to sub-divide mis-splicing events in the 300K 
resource by biosample sources. Such an analysis could lead to interesting and important 
observations in the data, and contribute to how to expand the resource going forward, e.g. 

a. does the use of tissue-shared Vs tissue-specific mis-splicing events impact the accuracy 
of the Top-4 approach? 

b. Do certain biosamples exhibit higher levels of mis-splicing than others? 

https://protect-au.mimecast.com/s/I1IDCZY1Nqi5pxpOwhjxpLI?domain=gnomad.broadinstitute.org/
https://protect-au.mimecast.com/s/eKWsC1WLPxcM9O9v0upzZDY?domain=github.com
https://protect-au.mimecast.com/s/eKWsC1WLPxcM9O9v0upzZDY?domain=github.com
https://protect-au.mimecast.com/s/AktMC2xMQzip969n4t2vbS2?domain=nature.com
https://protect-au.mimecast.com/s/qjemC3QNPBipExELPtQ5N2N?domain=nature.com
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c. Is the expression of isoform X in tissue A associated with higher levels of mis-splicing 
than in isoform Y in tissue B?  

Whilst the composite resource presented here provides power by numbers, an analysis enabling 

the calculation of mis-splicing events by biosample type may enable further improvements to 

the algorithm and I think this is an area the authors should explore. 

3. In addition, the authors remark that their RNA analyses performed in blood and fibroblasts were 
informed by the diverse biosample resource, can the authors also comment on the suitability of 
their investigated genes in clinically accessible tissues? e.g. through isoform similarity evaluated 
through MAJIQ-CAT? (https://pubmed.ncbi.nlm.nih.gov/32225167/) can the authors comment 
on the utility of the 300K resource for genes that aren’t appropriate for surveillance from 
clinically accessible tissues?  

 

Author’s Response 

We have increased the functionality of the SpliceVault portal to enable users customized access to “all 

of 300K-RNA” or any one of the 56 specific specimen sub-types within the GTEx data source.   

 

a) Please see our response to R1 Q7, with respect to our comprehensive evaluation of concordance in 

ranked unannotated splice events between GTEx tissues, between GTEx and SRA, for both our cohort of 

88 splice-sites and across the Mendeliome.  We showed the same concordance across every annotated 

human splice site, though felt with our clinical focus the Mendeliome was more relevant.   

Figure S4 provides precision-recall analyses showing 300K-RNA Top-4* outperforms GTEx Skeletal 

muscle Top-4* versus for 19 variants subject to RNA testing of muscle.  However, we feel that tissue-

specific SpliceVault databases that encompasses deeper sequencing of tissue specimens from individuals 

of different ages could improve predictive accuracy.  We are currently pursuing this hypothesis for 

blood, fibroblasts and muscle that we are studying in our clinical program of RNA Diagnostics (typically 

conducting ~150 million read depth +/- cycloheximide to inhibit NMD for primary cells, as compared to 

20 million read depth for GTEx specimens).   

b) The number of mis-splicing events detected correlates strongly with the number of samples present 

in GTEx for each biosample type (Figure S4D).  Testis are a notable outlier – well known to have ‘leaky’ 

higher expression of many genes that show tissue-restricted expression. 

c) Unfortunately, this important point requires long-read RNA sequencing from a clinical cohort of 

affected individuals with splice-altering variants, compared to controls or disease controls. This is a 

current area of our investigation, though falls outside the scope of this manuscript. 

https://pubmed.ncbi.nlm.nih.gov/32225167/
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Q3) For RNA diagnostic testing performed in our laboratory, review of alternative splicing patterns in the 

target gene was performed using GTEx RNA-seq data derived from clinically accessible tissues and 

manifesting tissues to establish that testing in clinically accessible tissues was appropriate (see 

Bournazos et al., 2022)2. In regards to the suitability of 300K-RNA resource for genes not expressed in 

clinically relevant tissues, See lines 216-220: “Therefore, we recommend use of 300K-RNA Top-4* as 

prediction of the probable nature of variant associated mis-splicing until we have great enough breadth 

and/or depth of RNA-Seq data to evaluate a tissue-specific approach. We advise caution for genes with 

known tissue-specific or developmental alternative splicing, where RNA-Seq from the relevant tissue is 

not represented, or poorly represented, within 300K-RNA data sources.” 

4. The 300K manuscript uses specific thresholds for each of the approaches for prioritization (Top-
4, 0.05, £-2), but makes no attempt to explain why the Top-4 approach is selected. Whilst there 
is presentation of sensitivity and PPV information in Figure 2E (which is assumed to be the 86 
experimentally validated splice-altering varians – this isn’t declared in the figure gene), a formal 
analysis of optimal thresholds could be performed using the Precision-Recall or Receiver 
Operator Curve. The authors already declare that PPV isn’t their primary objective, and they 
place more emphasis on sensitivity (lines 236-239), so why isn’t a Top-7 approach used with 97% 
sensitivity and ~25% PPV (Figure 2E)? In addition to comment #2, consideration of optimal 
thresholds for tissue-shared Vs tissue-specific mis-splicing events may be informative, and an 
interesting analysis to add here.  

 

Author’s Response 

We present our critical evaluation of precision-recall curves that provide rationale for our selection of 

the Top-4* (Figure 2B, and Figure S1C,E and F). The challenge of increasing sensitivity via consideration 

of e.g. Top-7* events relates to complexity for diagnostic pathology workforces. Acknowledging that 

application of PVS1 currently involves uninformed guesswork, informed consideration of 5 events (IR 

and Top-4) is feasible – with consideration of every additional event creating further interpretative 

complexity.   

5. The interpretative rules for SpliceAI require greater explanation in the text section of the 
methods. While figure 1 and explanation in the results section enables greater clarity, the 
methods are not clear as a standalone piece of text. Some explicit justifications for the use of 
0.05 thresholds are also required.  

 

Author’s Response 

We had originally taken an agnostic approach analysing all SAI delta scores. We thought use of the 

author’s high sensitivity and high specificity thresholds may be more useful for our readership.  

However, we inherently agree with this comment and therefore present our precision-recall analyses of 

all returned SAI delta scores, excluding only those < 0.001 as effectively neutral impact (Figure 2B, and 
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Figure S1C,E and F).  This was requisite, in order to create an interpretable number of -scores for 

statistical and graphical analysis (2,836/1,720,000 of delta score returned).  We bias sensitivity and 

specificity toward SAI by considering only the 86/88 variants SAI could assess, and removing all 

‘uninterpretable’ delta scores.  We have improved clarity in precisely how we adapted and evaluated SAI 

delta scores in Methods and Results text. 

 

6. There are two fairly recent algorithms that the authors should also consider in their comparative 
analysis (CADD-Splice, https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-
021-00835-9 & SQUIRLS, https://www.cell.com/ajhg/pdfExtended/S0002-9297(21)00238-X).  

 

Author’s Response 

Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 

to MMSplice within this manuscript that seeks to validate the diagnostic and predictive accuracy of the 

300K-RNA Top 4 approach.   

7. The authors note that over half of the variants included two or more mis-splicing events (line 
87). This is an interesting observation which would benefit from further elaboration and 
discussion. Can the authors demonstrate the relative dosage of each aberrant junction to the 
canonical junction? How does the relative dosage of the mis-splicing events impact the accuracy 
of the algorithms to predict multiple mis-splicing events? E.g. Rowlands et al 
(https://doi.org/10.1016/j.ajhg.2021.12.014) describe a normalized read count applied during 
the Cummings et al pipeline (10.1126/scitranslmed.aal5209) to rank mis-splicing events. Recent 
updates to ACMG guidelines have suggested that partial impacts are an important aspect of 
variant interpretation (https://doi.org/10.1101/2021.12.28.21267792), and the authors have an 
opportunity to quantify these important observations in over 40 cases and to put this in greater 
context with the existing literature around variant interpretation.  

 

Author’s Response 

We agree that determination of partial mis-splicing from a hypomorphic allele is important for variant 

interpretation – with interpretive parallels to somatic mosaic variants in rare disorders and minor allele 

frequencies of ‘second hits’ in cancer predisposition genes associated with tumorigenesis.   

In our experience (Bournazos et al., 2022)2, quantitation of mis-spliced transcripts is not as clinically 

useful as the determining levels of residual canonical splicing. In our cohort of 88 variants evaluated in 

this manuscript; 39/88 variants resulted in mis-spliced transcripts targeted by NMD and a further 25/88 

variants that produced a mix of in-frame and frameshift variants targeted by NMD. Furthermore, 20 

https://protect-au.mimecast.com/s/UZvZC4QOPEiBv6vLnfMwzaz?domain=genomemedicine.biomedcentral.com
https://protect-au.mimecast.com/s/UZvZC4QOPEiBv6vLnfMwzaz?domain=genomemedicine.biomedcentral.com
https://protect-au.mimecast.com/s/ZtwJC5QPXJiZDRDqzuN9SJd?domain=cell.com
https://protect-au.mimecast.com/s/QDf3C6XQ4LfrBMBQgc2gALi?domain=doi.org
https://protect-au.mimecast.com/s/hXSxC71R2NTAJyJ30TACeXQ?domain=doi.org


 
 

 

20 
 

 

 

variants were associated with autosomal recessive disease in a context where NMD is acting on the 

allele in trans due to nonsense/splicing variation.  

 

With NMD acting with variable efficiency on transcripts encoding a premature termination codon, and 

no ability to comparatively measure rates of splicing reactions for canonical splicing versus variant-

associated mis-splicing events – this is a very complex problem.  Though an area of great interest to the 

authors, this issue lies outside the framework of this manuscript. To at least partly redress this 

important comment, we detail information of complete versus partial mis-splicing for 41 variants for 

which this evidence was obtainable in Table S1.  

8. Figure 4 suggests use of PVS1 ACMG codes in the context of the presented evidence. Whilst this 
is a natural and relevant extension of the presented work, I would suggest that these 
recommendations are more relevant for incorporation through ongoing work in the ClinGen 
community. This will enable wider panels of experts to evaluate and comment on guidance 
before it is made available in literature, and to link these seamlessly with other updates to 
guidance on PVS1 for splicing variants, which can result in rapid uptake of guidance across 
diagnostic genomic centres: https://clinicalgenome.org/working-groups/sequence-variant-
interpretation/. 

 

Author’s Response 

We agree.  Our Figure S5 draft guidelines have been renamed thus, further refined, and will be critically 

evaluated by: a) a multi-disciplinary group of > 150 genetic experts over 2022 (the Australasian 

Consortium for RNA Diagnostics, SpliceACORD), and b) in collaboration with the NIH Clinical Genome 

Resource (Cooper leads a “splicing variant sub-group” within her expert panels).  However, until 

Australian and International clinical guidelines are devised and endorsed - it is important in the 

meanwhile to provide clinical workforces, who may wish to use the predictive , evidence-based insight 

garnered via SpliceVault and 300K-RNA, with a framework evaluated by expert users that guides 

potential use of this novel approach in a clinical setting.  SpliceVault and 300K-RNA is transformative for 

interpretation of splicing variants.  It does not yet mitigate all caveats, but it is vastly better than 

guesswork.  

Reviewer #3: 

1. The paper should provide estimates of how frequently essential splicing variants do not result in 
IR, PTC or frameshift. Unless this represents a substantial fraction of essential splicing variants, 
the need for a new guideline is not so impactful. It may well be large, but this number is lacking.  

 

Author’s Response 

https://protect-au.mimecast.com/s/FeeLC91WPRTkpxpo6hqd0dH?domain=clinicalgenome.org
https://protect-au.mimecast.com/s/FeeLC91WPRTkpxpo6hqd0dH?domain=clinicalgenome.org
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We agree.  We collate experimentally determine outcomes from ES variants (and all variants) in three 

variant cohorts: 1) our 88 variants; 2) 61 variants studied in patient specimens curated from the 

literature; and 3) 63 variants studied through midi-gene assays (scrutinized to ensure technical design 

permitted detection of multi-exon skipping events).  All variants, references and published splicing 

outcomes detected are detailed in Table S1. Figure S3E shows, 27/55 (49%) essential splice site variants 

across the three variant sets resulted in at least one in-frame event, 45/88 (51%) variants from our 

cohort resulted in at least one in-frame event.  

2. Assuming this fraction is indeed substantial, the authors should then provide estimates as to 
how frequent it is that the proposed very strong evidence criteria does not apply (i.e. that not all 
300 K- RNA top-4 result in IR, PTC or frameshift). Introducing the new guideline is relevant only if 
this fraction is substantial. Here too, the fraction may well be large, but this number is lacking. 

 

Author’s Response 

This is another good point and the fraction is large @ 50% and now shown in Figure S3.  Many 

challenges associated with application of PVS1 are mitigated by an accurate, evidence-based method to 

predict the probable nature of mis-splicing, to improve our ability to cater for the: 

- ~50% splicing variants that induce more than one mis-splicing outcome;  
- ~30% splicing variants that activate one or more cryptic splice-sites;  
- ~50% splicing variants that induce one-or-more in-frame events.  
-  

We tried to align our draft guidelines in Figure S5 very closely with efforts made in 3 to provide greater 

flexibility in PVS1 to cater for the complexity of splicing variants, by including joint consideration of 

rationale underpinning null outcomes, and PM4 (change in protein length) - to cater for in-frame events 

or truncating variants predicted to evade NMD. Importantly, Figure S3 shows that our rubric will allow 

application of PVS1 for ~50% of ES variants (considering IR and Top-4*, max two in-frame events).  We 

feel this provides a good balance, informed by evidence, not so conservative that the clinical utility of 

PVS1 is compromised by consideration of 5 events, though appropriately reduces level of 

confidence/evidence for variants likely to induce in-frame or truncating events. We suspect that once 

our Top-4* ranking method is disseminated, worldwide research efforts will innovate advances to 

improve predictive accuracy.  Simple steps like deeper sequencing of human tissues, use of 

cycloheximide to protect events being degraded by NMD, improved methods to assess and quantify 

intron retention – are very likely to iteratively improve the predictive accuracy of this approach. 

3. The analysis focuses on sensitivity alone using a benchmark dataset consisting of pathogenic 
variants only. Pathogenic variants are biased for variants resulting in loss-of-function splice 
isoforms. While sensitivity may matter most, the study needs to also assess a substantial set of 
splice variants that do not resolve in loss-function isoforms to justify the utility of the tool and 
demonstrate that those would be often appropriately discarded.  
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Author’s Response 

Our evidence refutes this assumption.  Our ClinVar extraction from 2020 (n = 759,924 variants) shows 

that splicing variants account for 15% of LP/P variants, 22% of LB/B variants, and 7% of VUS.  Many 

splicing variants are either non detected, or are detected and ignored or not reported due to complexity 

with interpretation.   

 

Specifically, ~50% variants in our cohort, and ~50% variants in the two additional cohorts collated in this 

revision for additional validation, produce at least one transcript with an in-frame event or PTC 

predicted to evade NMD resulting in a truncated protein isoform.  Further, in some disorders, ‘loss-of-

function’ is clinically inferred for use of the PVS1 criterion only with in-frame consequences and 

probable expression of a dominant-negative mutant (e.g. filamentous proteins like actin, tubulin, 

myosin, collagen).  For example the MYH7 c.5655+4A>T variant causes in-frame exon skipping consistent 

with an autosomal dominant pathogenic mechanism in MYH7 myopathy; or the COL4A3 c.2881+1G>A 

variant consistent with an autosomal dominant pathogenetic mechanism in Alport Syndrome. Both 

MYH7 and COL4A3 have gnomAD pLI scores of 0 consistent with loss of function tolerance. Variants 

details and splicing outcomes are listed in Supplementary Table S1 

4. The authors should discuss whether, according to their guidelines, very strong predictions would 
not need an RNA-seq or RT-PCR validation anyways. If so, then the added value is limited.  
 

Author’s Response 

We agree this is very important.  Over 2022, the authors are leading a consultative process akin to that 

described in 3 to: 1) Clinically evaluate and refine the Draft Guidelines in Figure S5 and 2) Devise a 

diagnostic algorithm for clinical application of PVS1, PM4,  PP3 or BP4 criteria, OR, clinical 

recommendation of RNA Diagnostic testing.  This very large body of consultative research falls outside 

the scope of this manuscript.  One may further acknowledge that it is not appropriate to seek or obtain 

clinical endorsement of an unpublished methodology not yet subject to the rigour of peer review.   

5. Fig 2A-C. There are striking mismatches between the reported numbers used to compute 
sensitivity and PPV, and the actual number of points displayed on the figure. An obvious 
example is the number “5” below cutoff for SpliceAi in Fig 2A. That is pervasive (are there 128 
data points not seen in RNA studies and below cutoff for top-K RNA in Fig 2A?). There are 
probably reasons for this, e.g. what is plotted are splice-site levels scores, and what is counted 
are splicing events but this should be explained. I would suggest to show on the plot what is 
actually counted and to provide a clear rationale about how “things” are counted for each 
method. The same “philosophy” should be applied to each method.  
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Author’s Response 

Emended.  Figure 2C-D shows all events seen in RNA studies: those with a SAI -score > 0.001 are shown 

in red, occasional events seen in RNA studies with -score < 0.001 are shown in black. Now false-

negatives (FN) numbers annotated align with the number of dots.  

6. Fig 2A is based on fixed cutoffs. Instead, precision-recall curves should be shown. This is a major 
concern because the authors have adjusted the cutoff of their method to increase sensitivity but 
did not investigate changes of cutoff of other methods. The authors argue that sensitivity 
matters and should make use of the precision-recall curve to compare the performance of all 
tools at same recall (i.e. sensitivity).  
 

Author’s Response 

We agree and this point was raised by all reviewers.  Comprehensive assessment of precision-recall 

curves for 300K-RNA and SAI are shown in Figure 2B, and S1B, E-F. 

7. it is incorrect to state that “All approaches have limited or no ability to predict intron retention”. 
The MMSplice software can be used to predict splicing efficiency which models intron retention. 
This should be tried. 
 

Author’s Response 

We agree and removed this sentence from discussion.  For simplicity and clarity, we focus intently upon 

additional validation of the sensitivity and positive predictive value of 300K-RNA Top-4* evidence-based 

approach.  We elect to maintain comparison with deep learning Splice AI, as it can be adapted to predict 

both exon-skipping and cryptic splice-site activation.  

8. It is excessive to state “Whereas SpliceAI predicted only a single mis-splicing event for 17/20 
variants”. It would be more appropriate to state that the algorithm the authors proposed on top 
of SpliceAI “predicted only a single mis-splicing event….”. Technically, SpliceAI outputs scores for 
creation or loss of splice sites. One could propose several ways of predicting isoform outcomes 
from these scores. Here, the authors propose a greedy approach considering every site with 
score>0.2 to be used. It is not expected that the authors over-engineer a method on top of 
SpliceAI. However, since they value sensitivity so high, they should use SpliceAI in a way that 
maximizes the number of isoform predictions. For instance, one could consider drawing 
independently sites using the Splice scores and obtaining thereby a distribution of isoforms from 
which one could retain the most probable ones. This would be more comparable to the “top-4” 
approach proposed by the authors. 
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Author’s Response 

See response to R2 Q5.  We now employ an exclusion threshold of 0.001, which was essential to remove 

99% of the >1.7 million scores returned scanning +/- 5000 nt of the 86/88 variants able to assessed by 

Splice AI, in order to generate informative predictions and statistical metrics.  

To clarify, our method enables SpliceAI to make multiple predictions via an analogous Top-4 approach.  

Splice AI often predicts activation of multiple cryptic splice-sites (Figure S1A).    

We transparently declare the rules we apply are a customised interpretation of SpliceAI output. 

9. 300K Top-4 relies on a genome annotation but no detail is given about this. The choice of the 
genome annotation could be critical. If the genome annotation of splice isoforms is too 
stringent, say, limited to a single major isoform per gene, then the most frequent non-annotated 
isoform (top-1) could often be a genuine, biologically functional splice isoform. At the other 
extreme, if the genome annotation is too inclusive then it can contain rare, non-functional splice 
isoforms, exactly those one would instead like to retain. On what basis did the authors decide 
which isoforms were “annotated”? Some assessment would be insightful. 
 

Author’s Response 

This is an important point.  Unfortunately, there is no national or international consensus of the 

transcript to be used for diagnostic reporting for each gene and condition – acknowledging different 

conditions can be associated with different transcripts arising from the same gene.  Each diagnostic 

laboratory has their own reference list of transcript numbers they use for diagnostic reporting.   

 

To cater for this complexity, 300K-RNA enables users to select the annotated transcript. All unannotated 

exon-skipping and cryptic-activation events, relative to this transcript, are returned in the Table.  

We additionally specify within SpliceVault output when any of the top-ranked events are annotated 

events in alternate transcripts. It is important these annotated splicing events are encompassed within 

SpliceVault 300K-RNA output, so that clinical users can assess the likely pathogenicity of predominant or 

enhanced expression of an alternate annotated isoform.   

 

Minor points 

10. Line 50, the observation that aberrant splicing junctions are typically detected at weak levels in 
other samples was already reported by Kremer et al., Nat commun, 2017, with a quantification 
of the prevalence of this phenomenon consistent with the much more extensive and recent 
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analyses by Dawes et al., 2021. Also, Kremer et al. also formulated the hypothesis of the present 
study described l. 64-66. This prior work should be cited in this respect. 
 

Author’s Response 

This insight has been added and cited within our introduction. See lines 50-55. 

11. Figure 2 is entitled “Accuracy” but what is assessed is sensitivity. 
 

Author’s Response 

Emended. 

12. Designing targeted RT-PCR follow-ups guided by the predictions have moderate value as they 
require specific primer designs and are blind to not-predicted isoforms. Would not the authors 
suggest RNA-seq, potentially with cycloheximide, in any case? This should be discussed. 
 

Author’s Response 

Cycloheximide treatment was performed for all re-analysed variants, however no additional isoforms 

were detected. Mis-spliced GSDME and OPHN1 transcripts were not compliant with NMD and OPHN1 

expression was too low in blood for RNA-seq analysis for agnostic interrogation. RNA sequencing was 

performed for the SPG11 c.2317-13C>G variant, with expression levels insufficient to detect the double 

exon-skipping identified by RT-PCR (Bournazos et al., 2022)2. For EMD, patient fibroblast-derived RNA is 

currently being used to compare long-read transcriptomics versus targeted sequencing of RT-PCR 

amplicons, plus and minus cycloheximide, and is part of a larger clinical evaluation of the diagnostic 

utility of long-read sequencing for RNA and DNA diagnostics.   

1. Wilks, C. et al. recount3: summaries and queries for large-scale RNA-seq expression and splicing. 

bioRxiv 2021.05.21.445138 (2021) doi:10.1101/2021.05.21.445138. 

2. Bournazos, A. M. et al. Standardized practices for RNA diagnostics using clinically accessible 

specimens reclassifies 75% of putative splicing variants. Genetics in Medicine (2021) 

doi:10.1016/j.gim.2021.09.001. 

3. Abou Tayoun, A. N. et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP 

variant criterion. Hum Mutat 39, 1517–1524 (2018). 
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Decision Letter, Appeal   
19th Apr 2022 

 

Dear Dr. Cooper, 

 

Thank you for your message of 19th Apr 2022, asking us to reconsider our decision on your 

manuscript "SpliceVault: predicting the precise nature of variant-associated mis-splicing.". I have now 

discussed the points of your letter with my colleagues, and while we are not sure that the reviewers 

will be fully satisfied with these efforts, we are willing to send the revised manuscript back to 

reviewers for comment. 

 

When preparing a revision, please ensure that it fully complies with our editorial requirements for 

format and style; details can be found in the Guide to Authors on our website 

(http://www.nature.com/ng/). 

 

Please be sure that your manuscript is accompanied by a separate letter detailing the changes you 

have made and your response to the points raised. At this stage we will need you to upload: 

 

1) a copy of the manuscript in MS Word .docx format. 

 

**2) The Editorial Policy Checklist: 

https://www.nature.com/documents/nr-editorial-policy-checklist.pdf 

[THIS CURRENTLY IS MISSING] 

 

**3) The Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

(Here you can read about the role of the Reporting Summary in reproducible science: 

https://www.nature.com/news/announcement-towards-greater-reproducibility-for-life-sciences-

research-in-nature-1.22062 ) 

[THIS CURRENTLY IS MISSING] 

 

Please use the link below to be taken directly to the site and view and revise your manuscript: 

 

[redacted] 

 

 

With kind wishes, 

 

Catherine 

 

--- 

 

Catherine Potenski, PhD 

Chief Editor 

Nature Genetics 

1 NY Plaza, 47th Fl. 
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New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 
 

Author Rebuttal to Initial comments   

 

Reviewer Comments: 
 
Author’s Response to all reviewers: 
 
All reviewers acknowledged the clinical importance and our discovery and offered several constructive 
suggestions how we could improve evidence supporting the rigour and robustness of the 300K-RNA Top 
4 method.    All three reviewers unanimously highlighted; 1) precision-recall analyses, 2) evidence for 
concordance among the ranking of unannotated splicing events between tissues and sources, and 3) 
additional validation and identification of sources of bias; as suggested areas for improvement.  
 
Thus, we now include additional Figures and Supplemental Figures: 

9. Precision-recall analyses 
10. Updated SpliceVault and 300K-RNA source data to utilise RNA-Seq splice-junction data processed 

using the unified Monorail pipeline.  
11. Updated the SpliceVault portal to enable users the flexibility to access ranked, unannotated 

splicing events within different tissue specimen subtypes within GTEx.   
12. Further validation of the Top-4 method using two additional, independent cohorts of clinical 

variants curated from literature (61 variants studied in patient specimens and 63 variants studied 
through midi-gene assays). 

13. Concordance analyses of the ranking of unannotated splicing events for the 88 splice-sites 
affected by our cohort of 88 splice-altering clinical variants, and for all unannotated splicing 
events detected for 98,810 annotated splice-sites across 3,668 clinically relevant Mendelian 
disease genes (the Mendeliome) – between different biospecimen subtypes within GTEx, and, 
between GTEx and SRA datasets.  

14. For 19/88 variants associated with muscle disorders and where RNA testing was performed using 
muscle, we showed that GTEx Muscle Top-4* (n = 881 muscle samples) results in lower sensitivity 
and PPV than using 300K-RNA Top-4* (though discuss that higher sequencing depth of human 
tissues may ultimately result in improved accuracy). 

15. Conducted deep analysis of features that help to discriminate ‘true-positive’ from ‘false-positive’ 
events to inform prospective improvement of the ranking method. 

16. Quantified that ~50% of essential splice site variants are associated with one or more in-frame 
event (across all three validation cohorts) – confirming the clinical importance of using SpliceVault 
to accurately consider the probable nature of variant-associated mis-splicing for informed use of 
PVS1, PM4 and PP3 criteria of the ACMG-AMP guidelines. 
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With a large body of additional data, though we conducted side-by-side comparative analyses with 
MMSplice and SPANR as recommended, it became very cumbersome to include and discuss 
comparisons for multiple algorithms.  As an additional note to R3, CADD-Splice does not use an 
independent algorithmic approach, rather, it integrates SpliceAI and MMSplice along with other 
features.   
 
As this manuscript that seeks to validate the diagnostic utility and predictive accuracy of the 300K-RNA 
Top-4 approach, we remove all comparative reference to MMSplice and SPANR.  We maintain 
comparative evaluation between 300K-RNA and Splice AI, due to their mutual ability to predict both 
cryptic activation and exon skipping to enable precision-recall analyses.  We also feel the comparison of 
an evidence-based approach with a sophisticated, deep learning approach, is of broad general interest 
to the Nature Genetics readership. Our point-by-point rebuttal to your comments follows below.  We 
are very appreciative of the constructive suggestions offered, which have improved the body of 
evidence supporting the rigour and accuracy of our Top-4* method. 
 
Reviewer #1: 

13.  Some sentence in the abstract is very unfriendly to readers without background knowledge. For 
instance, Line 16-17, ‘In comparison, applying interpretative rules to SpliceAI D-scores correctly 
identifies 55% of …’. It will make people confused about what’s the SpliceAI and what’s the 
delta-scores? In addition, the authors did comparisons between 300K-RNA Top4 and SpliceAI 
and MMSplice. It would be rather weird to only mention SpliceAI in the abstract but did not 
mention MMSplice at all.  

 
Author’s Response 
We have edited the abstract to be friendlier to readers not familiar with the terminology of SpliceAI 
scores, simply saying “300K-RNA showed higher sensitivity and positive predictive value than SpliceAI in 
predicting exon-skipping and cryptic-activation events”.   
 
Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 
to MMSplice within this manuscript.   
 

14. The author analyzed 86 variants across 72 genes to demonstrate the capacity of 300K-RNA Top4 
for the identification of variant-induced Mis-splicing events. They should give a clear explanation 
about how they selected these variants. Do they include all current experimentally confirmed, 
splicing-related genetic variants? The author should provide a table to show details of these 
variants and genes. In addition, the author classified these variants into different categories (Fig. 
1A), what’s the purpose of this analysis? Is there any expectation that variants from different 
categories show different validation rates by 300K-RNA Top 4?  

 
Author’s Response 
Ascertainment criteria are clearly defined in the first paragraph of results (see manuscript text lines 87-
90).  We add Table S1 that details all variants confirmed to disrupt splicing and the detected splicing 
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outcomes. The purpose of Figure 1A is to show that our cohort of 88 variants encompasses a wide range 
of disorders with different tissue-specific or multi-system involvement. 
 

15. The largest limitation of 300K-RNA Top4 is that the positive predictive value (PPV) is very low 
compared to other methods, which means FDR is very high in the other words. For instance, the 
FDR of exon skipping prediction by 300K-RNA is 67%. The author also claimed that ‘300K-RNA 
Top4 outperforms SpliceAI (and MMSplice)’ in Line 232. Based on Fig. 2E, under similar 
PPV/FDR, for instance (69% for 300K-RNA, 65% for SpliceAI), sensitivity/recall of two methods 
(50% and 59% respectively) are very close and 300K-RNA performs even slightly worse than 
SpliceAI. A fair comparison should use the receiver operating characteristic (ROC) curve or 
precision-recall curve to calculate the area under the curve (AUC). 

 
Author’s Response 

We agree.  New Figure 2B shows precision-recall curves for 300K-RNA and SpliceAI at -score thresholds 
that offer the same, total number of predictions as offered by 300K-RNA at each rank cut-off – such that 
true/false positive rates can be compared.  This demonstrates 300K-RNA has higher sensitivity and 
comparable positive predictive value at every cut-off except 300K-RNA top-1, where the scores are 
similar. Further analyses of precision and recall are provided in Figures 2C, 2D, S1C, S1E, S1F, S4E. 
 

16. As the precision of 300K-RNA Top 4 is relatively low, even only using the Top 1 splicing events, 
40% of the prediction could be false positives, the author should provide a deeper investigation 
regarding what’s the difference between those ‘Seen in RNA studies’ and those not. For 
instance, do those skipped exons Seen in RNA studies are shorter than those not? Do these 
events have relative stronger/weaker splicing strength? Are they more GC/AT enriched et al?  

 
Author’s Response 
We conducted evaluation of Top-4* true/false positives in new Figures S1B and S2A-D and manuscript 
commentary in Lines 164 – 168 and 175 – 184.  RNA re-analyses detecting Top-4 events suggest 
precision may be a little higher than we currently report.  We determined in Figure S2 that true positives 
tend to be associated with: 
- Higher sample count i.e. seeing an event in more samples.  We don’t wish to over emphasize this 

point, given so many variant-activated events are only seen in a few samples. 
- Double-exon skipping is substantially less likely to occur than single exon skipping. 
- Double versus single exon skipping is not related to the overall length (in nt) of the excised region 

(or exon length, not shown). 
- We do not compare or present analyses of splice-site strength or use of GC/AT enrichment among 

unannotated splicing events as this was investigated in detail in Dawes et al. 2022 NCOMMS21-
28137 (proofs returned to NCOMMS. Online publication imminent).   

 
17. The authors showed the performance on Mis-splicing prediction with three methods, 

respectively. What’s the overlap between each other? What’re the characteristics of the events 
that could be identified by all three methods or could only be identified by each of them?  
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Author’s Response 
Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 
to additional algorithms.  We agree this is an interesting question and feel comparative evaluation of 
multiple contemporary splicing prediction tools warrants investigation as an entire publication in its own 
right.  Our focus here is the diagnostic utility and predictive accuracy of the 300K-RNA Top-4 evidence-
based approach.   
 

18. In Line 153, the author claimed that intron retention cannot be predicted by 300K-RNA. It’s not 
correct as there are no significant differences between the detection of intron retention and 
other types of splicing events from RNA-seq data. Theoretically, detection of reads spanning 
across the exon-intron boundary, if it’s not easier, it’s quite similar to the detection of splicing 
junctions spanning two exons. Almost all well-known computational tools for splicing analysis 
based on RNA-seq data have the capacity of intron retention identification, such as MISO (Katz, 
Yarden, et a. 2010), rMATS (Shen, Shihao, et al.2014), and PSI-Sigma (Lin, Kuan-Ting, and Adrian 
R. Krainer. 2019). Moreover, some tools specifically for the detection of intron retention have 
also been developed, for instance, IRFinder (Wong, Justin J-L., et al. 2013). As 20% of the Mis-
splicing events induced by the 86 variants are intron retention, which is not a negligible 
proportion. The author should 
characterize the intron retention events, at least for these 29 events (Line 89), in RNA-seq 
samples with a relatively large sample size to get robust Top-ranked events.  

 
Author’s Response 
300K-RNA is a database of detected splice-junctions from split-reads in RNA-seq data.  Intron retention 
is inferred by non-split reads spanning the exon-intron boundary; absence of a splice-junction cannot be 
calculated from the 300K-RNA data sources. Quantification of intron retention is confounded by the 
presence of non-split reads corresponding to pre-mRNA and splicing intermediates.  We suspect intron 
retention quantification may differ between RNA-Seq data derived using ribosomal depleted total RNA 
versus polyA depletion, because:  
a) transcripts with retained introns can be non-adenylated and retained in the nucleus 
b) introns can be long.  Transcripts with retained introns can be particularly impacted by 3’bias 
associated with PolyA enrichment protocols.  
 
Thus, herein we recommend pathology consideration of intron retention in addition to Top-4.  But we 
do not advise or recommend how it may be used in a Top-4 style ranking method to predict the nature 
of probable mis-splicing. 
 

19. The authors analyzed 335,301RNA-seq samples from GTEx and SRA. They should clarify if any 
batch effect correction should be considered? They should also include an ablation study to 
show the robustness of those top-ranked splicing events. For instance, using 5K, 10K,50K, 100K, 
and 300K samples, what’s the overlap of the top identified unannotated splicing events. 
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Especially, for the 147 variants induced Mis-splicing events, what’s the PPV and sensitivity if only 
using 10K, 50K, 100K samples? 

 
Author’s Response 
We adapted SpliceVault to source data processed using the monorail approach of Wilks et al.1  Inherent 
robustness and reproducibility of the 300K-RNA Top-4* method is shown by highly similar statistical 
metrics using both sets of source data.  We further conducted correlative analyses of the ranking of 
unannotated splicing events around: i) the 88 splice sites impacted by our cohort of variants (Figure 3A-
B) and ii) 98,810 annotated splice-sites in 3,668 clinically relevant Mendelian disease genes (the 
Mendeliome) (Figure S4A-B), comparing: 

3) biospecimen subtypes within GTEx  
4) GTEx and SRA datasets 

including overall correlation of sample counts for each unannotated splicing event.  

 

- We confirm the number of mis-splicing events detected in each individual tissue in GTEx is 
correlated with the number of samples present for that tissue (Figure S4D). 

- We show the overlap of the top-4 300K-RNA events with the top-4 events present in four clinically 
accessible tissues in GTEx (Figure 3D) 

- We show that using GTEx muscle Top-4 shows lower sensitivity than using 300K-RNA Top-4 for 
19 variants associated with muscle disorders where RNA testing was conducted using muscle 
RNA (Figure S4E). 

 

However, our overall opinion is the best predictive accuracy of a ranking approach may be garnered via a 
balance of breadth and depth i.e. high sequencing read depth of a reasonable number of specimens (e.g. 
hundreds but not thousands).  We are keenly investigating this, as well as potential benefits of using 
human primary cell lines treated with cycloheximide to inhibit NMD, which may influence event ranking. 

 
20. As the key finding of this study, is that 300K-RNA Top 4 could accurately predict 90% of the 

variants-associated Mis-splicing events. Only using a single dataset (147 events) might be not 
sufficient to prove its true sensitivity. The author should either apply the analysis on another 
independent dataset (if it’s possible) or experimentally validate the predictions beyond the 86 
variants. For instance, they can use CRISPR to mutate several splice sites and check whether the 
mutation-induced splicing variants indeed could be identified by 300K-RNA Top4.  

 
Author’s Response 
We agree and conducted validation of the sensitivity and positive predictive value of 300K-RNA Top-4* 
predictions on two additional and independent datasets: 121 variants from published patient-derived 
RNA (n=58) and midi-gene (n=63) studies are also now included in Table S1.  We scrutinised the 
technical design of the midi-genes, to ensure multi-exon skipping and distal cryptics, if activated, could 
be detected.   Importantly, we obtained a similar average sensitivity of 92% and average PPV of 29%.  
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Minor Points 
21. Line 80, the authors mentioned that multiple experimental approaches have been performed to 

characterize aberrant splicing events arising from 86 genetic variants. It would be better to 
make a table to show how many of them were confirmed by each approach, including RT-PCR, 
RNA-seq, and/or minigene assay.  

 
Author’s Response 
We provide Table S1 that details all variants evaluated in this study, the experimental approaches used, 
RNA source and splicing outcomes. 
 

22. Line 84, ‘77 SNVs were included in the dataset’ is contradict to 78 SNVs (59 + 19) shown in 
Figure 1B. The author should clarify which number is correct. In addition, it’d be better to also 
show the relative position of “2 insertions, 5 deletions, and 2 deletion-insertion variants“ to the 
splice sites in the figure.  

 
Author’s Response 
Figure 1B has been corrected and now represents an updated list of experimentally-verified variants, 
details provided in Table S1. 
 

23. Line 223, the authors claimed that ‘no previous method can predict the nature of variant-
induced mis-splicing’. However, both SpliceAI and MMSplice are public methods. Did the 
authors want to conclude that the prediction from SpliceAI and MMSplice is not ‘the nature of 
variant-induced mis-splicing’? 

 
Author’s Response 
We have removed this sentence and reference to MMSplice.   
 

24. Since the authors performed RNA reanalysis for 4 cases, it would be interesting to characterize 
full-length of those mis-spliced transcripts using the third-generation sequencing technology. 
The results could be more convincing compared to bands in the gel which only amplified parts of 
the mis-spliced transcripts. 

 
Author’s Response 
We can only redress this comment by advising that we agree entirely - and are currently conducting a 
collaborative (via SpliceACORD) clinical evaluation trial of PCR followed by long-read sequencing of 
amplicons to see if it: 1) improves sequencing clarity of multi-template PCRs, which are inherent in a 
subject with a heterozygous splice-altering variant, and common for homozygous or hemizygous 
variants that elicit more than one mis-splicing outcome; 2) presents cost-savings over Sanger 
sequencing.   
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Reviewer #2: 
 

9. The data utilized to generate the 300K resource will be diverse, with a number of different 
tissues/cell-types/biosamples used and created through different wet laboratory and 
bioinformatics pipelines. The authors state that the ‘splice-junction read counts were 
summarised’ using a program called Datamash. I am not familiar with Datamash but believe it to 
be a simple command-line unix system programme capable of generating summary statistics. 
This is the extent of the description of data curation, but this is the most important part of the 
manuscript in my opinion. There is no explanation of the data curation and/or attempts to 
harmonize raw datasets through a single uniformed bioinformatics pipeline. Drawing analogies 
with human genomic resources, e.g. gnomAD (https://gnomad.broadinstitute.org/), the power 
of these databases lies to some extent in the unified data processing and analysis approaches 
applied to the data and to thereby identify and filter for artefactual 
findings. Such approaches for data harmonization will make the 300K resource more powerful, 
and whilst practically difficult, is to some extent why such a resource is yet to be realised. My 
suggestions are two-fold: (1) a summary of the different biosamples and wet laboratory 
approaches used in the analysis should be added; and (2) harmonization of the data through a 
single pipeline, e.g. the GTEx RNA-seq pipeline (https://github.com/broadinstitute/gtex-
pipeline) or a harmonised use of algorithms to statistically identify mis-spliced events from RNA-
seq, e.g. FRASER (https://www.nature.com/articles/s41467-020-20573-7) or DROP 
(https://www.nature.com/articles/s41596-020-00462-5). The authors should also expand their 
description of mis-splicing events to include quality metrics and appropriate thresholds (e.g. 
read depth, quality and mapping thresholds).  

 
Author’s Response 
We appreciate this constructive suggestion and contemporised SpliceVault to source data processed 
identically using the monorail processing pipeline1.  In line with suggestions by R1 and R2, we provide 
Table S1 that details all variants, the wet-lab approaches and the source of the RNA.  We have also 
provided improved clarity in Methods and Results regarding specific procedural steps to ascertain 
variants, rank the events etc.  See response to R1 Q7 regarding our extensive validation of method 
sensitivity and positive predictive value, which is not substantially influenced by RNA-Seq method or 
sample sub-type for exon-skipping and cryptic splice site junctional reads.  We do feel there will be 
influence of technical pipeline for quantification of intron retention – underpinning our decision to not 
comment at this early stage on use of IR non-split reads in our Top-4 ranking method for clinical use. 
 

10. In addition to comment #1, there is no attempt to sub-divide mis-splicing events in the 300K 
resource by biosample sources. Such an analysis could lead to interesting and important 
observations in the data, and contribute to how to expand the resource going forward, e.g. 

a. does the use of tissue-shared Vs tissue-specific mis-splicing events impact the accuracy 
of the Top-4 approach? 

https://protect-au.mimecast.com/s/I1IDCZY1Nqi5pxpOwhjxpLI?domain=gnomad.broadinstitute.org/
https://protect-au.mimecast.com/s/eKWsC1WLPxcM9O9v0upzZDY?domain=github.com
https://protect-au.mimecast.com/s/eKWsC1WLPxcM9O9v0upzZDY?domain=github.com
https://protect-au.mimecast.com/s/AktMC2xMQzip969n4t2vbS2?domain=nature.com
https://protect-au.mimecast.com/s/qjemC3QNPBipExELPtQ5N2N?domain=nature.com
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b. Do certain biosamples exhibit higher levels of mis-splicing than others? 
c. Is the expression of isoform X in tissue A associated with higher levels of mis-splicing 

than in isoform Y in tissue B?  
Whilst the composite resource presented here provides power by numbers, an analysis enabling the 
calculation of mis-splicing events by biosample type may enable further improvements to the algorithm 
and I think this is an area the authors should explore. 
 

11. In addition, the authors remark that their RNA analyses performed in blood and fibroblasts were 
informed by the diverse biosample resource, can the authors also comment on the suitability of 
their investigated genes in clinically accessible tissues? e.g. through isoform similarity evaluated 
through MAJIQ-CAT? (https://pubmed.ncbi.nlm.nih.gov/32225167/) can the authors comment 
on the utility of the 300K resource for genes that aren’t appropriate for surveillance from 
clinically accessible tissues?  

 
Author’s Response 
We have increased the functionality of the SpliceVault portal to enable users customized access to “all 
of 300K-RNA” or any one of the 56 specific specimen sub-types within the GTEx data source.   
 
a) Please see our response to R1 Q7, with respect to our comprehensive evaluation of concordance in 
ranked unannotated splice events between GTEx tissues, between GTEx and SRA, for both our cohort of 
88 splice-sites and across the Mendeliome.  We showed the same concordance across every annotated 
human splice site, though felt with our clinical focus the Mendeliome was more relevant.   
 
Figure S4 provides precision-recall analyses showing 300K-RNA Top-4* outperforms GTEx Skeletal 
muscle Top-4* versus for 19 variants subject to RNA testing of muscle.  However, we feel that tissue-
specific SpliceVault databases that encompasses deeper sequencing of tissue specimens from individuals 
of different ages could improve predictive accuracy.  We are currently pursuing this hypothesis for 
blood, fibroblasts and muscle that we are studying in our clinical program of RNA Diagnostics (typically 
conducting ~150 million read depth +/- cycloheximide to inhibit NMD for primary cells, as compared to 
20 million read depth for GTEx specimens).   
 
b) The number of mis-splicing events detected correlates strongly with the number of samples present 
in GTEx for each biosample type (Figure S4D).  Testis are a notable outlier – well known to have ‘leaky’ 
higher expression of many genes that show tissue-restricted expression. 
 
c) Unfortunately, this important point requires long-read RNA sequencing from a clinical cohort of 
affected individuals with splice-altering variants, compared to controls or disease controls. This is a 
current area of our investigation, though falls outside the scope of this manuscript. 
 
Q3) For RNA diagnostic testing performed in our laboratory, review of alternative splicing patterns in the 
target gene was performed using GTEx RNA-seq data derived from clinically accessible tissues and 
manifesting tissues to establish that testing in clinically accessible tissues was appropriate (see 

https://pubmed.ncbi.nlm.nih.gov/32225167/
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Bournazos et al., 2022)2. In regards to the suitability of 300K-RNA resource for genes not expressed in 
clinically relevant tissues, See lines 216-220: “Therefore, we recommend use of 300K-RNA Top-4* as 
prediction of the probable nature of variant associated mis-splicing until we have great enough breadth 
and/or depth of RNA-Seq data to evaluate a tissue-specific approach. We advise caution for genes with 
known tissue-specific or developmental alternative splicing, where RNA-Seq from the relevant tissue is 
not represented, or poorly represented, within 300K-RNA data sources.” 
 
 

12. The 300K manuscript uses specific thresholds for each of the approaches for prioritization (Top-
4, 0.05, £-2), but makes no attempt to explain why the Top-4 approach is selected. Whilst there 
is presentation of sensitivity and PPV information in Figure 2E (which is assumed to be the 86 
experimentally validated splice-altering varians – this isn’t declared in the figure gene), a formal 
analysis of optimal thresholds could be performed using the Precision-Recall or Receiver 
Operator Curve. The authors already declare that PPV isn’t their primary objective, and they 
place more emphasis on sensitivity (lines 236-239), so why isn’t a Top-7 approach used with 97% 
sensitivity and ~25% PPV (Figure 2E)? In addition to comment #2, consideration of optimal 
thresholds for tissue-shared Vs tissue-specific mis-splicing events may be informative, and an 
interesting analysis to add here.  

 
Author’s Response 
We present our critical evaluation of precision-recall curves that provide rationale for our selection of 
the Top-4* (Figure 2B, and Figure S1C,E and F). The challenge of increasing sensitivity via consideration 
of e.g. Top-7* events relates to complexity for diagnostic pathology workforces. Acknowledging that 
application of PVS1 currently involves uninformed guesswork, informed consideration of 5 events (IR 
and Top-4) is feasible – with consideration of every additional event creating further interpretative 
complexity.   
 

13. The interpretative rules for SpliceAI require greater explanation in the text section of the 
methods. While figure 1 and explanation in the results section enables greater clarity, the 
methods are not clear as a standalone piece of text. Some explicit justifications for the use of 
0.05 thresholds are also required.  

 
Author’s Response 
We had originally taken an agnostic approach analysing all SAI delta scores. We thought use of the 
author’s high sensitivity and high specificity thresholds may be more useful for our readership.  
However, we inherently agree with this comment and therefore present our precision-recall analyses of 
all returned SAI delta scores, excluding only those < 0.001 as effectively neutral impact (Figure 2B, and 

Figure S1C,E and F).  This was requisite, in order to create an interpretable number of -scores for 
statistical and graphical analysis (2,836/1,720,000 of delta score returned).  We bias sensitivity and 
specificity toward SAI by considering only the 86/88 variants SAI could assess, and removing all 
‘uninterpretable’ delta scores.  We have improved clarity in precisely how we adapted and evaluated SAI 
delta scores in Methods and Results text. 
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14. There are two fairly recent algorithms that the authors should also consider in their comparative 

analysis (CADD-Splice, https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-
021-00835-9 & SQUIRLS, https://www.cell.com/ajhg/pdfExtended/S0002-9297(21)00238-X).  

 
Author’s Response 
Please see “Response to all Reviewers” above for an explanation of our reasoning to remove reference 
to MMSplice within this manuscript that seeks to validate the diagnostic and predictive accuracy of the 
300K-RNA Top 4 approach.   
 

15. The authors note that over half of the variants included two or more mis-splicing events (line 
87). This is an interesting observation which would benefit from further elaboration and 
discussion. Can the authors demonstrate the relative dosage of each aberrant junction to the 
canonical junction? How does the relative dosage of the mis-splicing events impact the accuracy 
of the algorithms to predict multiple mis-splicing events? E.g. Rowlands et al 
(https://doi.org/10.1016/j.ajhg.2021.12.014) describe a normalized read count applied during 
the Cummings et al pipeline (10.1126/scitranslmed.aal5209) to rank mis-splicing events. Recent 
updates to ACMG guidelines have suggested that partial impacts are an important aspect of 
variant interpretation (https://doi.org/10.1101/2021.12.28.21267792), and the authors have an 
opportunity to quantify these important observations in over 40 cases and to put this in greater 
context with the existing literature around variant interpretation.  

 
Author’s Response 
We agree that determination of partial mis-splicing from a hypomorphic allele is important for variant 
interpretation – with interpretive parallels to somatic mosaic variants in rare disorders and minor allele 
frequencies of ‘second hits’ in cancer predisposition genes associated with tumorigenesis.   
 
In our experience (Bournazos et al., 2022)2, quantitation of mis-spliced transcripts is not as clinically 
useful as the determining levels of residual canonical splicing. In our cohort of 88 variants evaluated in 
this manuscript; 39/88 variants resulted in mis-spliced transcripts targeted by NMD and a further 25/88 
variants that produced a mix of in-frame and frameshift variants targeted by NMD. Furthermore, 20 
variants were associated with autosomal recessive disease in a context where NMD is acting on the 
allele in trans due to nonsense/splicing variation.  
 
With NMD acting with variable efficiency on transcripts encoding a premature termination codon, and 
no ability to comparatively measure rates of splicing reactions for canonical splicing versus variant-
associated mis-splicing events – this is a very complex problem.  Though an area of great interest to the 
authors, this issue lies outside the framework of this manuscript. To at least partly redress this 
important comment, we detail information of complete versus partial mis-splicing for 41 variants for 
which this evidence was obtainable in Table S1.  
 

https://protect-au.mimecast.com/s/UZvZC4QOPEiBv6vLnfMwzaz?domain=genomemedicine.biomedcentral.com
https://protect-au.mimecast.com/s/UZvZC4QOPEiBv6vLnfMwzaz?domain=genomemedicine.biomedcentral.com
https://protect-au.mimecast.com/s/ZtwJC5QPXJiZDRDqzuN9SJd?domain=cell.com
https://protect-au.mimecast.com/s/QDf3C6XQ4LfrBMBQgc2gALi?domain=doi.org
https://protect-au.mimecast.com/s/hXSxC71R2NTAJyJ30TACeXQ?domain=doi.org
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16. Figure 4 suggests use of PVS1 ACMG codes in the context of the presented evidence. Whilst this 
is a natural and relevant extension of the presented work, I would suggest that these 
recommendations are more relevant for incorporation through ongoing work in the ClinGen 
community. This will enable wider panels of experts to evaluate and comment on guidance 
before it is made available in literature, and to link these seamlessly with other updates to 
guidance on PVS1 for splicing variants, which can result in rapid uptake of guidance across 
diagnostic genomic centres: https://clinicalgenome.org/working-groups/sequence-variant-
interpretation/. 

 
Author’s Response 
We agree.  Our Figure S5 draft guidelines have been renamed thus, further refined, and will be critically 
evaluated by: a) a multi-disciplinary group of > 150 genetic experts over 2022 (the Australasian 
Consortium for RNA Diagnostics, SpliceACORD), and b) in collaboration with the NIH Clinical Genome 
Resource (Cooper leads a “splicing variant sub-group” within her expert panels).  However, until 
Australian and International clinical guidelines are devised and endorsed - it is important in the 
meanwhile to provide clinical workforces, who may wish to use the predictive , evidence-based insight 
garnered via SpliceVault and 300K-RNA, with a framework evaluated by expert users that guides 
potential use of this novel approach in a clinical setting.  SpliceVault and 300K-RNA is transformative for 
interpretation of splicing variants.  It does not yet mitigate all caveats, but it is vastly better than 
guesswork. 
 
 
Reviewer #3: 
 

13. The paper should provide estimates of how frequently essential splicing variants do not result in 
IR, PTC or frameshift. Unless this represents a substantial fraction of essential splicing variants, 
the need for a new guideline is not so impactful. It may well be large, but this number is lacking.  

 
Author’s Response 
We agree.  We collate experimentally determine outcomes from ES variants (and all variants) in three 
variant cohorts: 1) our 88 variants; 2) 61 variants studied in patient specimens curated from the 
literature; and 3) 63 variants studied through midi-gene assays (scrutinized to ensure technical design 
permitted detection of multi-exon skipping events).  All variants, references and published splicing 
outcomes detected are detailed in Table S1. Figure S3E shows, 27/55 (49%) essential splice site variants 
across the three variant sets resulted in at least one in-frame event, 45/88 (51%) variants from our 
cohort resulted in at least one in-frame event.  
 

14. Assuming this fraction is indeed substantial, the authors should then provide estimates as to 
how frequent it is that the proposed very strong evidence criteria does not apply (i.e. that not all 
300 K- RNA top-4 result in IR, PTC or frameshift). Introducing the new guideline is relevant only if 
this fraction is substantial. Here too, the fraction may well be large, but this number is lacking. 

 

https://protect-au.mimecast.com/s/FeeLC91WPRTkpxpo6hqd0dH?domain=clinicalgenome.org
https://protect-au.mimecast.com/s/FeeLC91WPRTkpxpo6hqd0dH?domain=clinicalgenome.org
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Author’s Response 
This is another good point and the fraction is large @ 50% and now shown in Figure S3.  Many 
challenges associated with application of PVS1 are mitigated by an accurate, evidence-based method to 
predict the probable nature of mis-splicing, to improve our ability to cater for the: 

- ~50% splicing variants that induce more than one mis-splicing outcome;  
- ~30% splicing variants that activate one or more cryptic splice-sites;  
- ~50% splicing variants that induce one-or-more in-frame events.  

 
We tried to align our draft guidelines in Figure S5 very closely with efforts made in 3 to provide greater 
flexibility in PVS1 to cater for the complexity of splicing variants, by including joint consideration of 
rationale underpinning null outcomes, and PM4 (change in protein length) - to cater for in-frame events 
or truncating variants predicted to evade NMD. Importantly, Figure S3 shows that our rubric will allow 
application of PVS1 for ~50% of ES variants (considering IR and Top-4*, max two in-frame events).  We 
feel this provides a good balance, informed by evidence, not so conservative that the clinical utility of 
PVS1 is compromised by consideration of 5 events, though appropriately reduces level of 
confidence/evidence for variants likely to induce in-frame or truncating events. We suspect that once 
our Top-4* ranking method is disseminated, worldwide research efforts will innovate advances to 
improve predictive accuracy.  Simple steps like deeper sequencing of human tissues, use of 
cycloheximide to protect events being degraded by NMD, improved methods to assess and quantify 
intron retention – are very likely to iteratively improve the predictive accuracy of this approach. 
 

15. The analysis focuses on sensitivity alone using a benchmark dataset consisting of pathogenic 
variants only. Pathogenic variants are biased for variants resulting in loss-of-function splice 
isoforms. While sensitivity may matter most, the study needs to also assess a substantial set of 
splice variants that do not resolve in loss-function isoforms to justify the utility of the tool and 
demonstrate that those would be often appropriately discarded.  

 
Author’s Response 
Our evidence refutes this assumption.  Our ClinVar extraction from 2020 (n = 759,924 variants) shows 
that splicing variants account for 15% of LP/P variants, 22% of LB/B variants, and 7% of VUS.  Many 
splicing variants are either non detected, or are detected and ignored or not reported due to complexity 
with interpretation.   
 
Specifically, ~50% variants in our cohort, and ~50% variants in the two additional cohorts collated in this 
revision for additional validation, produce at least one transcript with an in-frame event or PTC 
predicted to evade NMD resulting in a truncated protein isoform.  Further, in some disorders, ‘loss-of-
function’ is clinically inferred for use of the PVS1 criterion only with in-frame consequences and 
probable expression of a dominant-negative mutant (e.g. filamentous proteins like actin, tubulin, 
myosin, collagen).  For example the MYH7 c.5655+4A>T variant causes in-frame exon skipping consistent 
with an autosomal dominant pathogenic mechanism in MYH7 myopathy; or the COL4A3 c.2881+1G>A 
variant consistent with an autosomal dominant pathogenetic mechanism in Alport Syndrome. Both 
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MYH7 and COL4A3 have gnomAD pLI scores of 0 consistent with loss of function tolerance. Variants 
details and splicing outcomes are listed in Supplementary Table S1. 
 

16. The authors should discuss whether, according to their guidelines, very strong predictions would 
not need an RNA-seq or RT-PCR validation anyways. If so, then the added value is limited.  

 
Author’s Response 
We agree this is very important.  Over 2022, the authors are leading a consultative process akin to that 
described in 3 to: 1) Clinically evaluate and refine the Draft Guidelines in Figure S5 and 2) Devise a 
diagnostic algorithm for clinical application of PVS1, PM4,  PP3 or BP4 criteria, OR, clinical 
recommendation of RNA Diagnostic testing.  This very large body of consultative research falls outside 
the scope of this manuscript.  One may further acknowledge that it is not appropriate to seek or obtain 
clinical endorsement of an unpublished methodology not yet subject to the rigour of peer review.   
 

17. Fig 2A-C. There are striking mismatches between the reported numbers used to compute 
sensitivity and PPV, and the actual number of points displayed on the figure. An obvious 
example is the number “5” below cutoff for SpliceAi in Fig 2A. That is pervasive (are there 128 
data points not seen in RNA studies and below cutoff for top-K RNA in Fig 2A?). There are 
probably reasons for this, e.g. what is plotted are splice-site levels scores, and what is counted 
are splicing events but this should be explained. I would suggest to show on the plot what is 
actually counted and to provide a clear rationale about how “things” are counted for each 
method. The same “philosophy” should be applied to each method.  

 
Author’s Response 

Emended.  Figure 2C-D shows all events seen in RNA studies: those with a SAI -score > 0.001 are shown 

in red, occasional events seen in RNA studies with -score < 0.001 are shown in black. Now false-
negatives (FN) numbers annotated align with the number of dots.  
 

18. Fig 2A is based on fixed cutoffs. Instead, precision-recall curves should be shown. This is a major 
concern because the authors have adjusted the cutoff of their method to increase sensitivity but 
did not investigate changes of cutoff of other methods. The authors argue that sensitivity 
matters and should make use of the precision-recall curve to compare the performance of all 
tools at same recall (i.e. sensitivity).  

 
Author’s Response 
We agree and this point was raised by all reviewers.  Comprehensive assessment of precision-recall 
curves for 300K-RNA and SAI are shown in Figure 2B, and S1B, E-F.  
 

19. it is incorrect to state that “All approaches have limited or no ability to predict intron retention”. 
The MMSplice software can be used to predict splicing efficiency which models intron retention. 
This should be tried. 
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Author’s Response 
We agree and removed this sentence from discussion.  For simplicity and clarity, we focus intently upon 
additional validation of the sensitivity and positive predictive value of 300K-RNA Top-4* evidence-based 
approach.  We elect to maintain comparison with deep learning Splice AI, as it can be adapted to predict 
both exon-skipping and cryptic splice-site activation.  
 

20. It is excessive to state “Whereas SpliceAI predicted only a single mis-splicing event for 17/20 
variants”. It would be more appropriate to state that the algorithm the authors proposed on top 
of SpliceAI “predicted only a single mis-splicing event….”. Technically, SpliceAI outputs scores for 
creation or loss of splice sites. One could propose several ways of predicting isoform outcomes 
from these scores. Here, the authors propose a greedy approach considering every site with 
score>0.2 to be used. It is not expected that the authors over-engineer a method on top of 
SpliceAI. However, since they value sensitivity so high, they should use SpliceAI in a way that 
maximizes the number of isoform predictions. For instance, one could consider drawing 
independently sites using the Splice scores and obtaining thereby a distribution of isoforms from 
which one could retain the most probable ones. This would be more comparable to the “top-4” 
approach proposed by the authors. 

 
Author’s Response 
See response to R2 Q5.  We now employ an exclusion threshold of 0.001, which was essential to remove 
99% of the >1.7 million scores returned scanning +/- 5000 nt of the 86/88 variants able to assessed by 
Splice AI, in order to generate informative predictions and statistical metrics.  
 
To clarify, our method enables SpliceAI to make multiple predictions via an analogous Top-4 approach.  
Splice AI often predicts activation of multiple cryptic splice-sites (Figure S1A).    
 
We transparently declare the rules we apply are a customised interpretation of SpliceAI output. 
 
 

21. 300K Top-4 relies on a genome annotation but no detail is given about this. The choice of the 
genome annotation could be critical. If the genome annotation of splice isoforms is too 
stringent, say, limited to a single major isoform per gene, then the most frequent non-annotated 
isoform (top-1) could often be a genuine, biologically functional splice isoform. At the other 
extreme, if the genome annotation is too inclusive then it can contain rare, non-functional splice 
isoforms, exactly those one would instead like to retain. On what basis did the authors decide 
which isoforms were “annotated”? Some assessment would be insightful. 

 
Author’s Response 
This is an important point.  Unfortunately, there is no national or international consensus of the 
transcript to be used for diagnostic reporting for each gene and condition – acknowledging different 
conditions can be associated with different transcripts arising from the same gene.  Each diagnostic 
laboratory has their own reference list of transcript numbers they use for diagnostic reporting.   



 
 

 

41 
 

 

 

 
To cater for this complexity, 300K-RNA enables users to select the annotated transcript. All unannotated 
exon-skipping and cryptic-activation events, relative to this transcript, are returned in the Table.  
 
We additionally specify within SpliceVault output when any of the top-ranked events are annotated 
events in alternate transcripts. It is important these annotated splicing events are encompassed within 
SpliceVault 300K-RNA output, so that clinical users can assess the likely pathogenicity of predominant or 
enhanced expression of an alternate annotated isoform.   
 
Minor points 
 

22. Line 50, the observation that aberrant splicing junctions are typically detected at weak levels in 
other samples was already reported by Kremer et al., Nat commun, 2017, with a quantification 
of the prevalence of this phenomenon consistent with the much more extensive and recent 
analyses by Dawes et al., 2021. Also, Kremer et al. also formulated the hypothesis of the present 
study described l. 64-66. This prior work should be cited in this respect. 

 
Author’s Response 
This insight has been added and cited within our introduction. See lines 50-55. 
 
 

23. Figure 2 is entitled “Accuracy” but what is assessed is sensitivity. 
 
Author’s Response 
Emended. 
 

24. Designing targeted RT-PCR follow-ups guided by the predictions have moderate value as they 
require specific primer designs and are blind to not-predicted isoforms. Would not the authors 
suggest RNA-seq, potentially with cycloheximide, in any case? This should be discussed. 

 
Author’s Response 
Cycloheximide treatment was performed for all re-analysed variants, however no additional isoforms 
were detected. Mis-spliced GSDME and OPHN1 transcripts were not compliant with NMD and OPHN1 
expression was too low in blood for RNA-seq analysis for agnostic interrogation. RNA sequencing was 
performed for the SPG11 c.2317-13C>G variant, with expression levels insufficient to detect the double 
exon-skipping identified by RT-PCR (Bournazos et al., 2022)2. For EMD, patient fibroblast-derived RNA is 
currently being used to compare long-read transcriptomics versus targeted sequencing of RT-PCR 
amplicons, plus and minus cycloheximide, and is part of a larger clinical evaluation of the diagnostic 
utility of long-read sequencing for RNA and DNA diagnostics.   
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Decision Letter, first revision: 
15th Jun 2022 

 

 

Dear Professor Cooper, 

 

Your Analysis, "SpliceVault: predicting the precise nature of variant-associated mis-splicing." has now 

been seen by 2 referees. You will see from their comments below that while they find your work of 

interest, some important points are raised. We are interested in the possibility of publishing your 

study in Nature Genetics, but would like to consider your response to these concerns in the form of a 

revised manuscript before we make a final decision on publication. 

 

As you will see, Reviewer #1 is mainly satisfied; there are a few other questions and requests for 

more comparisons. 

Reviewer #2 thinks that there is potential here and that many of the technical concerns have been 

addressed. However, this reviewer is not fully satisfied and there are several main concerns. Overall, 

the comparisons and descriptions are found to be lacking. The reviewer continues to think that 

including clinical PVS1 ACMG codes is not a good idea. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 
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*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Analysis format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 

this time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

 

Catherine Potenski, PhD 

Chief Editor 
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Nature Genetics 

1 NY Plaza, 47th Fl. 

New York, NY 10004 

catherine.potenski@us.nature.com 

https://orcid.org/0000-0002-4843-7071 

 

 

Referee expertise: 

 

Referee #1: bioinformatics, computational biology 

 

Referee #2: genomics, transciptomics, rare genetic disease 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The author conducted a series of data analyses, which addressed most of my concerns. However, 

based on the updated figures that used the ROC curve to evaluate their method and SpliceAI (Fig. 2B, 

Supplementary Fig. S1E-F), 300k-RNA indeed showed better performance than SpliceAI, while the 

advantage is not very evident. Especially for the second cohort ‘specimens’, SpliceAI even outperforms 

300K-RNA. According to the results shown in Supplementary Fig. S2B, I believe multi-exon (double or 

even more exons) skipping is the main source of false positives of 300K-RNA Top4, while it only 

contributes minor to the sensitivity. As multi-exon skipping only accounts for 3% of the mis-splicing 

events (Line 103), I suggest that the author may show the comparison between 300K-RNA and 

SpliceAI by only using single exon-skipping and cryptic splice site. Anyway, even intron retention 

which accounts for 20% of the mis-splicing events (Line 102) was not included (Authors’ response to 

Comments 6 of Reviewer #1). In addition, the author may need to reorganize different sections of the 

results to make the logic more fluent. i.e., Usually, people show the QC of the dataset first. The author 

may need to switch Fig. 2 and Fig. 3 and their corresponding sections of the results. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Additional and extended comments: 

 

1. Thank you for clarifying the pipeline used to process RNA-seq datasets. It is still not clear to me 

what impact an alternative processing pipeline would have on the results. In Dawes et al, the authors 

state that events with <3 samples supporting the event were discounted, and state that 44% of 

events were supported by 4 or fewer reads. There is no such method proposed here, can the authors 

clarify what methods are being used to reduce noise in the unannotated splice junctions, and in so 

doing, what impact this has on performance? In addition, can the authors show the impact of 

alternative pipelines for unannotated splice junctions on the 300K-RNA database and what impact this 

confers to accuracy of their methods. My suggestion would be Cummings 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548421/), FRASER 

(https://www.nature.com/articles/s41467-020-20573-7) and LeafCutter 
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(https://www.nature.com/articles/s41588-017-0004-9). 

 

2. SpliceAI uses a splice junction reference map during score calculation. The authors should merge 

unannotated and annotated junctions to calculate scores through spliceAI in order to understand how 

this impacts performance relative to (i) spliceAI alone, and (ii) 300K-RNA. In addition, the authors 

state that they use a window of +/-5000nts for SpliceAI score calculation – can they confirm that all 

aberrant splicing events would be captured within this window in both directions? 

 

3. Long-read RNA sequencing datasets are available for GTEx samples – does incorporation of this 

data into 300K-RNA confer improvements to the detection of unannotated events? 

 

4. The authors state in their rebuttal – ‘We confirm the number of mis-splicing events detected in each 

individual tissue in GTEx is correlated with the number of samples present for that tissue (Figure S4D)’ 

– how does this change with sequencing depth? How does this change by individual donor? 

 

5. The authors have kept the usage of PVS1. Given the profile and wide readership of Nature Genetics 

I strongly suggest that such recommendations go through the appropriate groups highlighted in 

response to this issue (SpliceACORD and others) before they are published. Whilst this is a natural 

extension of the work presented here it is incredibly important that rule refinement is highly curated 

before uptaken by the diagnostic medicine community. 
  

 

Author Rebuttal, first revision: 

 

 Response to Reviewer’s Comments: 

 

We again appreciate the constructive suggestions of our Reviewers.  Redressing their concerns has 

greatly improved the persuasiveness of our evidence by making us innovate better ways to present our 

data and support our arguments.  Reviewer suggestions have also improved logic, flow and 

interpretability of the manuscript.  In this second revision (R2), we genuinely try to meaningfully redress 

as many comments or concerns as possible that are technically and practically feasible.  We would like 

to explain that we simply do not have the resources or datasets to do much of what is suggested.   

 

We emphasize that the primary finding of this study is that the 300K-RNA Top-4* ranking method can 

reliably inform upon the probable nature of variant-associated mis-splicing. That our Reviewers are 

suggesting ways to improve the 300K-RNA Top-4* ranking method infers the evidence provided is 

persuasive, such that it can now be conceived how accuracy may be improved.  We agree – and many 

suggestions offered mirror our own critical thinking.   Once one accepts the dogma that the spliceosome 

reproducibly makes the same mistakes - a natural extension is to ask: how do we improve our 

cataloguing and ranking of these splicing mistakes?  Can we quantify and incorporate intron retention 
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events into the ranking method? How can we improve short-read alignment to improve the fidelity of 

the splice junction dataset?  Can we use long-read RNA-Seq to help us do this?  Can ML methods 

improve short-read alignment? How can we validate which alignment method can best discriminate a 

bonafide from an artifactual splice-junction read? 

 

Each of these are pertinent hypotheses that extend from the primary discovery of the predictive utility 

of 300K-RNA Top-4*ranking.  We respectfully argue that each question above represents a substantial 

research project.  It is impossible to do all of this for one paper.   

 

Further refinement of the 300K-RNA Top-4* ranking method and predictive accuracy will require 

collective energies across the globe.  We provide a point-by-point redress of your comments below. 

 

 

Reviewer #1: 

 

Remarks to the Author: 

The author conducted a series of data analyses, which addressed most of my concerns. However, based 

on the updated figures that used the ROC curve to evaluate their method and SpliceAI (Fig. 2B, 

Supplementary Fig. S1E-F), 300k-RNA indeed showed better performance than SpliceAI, while the 

advantage is not very evident. Especially for the second cohort ‘specimens’, SpliceAI even outperforms 

300K-RNA. According to the results shown in Supplementary Fig. S2B, I believe multi-exon (double or 

even more exons) skipping is the main source of false positives of 300K-RNA Top4, while it only 

contributes minor to the sensitivity. As multi-exon skipping only accounts for 3% of the mis-splicing 

events (Line 103), I suggest that the author may show the comparison between 300K-RNA and SpliceAI 

by only using single exon-skipping and cryptic splice site. Anyway, even intron retention which 

accounts for 20% of the mis-splicing events (Line 102) was not included (Authors’ response to 

Comments 6 of Reviewer #1). In addition, the author may need to reorganize different sections of the 

results to make the logic more fluent. i.e., Usually, people show the QC of the dataset first. The author 

may need to switch Fig. 2 and Fig. 3 and their corresponding sections of the results. 

 

Author’s response: 
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Overall Comments: Based on caveats and bias we define below; we do not feel comparing the sensitivity 

and PPV of Top-4* and SpliceAI after exclusion of double exon-skipping events is valid and we do not 

include these data within this R2 revision.  However, to redress this point in a meaningful way, we 

emend the manuscript text to better explain the complexity related to double-exon skipping events 

(Lines 187-195), potential methods 300K-RNA Top-4* ranking and predictive accuracy may be improved 

(Lines 281-293) and an explanation why IR is not as great of a problem for consideration of PVS1 as 

being able to predict exon-skipping and cryptic splice-site activation with accuracy (Lines 278-282). 

 

Revision R2.  Results section.  Lines 187-195. Red font = new text.  Green font = moved text. 

Analysis of features of false positives versus true positives in Top-4* revealed that false positives: 1): are 

identified in fewer samples in 300K-RNA (Figure S6A); 2) involve double exon-skipping, which appears to 

be a mis-splicing outcome activated only rarely by splice-site variants (Figure S6B). 4/5 detected double 

exon skipping events were Top-1 (among 14 cases with double skipping ranked Top-1) and 1/5 Top-2; 3) 

show no difference in the length of the spliced-out region for exon-skipping events (Figure S6C) or 

cryptic distance (Figure S6D). We identified one false positive that may be due to alignment issues in the 

short-read splice junction dataset: the first few nucleotides of two sequential exons are identical and 

split reads with only a few post-junction nts can map to exon-skipping or normal splicing. 

 

Revision R2. Discussion Section.  Lines 281-293. Red font = new text.  Green font = moved text. 

Our current research is exploring whether high read depth RNA-Seq of manifesting tissues, or 

alternative bioinformatic mapping strategies, has the potential to further improve the precision of our 

Top-4* methodology. We suspect the predictive accuracy of our ranking method may be improved 

further by: 1) a better understanding of contexts that influence variant-associated double exon skipping, 

2) higher read depth RNA-Seq data across the breadth of manifesting tissues in rare disorders (e.g. there 

is no data currently available for cochlear), 3) incorporation of RNA-Seq data from human fetal samples 

to assess developmental alternative splicing, 4) improved bioinformatic methods to align short 

sequencing reads more accurately, 5) long-read RNA sequencing data, which will help validate (4) and 

also identify unannotated, deep-intronic pseudoexons, 6) use of cycloheximide to inhibit nonsense-

mediate decay, 7) an ability to rank likelihood of variant-activated intron retention. Consideration of 

Top-3 events in specific manifesting tissues, if shown to maintain > 90% sensitivity, could substantially 

improve PPV and clinical utility for variant classification. 

 

Revision R2. Discussion Section.  Lines 278-282. Red font = new text.   
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In addition, though intron retention cannot yet be quantified and ranked by 300K-RNA, Figure S8 shows 

that intron retention induces a frameshift or encodes a premature termination codon in all three frames 

for at least 97% introns in the Mendeliome and is therefore consistent with null outcomes in most 

instances.   

 

Redress to specific points: 

Point 1. Exclude double exon skipping and compare SpliceAI and Top-4*. 
Though double exon-skipping occurs infrequently in this cohort – in all instances, there was diagnostic 

importance in identifying this event.  Moreover, in several cases, double-skipping was the predominant 

variant-induced outcome. As we hope 300K-RNA will be used in a clinical setting, it is not sensible to 

exclude double skipping from the analyses as it introduces unnecessary bias.  Further, as with any rare 

event, we are currently not sufficiently powered to hold certainty of the true incidence of variant-

activated double exon skipping.  We estimate that it will be between 2-10% and need a larger cohort of 

tested variants to show this. We cannot curate this information from other published studies, because 

unfortunately, many/most other studies do not deploy RNA testing strategies that are tailored to ensure 

detection of double-skipping or use of distal cryptic splice sites.  It is exactly this deficiency that we hope 

dissemination of SpliceVault may mitigate.  

a) We clarify that our existing approach favours SpliceAI by excluding the 2 variants that SpliceAI 
cannot assess in precision-recall analyses (rather than offering the incorrect prediction – an 
approach also accepted to compare algorithms to mitigate instances when one algorithm 
cannot offer a prediction), as well as excluding all delta scores that do not align with any of our 
defined rules (the ‘other’ category).   

b) As we do not wish for our readers to infer that we recommend 0.011 as a threshold to offer a 
prediction of splice-altering outcomes, we add an extra sentence to clarify that this low 
threshold was selected only for this bespoke application; namely, to explore if SpliceAI’s deep 
learning can perceive the broader genomic features that may predict the probable nature of any 
elicited mis-splicing. 

 

Revision R2.  Results section.  Lines 206-210 

We also emphasise that while a SpliceAI threshold of 0.011 was effective in this specific context, to 

forecast the likely nature of any variant-elicited mis-splicing, we do not recommend use of a 0.011 delta 

score threshold as a prediction for mis-splicing as our evidence from experimentally confirmed splice 

neutral variants (3 and cases studied since) indicates this will yield a high false positive rate of  > 50%. 
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Point 2. Switch order of Figure 2 and Figure 3 to improve logic 
We appreciate this helpful suggestion.  We have reversed the order and agree that the logic and flow is 

improved.   

 

 

Reviewer #2: 

Remarks to the Author: 

Additional and extended comments: 

 

1. Thank you for clarifying the pipeline used to process RNA-seq datasets. It is still not clear to me what 

impact an alternative processing pipeline would have on the results. In Dawes et al, the authors state 

that events with <3 samples supporting the event were discounted, and state that 44% of events were 

supported by 4 or fewer reads. There is no such method proposed here, can the authors clarify what 

methods are being used to reduce noise in the unannotated splice junctions, and in so doing, what 

impact this has on performance? In addition, can the authors show the impact of alternative pipelines 

for unannotated splice junctions on the 300K-RNA database and what impact this confers to accuracy 

of their methods. My suggestion would be Cummings 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548421/), FRASER 

(https://www.nature.com/articles/s41467-020-20573-7) and LeafCutter 

(https://www.nature.com/articles/s41588-017-0004-9).  

 

 

Author’s response:  

Overall Comment: To clarify, FRASER, Leafcutter and Cummings et al. are not methods that differentiate 

between noise (splice junction artifact) and genuine splice junctions. FRASER, Leafcutter and Cummings 

et al. seek to identify what is different in a test specimen relative to a reference dataset.  All three 

methods leverage splice junction information from aligned data and thus are similarly confounded by 

alignment artifacts. Their focus is not to catalogue and rank commonly occurring unannotated splicing 

events – this is what SpliceVault does.  It is impossible to apply these tools to a dataset of 335,000 

samples and we are not looking for splicing outliers.   

 

FRASER and Leafcutter inspect annotated and unannotated splicing events to identify statistically 

significant splicing outliers (e.g. novel splice junction(s), higher or lower levels of an annotated or 

unannotated splice junction, evidence for allele bias.)  These data can then be used to investigate 

potential causative variants within proximity of the splicing outliers. Cummings et al. focuses on 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548421/
https://protect-au.mimecast.com/s/EQxcCWLVXkUjNWoBzFpEhJC?domain=nature.com
https://protect-au.mimecast.com/s/9p1RCXLW2mUnkzrYBc7ZzTw?domain=nature.com
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highlighting the clinical utility of RNA sequencing to identify the genetic basis for disease in a cohort of 

exome-negative individuals affected with Neuromuscular disorders.  The Cooper team contributed 

28/50 cases and are authors on this study.  

 

Specific points raised. 

1. Methods to reduce noise in unannotated splice junctions? 
2. Improve accuracy with incorporation of long-read RNA sequencing datasets?  
3. Could use of other bioinformatic pipelines improve Top-4 ranking? 
 

We appreciate the previous suggestion by Reviewer 2 to switch 300K-RNA source data to that processed 

via the unified monorail pipeline.  This was extremely helpful to minimises bias against unannotated 

splice junctions in the best way currently possible. We acknowledge there remains unannotated ‘splicing 

noise’ in 300K-RNA due to artifactual unannotated splice junctions due to errors or inherent ambiguity 

in alignment of short sequencing reads. 

 

Neither FRASER nor Leafcutter are tools to reduce noise in unannotated splice junctions. Further, it is 

technically impossible for us to conduct the analyses suggested for 335,000 raw sequencing files.    

 We do not have the raw sequencing files, only the publicly available splice-junction files. 

 Even if we enquired with the Broad Institute if we can access the entire GTEx raw sequencing 
dataset, each RNA-Seq file is several gigabytes.  We do not have means to transfer or store a 
dataset of this size, nor the computational processing power to analyse it via one of these 
methods.   

 As a specific example, running FRASER for 46 RNA-Seq samples took 2 days on the University 
of Sydney’s high performance computing (HPC) network. If one extrapolates this to 43,000 
GTEx RNA-Seq files or the entire 335,000 files in 300K-RNA dataset – this is several years of 
HPC time, notwithstanding the subsequent analysis time. 
 

Challenges in aligning short RNA-sequencing reads is an intractable problem that continues to confound 

the short-read transcriptomics field (and has done for the last decade).  Long-read sequencing data may 

ultimately provide the best means to validate alternate informatic alignment strategies for short-read 

RNA-Seq data - and thus also improve 300K-RNA splice junction Top-4* ranking. We stress that there are 

currently only 88 long-read RNA-Seq files available via GTEx for only a few tissue types, and substantial 

bioinformatic issues with long-read RNA sequencing data are yet to be resolved. Incorporation of long-

read data into a 300K-RNA type ranking method holds enormous potential but is not yet ready. 
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In Dawes et al, we were able to rigorously evaluate precision-recall with additional rules such as “only 

events seen in > 3 samples” – because we had a dataset of ~5,000 variants activating cryptic donor 

splice sites in thousands of genes.  Herein we have only 88 variants in 74 genes where many empirically 

detected events were represented by only a few splice-junction reads, and/or, detected in only a few 

samples.  Therefore, at this time, application of rules such as ‘only events seen in > 3 samples’ or ‘only 

events detected by 3 or more split reads’ limits sensitivity.  However, as our cohort of clinical cases with 

empirical splicing assay data grows larger and the sequencing depth and breadth of transcriptomic 

datasets informing a Top-4* style ranking method increases – it will become possible to critically 

evaluate any diagnostic benefit of applying such rules.  

 

We agree inherently with the essence behind Reviewer 2’s suggestions: that alternate bioinformatic 

alignment strategies may improve event ranking and accuracy of the Top-4* approach.  We try to 

meaningfully redress this suggestion by emending our results to note a specific example of a limitation 

with alignment of short reads (Revision R2.  Results section.  Lines 190-197) and we emend our 

discussion to state exactly how we believe the 300K-RNA approach may be improved into the future 

(Revision R2. Discussion Section.  Lines 283-295). These excerpts are shown in response to our redress to 

Reviewer 1 comments. 

 

 

2. SpliceAI uses a splice junction reference map during score calculation. The authors should merge 

unannotated and annotated junctions to calculate scores through spliceAI in order to understand how 

this impacts performance relative to (i) spliceAI alone, and (ii) 300K-RNA. In addition, the authors state 

that they use a window of +/-5000nts for SpliceAI score calculation – can they confirm that all aberrant 

splicing events would be captured within this window in both directions? 

 

Author’s Response:  

We acknowledge SpliceAI ‘out of the box’ can be influenced by the input transcript.  However, in this 

study, delta scores +/- 5000 nt of the variant were derived using the raw pre-mRNA sequence as input 

and is not influenced by annotated versus unannotated splice junctions.  Scores offered are not relative 

to, or influenced by, a splice junction reference map.   

 

We emend our Methods to clarify these details.  We are uncertain whether this comment may relate to 

the masking setting: therefore we clarify the masking setting applies only when the input is a variant - 

and is not relevant in our context where the input is the raw pre-mRNA sequence.   
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Revision R2.  Results section.  Lines 352-354. Red font = new text.  Green font = moved text. 

To adapt SpliceAI to the prediction of mis-splicing, we instead retrieved all -scores +/- 5000 nt of each 

variant, using a python script adapted from the SpliceAI GitHub (https://github.com/Illumina/SpliceAI). 

As input, we used the pre-mRNA sequence either +/- 5000 nt of the variant or to the boundaries of the 

transcript, whichever was closer. Two -scores returned at each base (variant nucleotide versus 

reference nucleotide) generated up to 20,002 -scores per variant, of which we excluded all -scores ≤ 

0.001 as neutral impact.  

 

We emend our Results to 1) clarify how our usage of SpliceAI differs from default, ‘out of the box’ usage 

and 2) clarify how many events lie within the maximum SpliceAI window of +/- 5000 nt. 

 

Revision R2.  Results section.  Lines 149-155 

SpliceAI author’s 19 high sensitivity threshold of   0.20 predicted mis-splicing for 76/86 (88%) variants 

and for 63/86 (73%) variants with the high specificity threshold of   0.50. Preliminary investigations 

using the default SpliceAI window of 50 nt and high sensitivity threshold of   0.20 identified 13/44 

variant-activated cryptic splice-sites (only 19/44 activated cryptic splice-sites lie within 50 nt) and 3/73 

exon skipping events. Therefore,  

we adapted SpliceAI to offer a fuller prediction of the nature of mis-splicing, by assessing all -scores 

generated by inputting pre-mRNA sequence +/-5000 nt of the variant (Figure 4A-C).  

 

Revision R2.  Results section.  Lines 150-153 

According to these rules, SpliceAI predicts at least one mis-splicing event for all 86 variants and up to 31 

predictions for a single variant (Figure 4D, Figure S4).  139/145 mis-splicing events elicited by the 86 

variants lie within the maximum 5000 nt SpliceAI window (44/44 cryptics, 68/68 single-exon skipping 

events, 4/5 double-exon skipping events and 7/12 intron retention events). 

 

 

3. Long-read RNA sequencing datasets are available for GTEx samples – does incorporation of this data 

into 300K-RNA confer improvements to the detection of unannotated events?   

https://github.com/Illumina/SpliceAI
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As mentioned above, GTEx V9 encompasses only 88 specimens with long read RNA sequencing data 

available, from only a few biospecimen subtypes, currently insufficient for statistical evaluation via a 

Top-4 method. Further, long read is noisy and subject to its own bioinformatic challenges that we need 

to rigorously evaluate before promoting its use either to inform alignment strategies for short-read data 

and the Top-4* method – a substantial study in itself.  

 

 

4. The authors state in their rebuttal – ‘We confirm the number of mis-splicing events detected in each 

individual tissue in GTEx is correlated with the number of samples present for that tissue (Figure S4D)’ – 

how does this change with sequencing depth? How does this change by individual donor? 

We are unable to answer this question because it relies upon having RNA sequencing data for the same 

specimens conducted at different read depths using the same library preparation method.  

Unfortunately, this data is not available. We can informally communicate that we have conducted these 

analyses for a limited number of in-house specimens (blood, fibroblasts, muscle) that we have RNA-Seq 

data at different read depths – which suggests greater sequencing depth may have greater influence 

than sequencing breadth to capture the diversity of splice-junctions and reliably rank their prevalence.  

However, this sequencing was done on different machines with different library preparation methods 

(some used PolyA enrichment, some ribosomal RNA-depleted RNA) and is not robust enough to defend 

this question. 

 

We apologise, but we cannot interpret what is being asked in “How does this change by individual 

donor” that is not answered by the concordance data we provided in Revision 1. The 300K-RNA ranking 

method is performed by individual donor and acceptor – additional figures provided in R1 show very 

high concordance in event ranking and sample count for each donor and acceptor across the entire 

Mendeliome. 

 

 

5. The authors have kept the usage of PVS1. Given the profile and wide readership of Nature Genetics I 

strongly suggest that such recommendations go through the appropriate groups highlighted in 

response to this issue (SpliceACORD and others) before they are published. Whilst this is a natural 

extension of the work presented here it is incredibly important that rule refinement is highly curated 

before uptaken by the diagnostic medicine community. 
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We agree that a conservative and consultative approach is essential.  However, it is our great preference 

to maintain the draft guidelines within supplemental Figure S9.  We feel its inclusion as Supplemental 

information, rather than in the manuscript proper, means it is available for anyone who wants it, while 

not over-promoting it.  The first question we receive from members of the Diagnostic Genomic 

Pathology community when we take them through the 300K-RNA Top-4* ranking for a variant is: “how 

do you advise we use this information”?  In full knowledge of the caveats, the predictive insight garnered 

from 300K-RNA is being accepted and adopted quickly by the SpliceACORD Clinical Genetic community.  

 

We provide Figure S8, that clarifies why a current inability of 300K-RNA to rank IR is of little 

consequence clinically for application of PVS1:  

Lines 278-282.  

Though intron retention cannot yet be quantified and ranked by 300K-RNA, Figure S8 shows that intron 

retention induces a frameshift or encodes a premature termination codon in all three frames for 97% 

introns in the Mendeliome and is therefore consistent with null outcomes in most instances.   

 

We improve clarification and emphasis that these are draft guidelines that will be rigorously evaluated 

and refined over 2022-2023 by the Australian Consortium for RNA Diagnostics (SpliceACORD). It is likely 

that this SpliceACORD clinical evaluation will not be published for 2 years.  We therefore argue 

respectfully, that by providing a starting point of draft guidelines, informed by expert users, we are 

enabling international groups to begin their own independent evaluation from the moment this paper is 

published.  By doing so, in 2-years there may be multiple studies published that refute or refine these 

guidelines, such that an international consensus if and how to use SpliceVault to inform variant 

classification is reached.  It is of vital importance to families with rare disorders that we do this as quickly 

as safely possible – which is best achieved via collective evidence from numerous, independent studies.   

 

Revision R2.  Discussion section.  Lines 303-313 

Informed by the current investigation, Figure S9 details our draft guidelines for possible use of 300K-RNA 

to assist application of the PVS1 criterion to essential splice-site variants, aligning closely with revised 

PVS1 guidelines10.  Theorized consideration of intron retention and Top-4* events by genetic pathology 

workforces provides a pragmatic, evidence-based method to reliably assess variant-associated exon-

skipping and/or cryptic splice-site use within a larger distance window of 600 nt.  Over 2022-23, the 

Australasian Consortium for RNA Diagnostics (SpliceACORD)3 will rigorously evaluate the clinical 

accuracy and usefulness of Figure S9 draft guidelines for cases prospectively recruited into RNA 
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Diagnostic testing pipelines. Figure S7E indicates these draft guidelines will allow application of PVS1 for 

~50% of ES variants (IR and Top-4* ≤ 2 in-frame events). 

 

 

Decision Letter, second revision:   
29th Aug 2022 

 

 

Dear Professor Cooper, 

 

Your Analysis, "SpliceVault: predicting the precise nature of variant-associated mis-splicing." has now 

been seen by 1 of the original referees. You will see from their comments below that while they find 

your work has improved, there are still important points are raised. We remain interested in the 

possibility of publishing your study in Nature Genetics, but would like to consider your response to 

these concerns in the form of a revised manuscript before we make a final decision on publication. 

 

Reviewer #2 was not able to submit a timely review, and as they had made substantive comments 

and requests in the last round, I then asked Reviewer #1 to comment on your responses to Reviewer 

#2. Please note that Reviewer #1 commented on all points raised by both referees, hence the section 

beginning "Reviewer #2". 

 

Reviewer #1 is now satisfied with the changes regarding their review and has no further comments. 

 

On the other hand, they think that some of your responses to Reviewer #2 are not quite satisfactory. 

They appreciate the difficulties of a full statistical characterisation of the reads in your analysis, but 

they point out that certain important statistics (e.g. splice junction supporting information) are vital 

for interpretation. They also suggest that the long-read sequencing could be analysed in a relatively 

simple way that would illustrate the value of such data over short reads. 

 

We think both these suggestions are reasonable and we do agree that Point 1 requires clarification, 

given the importance of read depth for splicing analyses. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 

including with the chief editor, with a view to identifying key priorities that should be addressed in 

revision and sometimes overruling referee requests that are deemed beyond the scope of the current 

study. We hope that you will find the prioritized set of referee points to be useful when revising your 

study. Please do not hesitate to get in touch if you would like to discuss these issues further. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 
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When revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Analysis format instructions, available 

<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-

integrity">guidelines on digital image standards.</a> 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

<strong>Note:</strong> This URL links to your confidential home page and associated information 

about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 

this email to co-authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 

this time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit <a 

href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 
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Michael Fletcher, PhD 

Senior Editor, Nature Genetics 

 

ORCiD: 0000-0003-1589-7087 

 

 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Reviewer #1: 

My concerns have been addressed by the author in this revision. 

 

Reviewer #2: 

 

The author has addressed almost all my concerns, except for points 1, 3 and 4. The concern in point 4 

is also related to point 1, regarding the impact of sequencing/read depth on the 300K-RNA Top4. 

 

1, 

I agree that neither FARSER nor LeafCutter are appropriate tools for unbiased quantification of mis-

splicing events in 300K-RNA. In fact, the author collected splicing junctions from ‘recount3’, a previous 

study that claimed to use a so-called Monorail pipeline. The author should mention this clearly in the 

main text (Line 66-67). In addition, the ‘recount3’ has already been published in 2021 (Wilks et al. 

Genome Biology. 2021). However, the author still cited its bioRxiv version (Line 468-469). Even 

though ‘recount3’ might use a uniformed pipeline for splicing junctions processing, the author didn’t 

address my concerns at the very beginning, regarding the ‘read depth, quality and mapping 

thresholds’. The quality and mapping thresholds might be challenging for the author to include in the 

analysis, whereas the impact of sequencing/read depth should be considered. The author might also 

not be able to access the raw sequencing/read depth of each sample in 300K-RNA, but the total 

number of splicing junction reads in each sample should be easy to obtain. The author used sample 

numbers to rank the mis-splicing events, while it’s not clear the threshold used by the author (what is 

the minimal number of reads to be considered as a supported splicing junction? 1, 2, or more?). This 

threshold might need to be adjusted by sequencing/read depth. Providing there are a total of 10 

million and 1K splicing junction reads identified in sample A and sample B, respectively. For the same 

mis-splicing event, detection of one splicing junction read in sample B might be confident (1/1000), 

while one splicing junction read in sample A might be just noise (1/1000,000). The author should 

check the variation of splicing/read depth across different samples in 300K-RNA and take this into 

account in their analysis. 

 

3, 

As the author mentioned that it’s challenging for them to incorporate long-read RNA sequencing data 

in 300K-RNA, it might be possible to investigate it in another direction. i.e. How many and what’s the 

percentage of mis-splicing events in 300K-RNA Top4 are detected in the 88 specimens with long-read 

RNA sequencing data? I guess there should be at least some of them could be detected and it might 

become a problem if none of them could be found in the 88 specimens with long read RNA sequencing 
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data, either the long read sequencing is unable to identify lowly expressed mis-splicing events or it’s 

an outcome only produced by Illumina short-read sequencing. 
  

Author Rebuttal, second revision: 

 

 NG-AN59054R3: Author’s response to Reviewer and Editorial Comments 

 

 

Editorial Comments: 

1. Reviewer #1 is now satisfied with the changes regarding their review and has no further 

comments. 

2. Some responses to Reviewer #2 are not quite satisfactory.  

a. Certain important statistics (e.g. splice junction supporting information) are vital for 

interpretation.  

b. They also suggest that the long-read sequencing could be analysed in a relatively simple 

way that would illustrate the value of such data over short reads. 

We think both these suggestions are reasonable and we do agree that Point 1 requires 

clarification, given the importance of read depth for splicing analyses. 

 

 

Reviewers' Comments:  

 

Reviewer #1:  

My concerns have been addressed by the author in this revision. 

 

Reviewer #2: 

 

The author has addressed almost all my concerns, except for points 1, 3 and 4. The concern in point 4 is 

also related to point 1, regarding the impact of sequencing/read depth on the 300K-RNA Top4.  

 

1, 

I agree that neither FRASER nor LeafCutter are appropriate tools for unbiased quantification of mis-

splicing events in 300K-RNA. In fact, the author collected splicing junctions from ‘recount3’, a previous 

study that claimed to use a so-called Monorail pipeline. The author should mention this clearly in the 

main text (Line 66-67). In addition, the ‘recount3’ has already been published in 2021 (Wilks et al. 
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Genome Biology. 2021). However, the author still cited its bioRxiv version (Line 468-469). Even though 

‘recount3’ might use a uniformed pipeline for splicing junctions processing, the author didn’t address 

my concerns at the very beginning, regarding the ‘read depth, quality and mapping thresholds’. The 

quality and mapping thresholds might be challenging for the author to include in the analysis, 

whereas the impact of sequencing/read depth should be considered. The author might also not be able 

to access the raw sequencing/read depth of each sample in 300K-RNA, 

but the total number of splicing junction reads in each sample should be easy to obtain. The author 

used sample numbers to rank the mis-splicing events, while it’s not clear the threshold used by the 

author (what is the minimal number of reads to be considered as a supported splicing junction? 1, 2, 

or more?). This threshold might need to be adjusted by sequencing/read depth. Providing there are a 

total of 10 million and 1K splicing junction reads identified in sample A and sample B, respectively. For 

the same mis-splicing event, detection of one splicing junction read in sample B might be confident 

(1/1000), while one splicing junction read in sample A might be just noise (1/1000,000). The author 

should check the variation of splicing/read depth across different samples in 300K-RNA and take this 

into account in their analysis. 

 

Author’s Response: 

1.1. We have emended the citation to recount3.  
1.2. Line 116 clarifies that we use a minimum threshold of 1 splice-junction read: “Mis-splicing 

events detected at each splice-site in 300K-RNA are ranked by the number of samples in which 
at least 1 splice-junction read was detected (Figure 2C).” 

1.3. We agree, however, with the reviewer(s) and editor that read depth is important and further 
examine our set of true positives (TP) and false positives (FP).  

a. In new figures, we show maximum reads for 300K-RNA events in any individual sample 
(new figure S6B), as well as mean reads for that event across all samples in which it was 
detected (new Figure S6C), tends to be higher for TP than FP.  

b. Reviewer 2 suggests a junction detected in a single read in a sample with a lower 
number of reads overall may be more confident. We take that to mean that a splicing 
event detected in a higher proportion of transcripts for that gene in that sample is more 
likely to be a genuine splicing event and not technical noise introduced by alignment 
and other technical errors. New Figure S6D shows no significant difference between TP 
and FP for annotated splicing in samples where that 300K-RNA event was seen. If we 
find the maximum ratio between the unannotated event and annotated splicing (for the 
proximal splice junction), TP tend to have a higher max ratio than FP (new Figure S6E). 
However, there is no significant difference between TP and FP when you look at the 
mean ratio (new Figure S6F), showing that for many samples this doesn’t hold true. 

c. Importantly, there remains a high amount of overlap between TP and FP in all analyses 
- and even in our modest set of TP there are multiple events seen in only a one or few 
samples and represented by a maximum of 1 read.  
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d. Our comprehensive analyses of TP versus FP reinforce the power of our Top-4 ranking 
method lies in the breadth of 300K-RNA that enables detection of stochastic, rare or 
ultra-rare events.  To highlight how sample breadth is crucial to pick up these rare 
stochastic events, we provide new Figure 2E-F which shows: 

i. Line  125: “Figure 2E shows the importance of sequencing breadth in 300K-RNA 
for detection of all 119 true positive exon-skipping and cryptic splicing events.  
Taking random subsets within the 335,663 source specimens shows sensitivity 
only begins to maximise with ~100,000 samples. Deeper scrutiny of the 119 true 
positive events shows, on average, each event is detected as a single splice-
junction read in 78% samples with this event (not shown) – underpinning why all 
single read events are catalogued in 300K-RNA.  Figure 2F reinforces the 
stochastic nature of these mis-splicing events, showing the Top-1 and Top-2 
events around the splice sites affected by our 88 variants typically occur in 
mutually exclusive specimens – with both events seen, on average, in only 5% of 
samples where either event was seen.” 

e. To further address comments relating to read-depth, quality and mapping thresholds, 
we scrutinized all TP and FP events for our cohort of 88 variants represented by 10 or 
fewer reads. We used the Broad Institute’s TGG viewer to scrutinize samples with at 
least one read for this event and recorded the maximum splice-junction overhang.  
There was no difference between TP and FP (TP mean max overhang 26.7 nt +/- 7.5, 
n=7; FP mean max overhang 27.0 nt +/- 9.9, n=13).  Recount3 doesn’t provide overhang 
information so we can’t do anything larger scale.  We do not wish to present this 
preliminary overhang analysis in our paper.  Though we tried our best to dig into the 
available data, it is fraught with caveats: there are only 5 tissue types in TGG; only a 
subset of our TP and FP splice-junctions represented by < 10 samples could be 
examined; we cannot eyeball the read to check the overhang is not softclipped; rules 
related to overhang (and soft-clipping) are best implemented at the alignment step 
rather than post-alignment.  We present this information only to show we have done 
every analysis possible with the available data.  We respectfully maintain that the 
evidence-based Top-4 rules we have set are the best we can do at this time. 

 

In summary, comprehensive analyses of FP vs TP does not identify an evidence-base to apply any 

additional rules that discern artifactual ‘splice junction noise’ from genuine, rare, stochastic splicing 

events.   This remains an ongoing problem for RNA-seq technologies and outside the scope of this 

discovery and this paper. Further refinement of a Top-4 style ranking methods requires a larger 

validation cohort of clinical variants across a wider range of introns/genes and more reference RNA-Seq 

data across a diverse range of specimens.   We transparently declare in our discussion ways a Top-4 style 

ranking method may prospectively be improved upon, though emphasize our current method provides 

92% sensitivity with PPV of 29%: a pragmatic starting point and vast improvement over current practice 

that ‘guesses’ what a variant might do. 
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3, 

As the author mentioned that it’s challenging for them to incorporate long-read RNA sequencing data in 

300K-RNA, it might be possible to investigate it in another direction. i.e. How many and what’s the 

percentage of mis-splicing events in 300K-RNA Top4 are detected in the 88 specimens with long-read 

RNA sequencing data? I guess there should be at least some of them could be detected and it might 

become a problem if none of them could be found in the 88 specimens with long read RNA sequencing 

data, either the long read sequencing is unable to identify lowly expressed mis-splicing events or it’s an 

outcome only produced by Illumina short-read sequencing. 

 

3.1. We clarify it is not straightforward to extract splice junction (SJ) data from long-read RNA-Seq 
data. The only known tool, NanoSplicer (https://doi.org/10.1093/bioinformatics/btac359), 
requires raw Nanopore data (not available for GTEx V9) and is neither optimised for 
performance (~20 hrs for analysis of 1 specimen) nor is able to conduct a batch analysis.  
However, to meaningful redress comments related to long-read RNA-Seq data, we instead 
reverse-engineered splice-junction information from GTEx v9 long read transcript data 
generated using FLAIR (PMID 35922509).  

3.2. New Figure S9 shows splice-junctions concordantly and uniquely identified in long-read versus 
short-read RNA-Seq data from fibroblasts in an upset plot.  We focus on fibroblasts because 
this is the most abundant specimen in the GTEx V9 dataset (22/88 sequenced specimens) and 
so we can make a meaningful comparison with short-read RNA-Seq data. 
a. Long-read RNA-Seq (7M mean read depth, 740 nt average length) for 22 fibroblast 

specimens identifies 15% (180K) of the total pool of 1.16M SJ detected in 504 GTEx V8 
samples subject to short-read RNA-Seq (n=504 samples, 75 bp paired reads at 80M 
depth).   

b. In-house data from 7 fibroblast specimens (150 bp paired reads, 100 – 200M read 
depth) subject to CHX treatment identifies 36% (420K/1.16M) of all SJ, substantially 
more that DMSO treated specimens (340K/1.16M) or in two randomised sets of 7 
fibroblast specimens from GTEx v8 (245K/1.16M).   

c. This preliminary evidence indicates CHX treatment of human cell lines may substantially 
enhance our detection of unannotated mis-splicing events through inhibition of NMD. 

 

In summary, long-read RNA-Seq data has a related set of challenges as short-read with respect to 

confidence of a detected splice-junction and whether to apply rules such as: only splice-junctions 

represented by more than one read, more than one sample, a minimum overhang etc.  There is no 

viable tool able to do a batch extraction of splice junctions from Nanopore sequencing data; splice 

junctions currently need to be reverse engineered from the transcript information.  Therefore, we 

https://doi.org/10.1093/bioinformatics/btac359
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maintain there is currently insufficient GTEx V9 data for a SpliceVault long-read database and long-read 

RNA-Seq data is not yet ready to inform a Top-4 ranking approach. 

 

 

Specific emendations to R3: 

 

1. Modified Figure 2 with new sub figures E and F 
 

2. Modified Figure S6 with new sub figures S6B-F. 
 

3. New Figure S9. 
 

4. Introduction Line 57: Clarify terminology of mis-splicing:  
“In Dawes et al., 202211, we analysed 5,145 variants activating cryptic splice-sites and 

established that 87% of activated cryptic splice-sites are those detected as rare, unannotated 

splice junctions in 40,233 RNA-Seq samples from GTEx12 and Intropolis15 (40K-RNA 

database11).  The key insight that cryptic donors activated by genetic variants are also seen 

as rare events in population-based RNA-Seq data, led us to explore whether other forms of 

variant-associated mis-splicing may be predicted by quantifying the relative prevalence of 

stochastic, natural, unannotated splicing events (termed hereafter as mis-splicing).”  

 

5. Results Lines 124-131: Clarify impact of sample breadth and describe Figure 2E-F: 
“Figure 2E shows the importance of sequencing breadth in 300K-RNA for detection of all 119 

true positive exon-skipping and cryptic splicing events.  Taking random subsets within the 

335,663 source specimens shows sensitivity only begins to maximise with ~100,000 samples. 

Deeper scrutiny of the 119 true positive events shows, on average, each event is detected as 

a single splice-junction read in 78% samples with this event (not shown) – underpinning why 

all single read events are catalogued in 300K-RNA.  Figure 2F reinforces the stochastic 

nature of these mis-splicing events, showing the Top-1 and Top-2 events around the splice 

sites affected by our 88 variants typically occur in mutually exclusive specimens – with both 

events seen, on average, in only 5% of samples where either event was seen.” 

 

6. Results Line 207: Clarify impact of read-depth and describe modified Figure S6:  
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“Analysis of features of Top-4* events reveals that relative to false positive, true positives 

tend to be: identified in more samples (Figure S6A); represented by more unannotated 

splicing reads (Figure S6B-C); with a higher maximum ratio of the unannotated event relative 

to read-depth for annotated splicing in any one sample (Figure S6E); relative to false 

positives.  However, there was no significant difference between true and false positives in 

the mean reads of annotated splicing in samples where events were detected (Figure S6D) or 

in the mean ratio between unannotated and annotated splicing (Figure S6F); showing these 

are trends rather than rules.  Double exon-skipping is rarely activated by splice-site variants 

(Figure S6G).” 

 

 

7. Discussion Line 320: Elaboration on SJ detection in long-read data and with CHX treatment in 
new Figure S9 

“We suspect the predictive accuracy of our ranking method may be improved further by: 1) 

higher read depth RNA-Seq data across the breadth of manifesting tissues in rare disorders 

(e.g. there is no data currently available for cochlear), 2) incorporation of RNA-Seq data from 

human fetal samples to assess developmental alternative splicing, 3) use of cycloheximide to 

inhibit nonsense-mediate decay, 4) a better understanding of contexts that influence variant-

associated double exon skipping, 5) an ability to rank likelihood of variant-activated intron 

retention, and 6) improved bioinformatic methods in sequencing read alignment.  Long-read 

RNA may assist evaluation of new methods to improve fidelity of short-read alignment and 

reduce splice-junction artifacts in 300K-RNA.  Figure S9 shows that long-read sequencing (7M 

mean read depth, 740 nt average length) of 22 fibroblast specimens available in GTEx V9 

identifies only 15% (180K) of the 1.16M total splice-junctions detected in 504 GTEx fibroblast 

specimens (75 bp paired reads, 80M read depth).  For comparison, in-house RNA-Seq data 

from 7 fibroblast specimens (150 bp paired reads, 100 – 200M read depth) subject to CHX 

treatment identifies 36% (420K/1.16M), substantially more that DMSO treated specimens 

(340K/1.16M) or in two randomised sets of 7 fibroblast specimens from GTEx v8 

(245K/1.16M). This preliminary evidence indicates CHX treatment of human cell lines may 

substantially enhance our detection of unannotated mis-splicing events through inhibition of 

NMD.” 

 

8. Methods Line 372: The R package Snapcount27 was used to retrieve information on individual 
samples for Figures 2E-F and S6B-F. 

 

Decision Letter, third revision:   



 
 

 

64 
 

 

 

18th Oct 2022 

 

Dear Dr. Cooper, 

 

Thank you for submitting your revised manuscript "SpliceVault: predicting the precise nature of 

variant-associated mis-splicing." (NG-AN59054R3). It has now been seen by the original Reviewer #1 

- we decided that given Reviewer #2 did not submit a review in the previous round and your revision 

is in response to Reviewer #1's comments on Reviewer #2's last review, that it would be best to send 

it back just to this referee rather than both - and their comments are below. The reviewers find that 

the paper has improved in revision, and therefore we'll be happy in principle to publish it in Nature 

Genetics, pending minor revisions to satisfy the referees' final requests and to comply with our 

editorial and formatting guidelines. 

 

If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 

editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 

any questions. 

 

Sincerely, 

 

Michael Fletcher, PhD 

Senior Editor, Nature Genetics 

 

ORCiD: 0000-0003-1589-7087 

 

 

Reviewer #1 (Remarks to the Author): 

 

I’m satisfied with the revision. One minor point is that the label of the x-axis in Fig S9B is not 

appropriately aligned. 
 

Author Rebuttal, third revision: 

 

  

Reviewers' Comments:  

 

Reviewer #1: 

Remarks to the Author: 
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I’m satisfied with the revision. One minor point is that the label of the x-axis in Fig S9B is not 

appropriately aligned. 

We’ve amended the alignment 

 

Final Decision Letter: 
15th Dec 2022 

 

Dear Dr. Cooper, 

 

I am delighted to say that your manuscript "SpliceVault predicts the precise nature of variant-

associated mis-splicing." has been accepted for publication in an upcoming issue of Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 

style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any 

additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the 

next available issue. You can find out your date of online publication by contacting the Nature Press 

Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 

Public Relations or Press Office about your paper, as they might be interested in promoting its 

publication. This will allow them time to prepare an accurate and satisfactory press release. Include 

your manuscript tracking number (NG-AN59054R4) and the name of the journal, which they will need 

when they contact our Press Office. 

 

Before your paper is published online, we shall be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 
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enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 

research with us through the traditional subscription access route or make their paper immediately 

open access through payment of an article-processing charge (APC). Authors will not be required to 

make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-

faqs"> compliance</a> with funder and institutional open access mandates. If your research 

is supported by a funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where 

possible. For authors selecting the subscription publication route, the journal’s standard licensing 

terms will need to be accepted, including <a href="https://www.nature.com/nature-portfolio/editorial-

policies/self-archiving-and-license-to-publish. Those licensing terms will supersede any other terms 

that the author or any third party may assert apply to any version of the manuscript. 

 

Please note that Nature Portfolio offers an immediate open access option only for papers that were 

first submitted after 1 January, 2021. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

An online order form for reprints of your paper is available at <a 

href="https://www.nature.com/reprints/author-

reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 

and your institutions' public affairs office know that they are also welcome to order reprints by this 

method. 

 

If you have not already done so, we invite you to upload the step-by-step protocols used in this 
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manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 

complete the upload by the time you receive your manuscript proofs, we can insert links in your article 

that lead directly to the protocol details. Your protocol will be made freely available upon publication of 

your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 

reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 

protocols and paper with increased utility and visibility. Please submit your protocol to 

https://protocolexchange.researchsquare.com/. After entering your nature.com username and 

password you will need to enter your manuscript number (NG-AN59054R4). Further information can 

be found at https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#protocols 

 

 

Sincerely, 

 

Michael Fletcher, PhD 

Senior Editor, Nature Genetics 

 

ORCiD: 0000-0003-1589-7087 

 

 

Click here if you would like to recommend Nature Genetics to your librarian 

http://www.nature.com/subscriptions/recommend.html#forms 


