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1 Methods 

 

1.1 Data sources 

Complete bacterial plasmids were retrieved from NCBI Nucleotide (Refseq and Genbank) on 

1st May 2019 using in-house software (https://github.com/AlexOrlek/bacterialBercow) [1]. 

This software pipeline conducts initial curation, including automated deduplication of identical 

plasmids; a list of deduplicated identical plasmid accessions is recorded. Key metadata was 

also retrieved using the pipeline: BioSample accession ids, BioProject accession ids, submitter 

contact name, submitter affiliation. In addition, for Refseq accessions, cognate GenBank 

accession ids and GenBank BioProject accessions ids were retrieved. This metadata was used 

to identify a subset of identical plasmids for manual examination (see below). 

Additional BioSample metadata was subsequently retrieved from NCBI BioSample using in-

house software (https://github.com/AlexOrlek/getNCBImetadata) [2]. The following canonical 

(‘harmonized’) [3] BioSample attribute names were specified for retrieval: 

collection_date, host, lab_host, isolation_source, substrate, tissue, host_body_habitat, host_body_product, 

host_description, host_disease, host_substrate, host_tissue_sampled, plant_body_site, plant_product, 

sample_name, strain, sample_type, geo_loc_name, lat_lon, env_broad_scale, env_local_scale, env_medium, 

env_package, project_name, culture_collection, biomaterial_provider, ref_biomaterial, specimen_voucher, 

reference_material, derived_from, description 

 

Hierarchical taxonomic metadata (phylum to species) was derived from taxids using the ete3 

package [4]. 

 

1.2 Data curation 

1.2.1 Determining valid location names and latitude/longitude coordinates 

Geographic location names and latitude/longitude coordinates were retrieved from the 

geo_loc_name and lat_lon fields, respectively. Firstly, case-insensitive matching to the 

following list of words was used to exclude invalid locations (geo_loc_name field) and 

latitude/longitude coordinates (lat_lon field): 

‘missing’, ‘-‘, ‘n/a’, ‘unknown’, ‘not collected’, ‘not applicable’, ‘na’, ‘none’, ‘not available’, 

‘not determined’, ‘not recorded’, ‘n.a.’ 

In addition, the following Python regex was used to confirm that lat_lon coordinates were 

correctly formatted: 

Code snippet 1. Python regex to validate lat_lon coordinates. 

regexObj=re.compile(r’\d+\.?\d* [NS] \d+\.?\d* [WE]’) 

match=re.search(regexObj,latlon) 

 

 

https://github.com/AlexOrlek/bacterialBercow
https://github.com/AlexOrlek/getNCBImetadata
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1.2.2 Geocoding methods 

Note, geocoding methods were informed by an initial intention to achieve high geospatial 

resolution; however, BioSample geographic location names are provided at country-level 

resolution, so simply identifying countries, and reverse-geocoding to broader categories where 

necessary would have been sufficient for fitting the GAM models. 

Unique valid location names were used to retrieve geocoding place predictions from the Google 

Place Autocomplete service, accessed via the googleway package [5] (googleway argument: 

place_type=‘geocode’); this returns up to five place predictions, ordered by relevance. 

Associated geocoded latitude and longitude coordinates were subsequently retrieved through a 

Google Place Details request. If the top hit geocoded place name description was an exact and 

unambiguous match to the BioSample place name (see below), the geocoded place prediction 

and associated coordinates were accepted; otherwise, manual geocoding was conducted. 

Determining whether top hit geocoded place name predictions from Google Place 

Autocomplete match exactly to BioSample geographic location names: 

Matching between top hit geocoded place name descriptions and BioSample place names was 

assessed by searching for matching substrings using the stringr R package (Code snippet 2). 

An exact match occurred when there were no unmatched substrings in either the geocoded 

place description or BioSample place name. 

Code snippet 2. R code to identify exact matches between top hit geocoded place name 

descriptions and BioSample place names. 

library(stringr) 

##Example data 

BioSamplePlace<-"Myanmar:Yangon" 

GooglePlaceDescription<-"Yangon, Myanmar" #predicted top hit 

##Code snippet 

BioSamplePlace<-tolower(BioSamplePlace) 

GooglePlaceWords<-

unlist(lapply(strsplit(GooglePlaceDescription,', ',fixed=T), function(x) x=tolower(x))) 

GooglePlaceNchar<-sum(sapply(GooglePlaceWords,nchar)) 

 

#for each Word in GooglePlaceWords, check for match in BioSamplePlace; if there is a matchi

ng substring, add to GoogleNCharMatched counter and remove matching substring from BioSampl

ePlace 

GooglePlaceNCharMatched<-0 

for (Word in GooglePlaceWords) { 

  NCharMatched<-nchar(str_extract(BioSamplePlace,Word)) 

  if (is.na(NCharMatched)) { 

    NCharMatched<-0 
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  } 

  GooglePlaceNCharMatched<-GooglePlaceNCharMatched+NCharMatched 

  BioSamplePlace<-str_remove(BioSamplePlace,Word) 

} 

BioSamplePlace<-gsub("[[:punct:]]", "", BioSamplePlace) 

BioSamplePlace<-gsub("[[:space:]]", "", BioSamplePlace) 

NCharUnmatched_BioSamplePlace<-nchar(BioSamplePlace) 

NCharUnmatched_GooglePlace<-GooglePlaceNChar-GooglePlaceNCharMatched 

#In this case, there are 0 unmatched characters for both GooglePlace and BioSamplePlace... 

i.e. exact match 

 

Determining whether top hit place name predictions are ambiguous: 

If an exact match was confirmed (see above), the place prediction was not automatically 

accepted unless the place name was unambiguous. Specifically, if the top hit place name from 

the “main_text” field [6] was identical to that of other place prediction(s), and these 

prediction(s) were also equal or higher in the place type hierarchy (defined in the table below), 

the top hit was flagged as ambiguous. 

 

Supplementary Table 1. Hierarchy of Google Place types from country through to precise 

local-level locations 

Place type(s) Hierarchical 

index 
Hierarchical category 

political 

colloquial_area 

geocode 

NA* vague location 

country 1 hierarchical location 

administrative_area 

administrative_area_level_1 
2 

hierarchical location 

administrative_area_level_2 3 hierarchical location 

administrative_area_level_3 4 hierarchical location 

administrative_area_level_4 5 hierarchical location 

administrative_area_level_5 6 hierarchical location 

postal_town 

locality 
7 

hierarchical location 

sublocality 

sublocality_level_1 
8 

hierarchical location 

sublocality_level_2 9 hierarchical location 

sublocality_level_3 10 hierarchical location 

sublocality_level_4 11 hierarchical location 
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sublocality_level_5 12 hierarchical location 

neighborhood 13 hierarchical location 

premise 

subpremise 

postal_code 

natural_feature 

airport 

park 

point_of_interest 

street_address 

route 

intersection 

14 local-level location 

Place types are Google Place geocoding place types:  

(https://developers.google.com/maps/documentation/geocoding/overview#Types). The hierarchical ordering of 

these place types was determined by this author. Only the first place type of a compound place type was used to 

assess place type hierarchy (e.g. only “locality” for a compound place type such as “locality, political, geocode”). 

*If the top hit autocomplete place prediction is a “vague location” and has the same place name (main_text) as 

another hit, it is flagged as ambiguous, unless all other hits are local-level locations 

  

Following geocoding, for BioSample accessions with available metadata, internal consistency 

between geocoded coordinates and lat_lon field coordinates was assessed, and discrepancies 

manually resolved (referring to source literature). For downstream analysis, curated 

latitude/longitude coordinates were reverse geocoded at the level of country and higher-level 

groupings: European Union (EU) countries (including the UK); and World Bank income 

groupings [7]. 

 

1.2.3 Curation of collection date and host/isolation source metadata 

Valid collection dates were extracted from the collection_date field using regexes given in 

Code snippet 3. 

Code snippet 3. Python regexes used to extract valid collection dates. 

#Major collection date formats                         #Example matches 

format1=re.compile(r'^\d\d-[A-Z|a-z]{3,9}-\d\d\d\d$')  #05-Jun-2020 or 22-April-2020 

format2=re.compile(r'^[A-Z|a-z]{3,9}-\d\d\d\d$')       #Apr-2020 or June-2020 

format3=re.compile(r'^\d\d\d\d-\d\d-\d\d$')            #2020-04-22 

format4=re.compile(r'^\d\d\d\d-\d\d$')                 #2020-04 

format5=re.compile(r'^\d\d\d\d$')                      #2020 

format6=re.compile(r'^\d{1,2}-[A-Z|a-z]{3}-\d\d$')     #5-Jun-20 

format7=re.compile(r'^[A-Z|a-z]{3}-\d\d$')             #Apr-20 

format8=re.compile(r'^\d\d\d\d/\d\d\d\d$')             #2020/2021 

 

https://developers.google.com/maps/documentation/geocoding/overview#Types
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Regexes were also used to curate host/isolation source metadata (Code snippets 4–8) from the 

following fields: host, isolation_source, host_description, env_broad_scale, env_local_scale, 

env_medium, description. Matches were manually curated. Code snippet 5 covers globally 

important livestock species (cattle, pigs, chicken, sheep, goats, ducks, turkeys) [8,9]. Matches 

to processed livestock products (e.g. dairy, ham) were manually excluded. Code snippet 6 

covers major aquaculture species [10]. Code snippet 7 represents agricultural crop species 

(compiled from FAOSTAT; http://www.fao.org/faostat/en/#data/), bacterial pathogens of 

crops [11], and agriculture-related words (note that ‘fish farm’ was excluded from matches to 

‘farm’). Matches to wild plants or processed agricultural produce (e.g. sugar) were manually 

excluded. Code snippet 8 was used to identify sewage samples; as far as possible (using 

available metadata) matches were restricted to human sewage samples; if metadata indicated 

industrial wastewater or livestock/agricultural wastewater, matches were excluded. 

 

Code snippet 4. Python regex used to identify human samples. 

human_regex=re.compile(r'\bhomo\b|h.? sapiens|homosapiens|human|patient|clinical|hospital|\

bman\b|woman|adult|child|infant|neonate|person',re.IGNORECASE) 

 

Code snippet 5. Python regexes used to identify livestock samples. 

cow_regex=re.compile(r'\bbos\b|b.? taurus|\bcows?\b|cattle|bovid|bovine|calf|calves|calving

|bull|bullock|heifer|springer|steer|veal|udder|mastitis|beef|steak|brisket|sirloin|t-

bone',re.IGNORECASE) 

pig_regex=re.compile(r'\bsus\b|s.? scrofa|\bpigs?\b|swine|\bhogs?\b|piglet|sow|barrow|\bgil

ts?\b|shoat|porcine|pork|trotter',re.IGNORECASE) 

chicken_regex=re.compile(r'gallus|chicken|rooster|\bcocks?\b|\bhens?\b|pullet|broiler|chook

|chick|poultry|\beggs?\b',re.IGNORECASE) 

sheep_regex=re.compile(r'\bovis\b|o.? aries|sheep|lamb|\bewes?\b|\bram\b|hogget|\bovine\b',

re.IGNORECASE) 

goat_regex=re.compile(r'capra|aegagrus|\bhircus\b|goat|\bkids?\b|caprine',re.IGNORECASE) 

duck_regex=re.compile(r'\banas\b|platyrhynchos|duck',re.IGNORECASE) 

turkey_regex=re.compile(r'meleagris|gallopavo|turkey',re.IGNORECASE) 

 

Code snippet 6. Python regex used to identify aquaculture samples. 

aquaculture_regex=re.compile(r'fish farm|aquaculture|pisciculture|mariculture|\bcarps?\b|Ct

enopharyngodon|C.? idellus|Hypophthalmichthys|H.? molitrix|H.? nobilis|Cyprinus carpio|C.? 

carpio|tilapia|Oreochromis|O.? niloticus|Carassius|\bCatla\b|\bsalmon\b|\bSalmo\b|\broho\b|

\brohu\b|\brui\b|Labeo rohita|L.? rohita|catfish|Pangasius|Milkfish|\bChanos\b|\bClarias\b|

Wuchang bream|Megalobrama amblycephala|M.? amblycephala|\btrouts?\b|Oncorhynchus mykiss|O.?

 mykiss|Mylopharyngodon piceus|M.? piceus|\bSnakehead\b|Channa argus|C.? argus|\bshrimps?\b

|Penaeus vannamei|P.? vannamei|crawfish|crayfish|Procambarus clarki|P. clarkii|Chinese mitt

en crab|Eriocheir sinensis|E.? sinensis|\bprawns?\b|Penaeus monodon|P.? monodon|Macrobrachi

http://www.fao.org/faostat/en/#data/
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um|\boysters?\b|Crassostrea|Japanese carpet shell|Ruditapes|\bScallops?\b|Pectinidae|\bmuss

els?\b|Mytilidae|Constricted tagelus|Sinonovacula constricta|S.? constricta|\bcockles?\b|An

adara granosa|A.? granosa|Chinese softshell turtle|Trionyx sinensis|T.? sinensis|sea cucumb

er|Apostichopus japonicus|A.? japonicus',re.IGNORECASE) 

 

Code snippet 7. Python regex used to identify (non-livestock) agriculture samples. 

agriculture_regex=re.compile(r'agricultur|horticultur|floricultur|viticultur|\bfarms?\b|\bc

rops?\b|\bpastures?\b|\bpaddy\b|\bpaddies\b|greenhouse|\bgrove\b|orchard|plantation|vineyar

d|\bleaf\b|leaves|\bstems?\b|leaf|leaves|phyllosphere|\broots?\b|\bseeds?\b|\bflowers?\b|\b

tubers?\b|Fruit|\bBeans?\b|Berry|Berries|Peanut|\bNuts?\b|\bSeeds?\b|\bAgave\b|Almond|\bAni

se\b|badian|fennel|coriander|\bApples?\b|Apricot|Areca|Artichoke|Asparagus|Avocado|Bambara|

Banana|Barley|Bast ?fibre|Buckwheat|Cabbage|Canary seed|\bCarobs?\b|Turnip|Carrot|Cassava|C

astor|Cauliflower|Broccoli|Cereal|Cherries|Cherry|Chestnut|Chick ?pea|Chicory|Chillies|Chil

li|\bDates?\b|Date palm|Eggplant|Aubergine|\bFigs?\b|Flax|\bFonio\b|Citrus|Garlic|Ginger|Gr

ain|Pomelos|Shaddock|Grapes?|Hemp|Hempseed|\bHops?\b|Jojoba|juniper|Jute|Kapok|Karite|\bShe

a\b|sheabutter|Kiwi|Kola|\bLeeks?\b|Lemon|\bLimes?\b|Lentil|Lettuce|Chicory|Linseed|Lupin|M

aize|Mango|mangosteen|guava|Manila fibre|\babaca\b|\bMate\b|Melon|Millet|Mustard|Nutmeg|\bm

ace\b|cardamom|\bOats?\b|Oil ?palm|Palm ?oil|Oil ?seed|Pepper|Cinnamon|Clove|Cocoa|Coconut|

Coffee|Coir|Cow ?pea|Cucumber|Gherkin|Currant|Okra|Olive|Onion|shallot|Orange|Papaya|Pawpaw

|Peach|Nectarine|\bPears?\b|\bPeas?\b|Peppermint|Persimmon|Pineapple|Pistachio|Plantain|\bP

lums?\b|sloe|Poppy|Potato|\bPulses?\b|Pumpkin|raisin|\bsquash\b|\bsquashes\bgourd|Pyrethrum

|Quince|Quinoa|Ramie|Rapeseed|canola|colza|\bRice\b|Rubber|\bRye\b|Safflower|cotton|\bSago\

b|Sesame|Sisal|Sorghum|Soybean|Spinach|Sugarbeet|Sugarcane|\bSugar\b|Sunflower|Tallowtree|T

angerine|mandarin|clementine|satsuma|\bTaro\b|cocoyam|\bTea\b|Tobacco|Tomato|Triticale|\bTu

ng\b|Vanilla|Vegetable|Vetch|Walnut|Watermelon|Wheat|Yam|Yautia|goji|Prunus|Pimpinella anis

um|Illicium verum|Foeniculum vulgare|Coriandrum sativum|Malus domestica|Areca catechu|Cynar

a cardunculus|Asparagus officinalis|Persea americana|Vigna subterranea|Musa|Hordeum vulgare

|Vaccinium corymbosum|Bertholletia excelsa|Vicia|Fagopyrum esculentum|Brassica|Phalaris can

ariensis|Ceratonia siliqua|Daucus carota|Anacardium occidentale|Manihot esculenta|Ricinus c

ommunis|Castanea|Cicer arietinum|Cichorium intybus|Capsicum |Cinnamomum verum|Syzygium arom

aticum|Theobroma cacao|Cocos nucifera|Coffea|Vigna unguiculata|Vaccinium Oxycoccus|Cucumis 

sativus|\bRibes\b|Phoenix dactylifera|Solanum melongena|\bFicus\b|Linum usitatissimum|\bAll

ium\b|Zingiber officinale|\bVitis\b|\bArachis\b|Cannabis|Humulus lupulus|Simmondsia chinens

is|Corchorus capsularis|Ceiba pentandra|Vitellaria paradoxa|Actinidia|\bCola\b|juniperus co

mmunis|Lens culinaris|Lens esculenta|Lactuca sativa|Cichorium intybus|Linum usitatissimum|L

upinus|Zea mays|Mangifera|Garcinia mangostana|Metroxylon sagu|Psidium guajava|Ilex paraguar

iensis|Benincasa|Citrullus|Cucumis|Panicum|Myristica fragrans|Elettaria cardamomum|Amomum|A

vena sativa|Elaeis|Attalea maripa|Abelmoschus esculentus|Olea|\bCarica\b|\bPyrus\b|Pisum sa

tivum|Piper|\bMentha\b|Diospyros|Cajanus cajan|Ananas|Pistacia|Papaver somniferum|Solanum t

uberosum|Cucurbita|Tanacetum cinerariaefolium|Cydonia|Boehmeria nivea|\bRubus\b|Oryza|Hevea

 brasiliensis|Secale cereale|Carthamus tinctorium|Gossypium|Sesamum|Agave sisalana|Glycine 

max|Spinacia oleracea|Fragaria|Phaseolus vulgaris|Beta vulgaris|Saccharum|Helianthus annuus

|Ipomoea batatas|Triadica sebifera|Colocasia esculenta|Camellia sinensis|Nicotiana|Solanum 

lycopersicum|Triticosecale|Vernicia fordii|Juglans|Citrullus lanatus|Triticum aestivum|Dios

corea|Xanthosoma|Lycium barbarum|Pseudomonas syringae|Ralstonia solanacearum|Agrobacterium 

tumefaciens|Xanthomonas oryzae|Xanthomonas campestris|Xanthomonas axonopodis|Erwinia amylov



9 

ora|Xylella fastidiosa|Dickeya dadantii|Dickeya solani|Pectobacterium carotovorum|Pectobact

erium atrosepticum',re.IGNORECASE)  

 

Code snippet 8. Python regex used to identify sewage samples. 

sewage_regex=re.compile(r'activated sludge|sewage|sewer|waste-

water|waste water|water treatment|effluent',re.IGNORECASE) 

 

 

1.2.4 Identification and exclusion of laboratory and commercial samples 

All retrieved attribute fields were searched for the terms “commercial”, “biocontrol”, “-cide” 

(e.g. biocide). The host and lab_host attribute fields were searched for animal/plant model 

organism names (Code snippet 9). Plant and animal model laboratory organisms were compiled 

based on literature reports [12–15]. 

Code snippet 9. Python regex to identify laboratory model organisms. 

lab_model_regex=re.compile(r’Mus musculus|M.? musculus|mouse|Rattus|R.? norvegicus|\brat\b|

Danio rerio|D.? rerio|zebrafish|Drosophila|D.? melanogaster|fruit fly|Caenorhabditis elegan

s|C.? elegans|nematode|Sepiola atlantica|S.? atlantica|Bobtail squid|Arabidopsis|A.? thalia

na|thale cress|Galleria mellonella|G.? mellonella|greater wax moth|honeycomb moth|Lotus jap

onicus|L.? japonicus|Medicago|M.? trunculata|M.? sativa|barrelclover|alfalfa|Brachypodium|B

.? distachyon|false brome|Oryza|\brice\b|Nicotiana|N.? benthamiana|Glycine|soybean|Triticum

|\bwheat\b|Zea mays|maize|Brassica napus|rapeseed|oilseed rape|Populus|P.? trichocarpa’,re.

IGNORECASE) 

 

Additional laboratory samples were flagged using the regex below, which was searched against 

the following fields:  

Title (xml element: .//Description/Title) 

Comment (xml element: .//Description/Comment/Paragraph) 

As well as the following attribute fields: isolation_source, sample_type, env_broad_scale, 

env_local_scale, env_medium 

Code snippet 10. Python regex to identify laboratory samples. 

lab_regex=re.compile(r’\blab\b|laboratory’,re.IGNORECASE) 

 

Additionally, plasmid sequences were megaBLAST queried against the UniVec vector 

database (https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/; evalue=1e-8, 

max_target_seqs=10000; 95% identity and 50% query coverage). Plasmids matching the 

database were excluded as putative vector plasmids. 

 

https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
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1.2.5 Identification and curation of culture collection samples 

Culture collection samples were deemed to warrant enhanced curation for the following 

reasons. Firstly, a given culture collection sample may be sequenced by multiple researchers 

and shared between collections (accruing different synonymous culture collection identifiers). 

Secondly, culture collection metadata may be error-prone (e.g. instead of original collection 

date/location, submitters may provide a later acquisition date/location). To identify culture 

collection samples, culture collection acronyms and names were compiled from the Word 

Federation for Culture Collection website 

(http://www.wfcc.info/ccinfo/collection/by_acronym/; accessed 6th Jun 2019); additional 

acronyms were compiled from a list produced by the International Journal of Systematic and 

Evolutionary Microbiology [16]. A regex was used to identify culture collection identifiers in 

the culture_collection attribute field: 

Code snippet 11. Python regex to identify culture collection identifiers. 

#Generating a regex from a list of acronyms (“acronyms_list”) #Example matches: 

acronym_regex=[r’\b%s.{0,3}[0-9]*\b’%a for a in acronyms]     #ATCC43845 or ATCC : 43845 

combined_acronym_regex=re.compile(r’|’.join(acronyms)) 

 

Where a match was not found using the above approach, other BioSample fields (specified 

below) were searched using regexes defined in Code snippets 11 and 12; in addition, fuzzy 

string matching implemented with the Python fuzz module [17] was used to search for culture 

collection names (e.g. “American Type Culture Collection”). All matches from this step were 

manually examined. 

Sample name identifier (xml element: Id[@db_label=”Sample name”]) 

Title (xml element: .//Description/Title) 

Comment (xml element: .//Description/Comment/Paragraph) 

As well as the following attribute fields: isolation_source, sample_name, strain, 

geo_loc_name, project_name, ref_biomaterial, description, reference_material, 

biomaterial_provider 

 

Code snippet 12. Additional Python regex to identify culture collection identifiers. 

descriptive_regex=re.compile(r’culture collection|type strain’,re.IGNORECASE) 

 

Culture collection samples were curated using external metadata from the BacDive database. 

This database contains aggregated bacterial strain metadata, derived and curated from primary 

culture collection databases [18,19]. Consequently, BacDive should be a reliable source of 

metadata, which can be used to externally validate NCBI BioSample metadata. Metadata on 

isolation source, geographic location, and culture collection synonyms was downloaded from 

BacDive (https://bacdive.dsmz.de/isolation-sources; accessed 4th Jul 2019). In addition, 

available collection date metadata was kindly provided by Dr Lorenz Reimer. BacDive 

metadata was used to guide manual curation of BioSample metadata (host, isolation source, 

geographic location, latitude/longitude, collection date); additions and corrections were 

implemented in accordance with BacDive metadata, and supported by referring back to original 

http://www.wfcc.info/ccinfo/collection/by_acronym/
https://bacdive.dsmz.de/isolation-sources


11 

source literature. Furthermore, culture collection synonym information from BacDive was used 

to facilitate manual deduplication of culture collection samples sharing synonymous culture 

collection identifiers. Deduplication of samples with identical/synonymous culture collection 

identifiers favoured retention of samples with higher assembly contiguity; plasmids linked to 

excluded BioSample accessions were excluded from the curated plasmid dataset. 

 

1.2.6 Filtering putative replicate plasmids based on pairwise sequence similarity and 

metadata sharing 

Pairs of plasmids with high sequence similarity were identified using mash (mash distance 

<0.1) [20] followed by BLASTN comparisons (>95% nucleotide identity, >50% mean 

coverage breadth; https://github.com/AlexOrlek/ATCG). Then, retention of links between 

similar plasmids for downstream filtering, was determined by metadata sharing, according to 

the decision tree below. An igraph network [21] was constructed from retained links (edge-

weighted by nucleotide identity); the network of remaining linked plasmids was clustered using 

the infomap algorithm [22], and one representative plasmid per cluster was selected for 

inclusion in the final plasmid dataset (along with the plasmids that did not share sequence 

similarity and metadata with one or more other plasmids, and were therefore not subjected to 

the described filtering steps). 

 

 

Supplementary Figure 1. Decision tree for filtering similar plasmids with shared metadata; 

non-independent plasmid pairs (similar plasmids sharing metadata) were filtered using a 

clustering approach. Note that a species/country/collection year/primary BioProject identifier 

field was not considered the same if data was missing for both members of the pair (i.e. 

discounting shared missingness). 

 

https://github.com/AlexOrlek/ATCG
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1.3 Plasmid sequence annotation 

 

Supplementary Table 2. Summary of plasmid sequence annotation methods. 

Plasmid 
annotation 

Annotation method Notes / software parameters 

Plasmid 
replicons 

PlasmidFinder [23] 
(Enterobacteriaceae and Gram-
positive databases retrieved 25th 

September 2019) 

BLASTN (80% sequence identity and 60% replicon 
sequence coverage breadth thresholds). 
 

Antibiotic 
resistance 
genes 

ResFinder [24,25] (database 
retrieved 25th September 2019) 

BLASTN (parameter: max_target_seqs=5000; 90% 
sequence identity and 60% coverage breadth 
thresholds). 
The phenotypes.txt file was used to map detected 
beta-lactam resistance genes to resistance types of 
interest (ESBL, carbapenem). 

Antibacterial 
biocide/metal 
resistance 
genes 

BacMet [26] database of 
experimentally validated proteins 
(retrieved 30th September 2019) 

BLASTX (parameters: evalue=0.001, 
max_target_seqs=1000; 90% sequence identity and 
30 bp alignment length thresholds). 

Virulence 
genes 

Virulence Factor Database (VFDB) 
[27] database of experimentally 
validated proteins (retrieved 15th 

October 2019) 

BLASTX (parameters: evalue=1e-5, 
max_target_seqs=5000; 75% identity and 50% 
coverage thresholds). 

Conjugative 
systems 

CONJscan module of MacSyFinder 
[28] (https://github.com/gem-

pasteur/Macsyfinder_models/comm
its/master/models/Conjugation). 

MacSyFinder parameter: --replicon-topology 
circular. 
Firstly, plasmid protein-coding genes were annotated 
with Prodigal [29], using “anonymous mode” for 
smaller plasmids and “normal mode” for larger 
plasmids (≥100 kb). Plasmid proteomes were 
searched using the profiles defined previously [28], 
with an additional profile for the novel MOBM 
relaxase, downloaded from MOBfamDB [30]. 
Complete conjugative systems were defined 
according to previously described gene content and 
inter-gene distance stipulations [31]. MOB-relaxases 
and complete conjugative systems were identified by 
parsing the output files. 

Integrons IntegronFinder (v2.0) [32] IntegronFinder parameters: --local-max (for 
increased sensitivity), --circ (to set replicon topology 
as circular). 

Insertion 
sequences 

ISEScan (v1.7.1) [33] 
Default parameters 

 

 

1.4 Exploratory analysis of categorical and continuous variables 

The co-occurrence of ARG types (binary categorical outcome variables) was explored based 

on ARG type presence/absence in the curated plasmid dataset, using similarity metrics (Jaccard 

index and overlap coefficient) (Supplementary Figure 2). Regarding explanatory variables, 

exploratory analysis of categorical variables was used to determine factor level re-coding 

(Supplementary Tables 3–5; Supplementary Figure 3). Correlation between collection dates 

https://github.com/gem-pasteur/Macsyfinder_models/commits/master/models/Conjugation
https://github.com/gem-pasteur/Macsyfinder_models/commits/master/models/Conjugation
https://github.com/gem-pasteur/Macsyfinder_models/commits/master/models/Conjugation
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and create dates was assessed to determine validity of imputing collection dates with create 

dates (Supplementary Figures 4, 5). 

 

 

Supplementary Figure 2. Calculation of Jaccard index and overlap coefficient similarity 

metrics is illustrated using a Venn diagram (an example is shown for co-occurrence between 

aminoglycoside and sulphonamide ARG types). 

 

Supplementary Table 3. Replicon carriage characteristics of the top 10 most frequent taxa 

(at species-level) within each factor level of the host taxonomy explanatory variable (based 

on the dataset of 14143 plasmids). 

Enterobacteriaceae 

Species Total plasmids 
Replicon carriage 

Single-replicon Multi-replicon Untyped Typed 

Escherichia coli 1943 150 1249 544 1793 (92.3) 

Klebsiella 

pneumoniae 
1103 92 645 366 1011 (91.7) 

Salmonella 

enterica 
596 60 325 211 536 (89.9) 

Enterobacter 

cloacae 
136 15 71 50 121 (89) 

Citrobacter 

freundii 
115 14 76 25 101 (87.8) 

Shigella sonnei 88 5 83 0 83 (94.3) 

Enterobacter 

hormaechei 
85 11 37 37 74 (87.1) 

Klebsiella 

oxytoca 
64 13 38 13 51 (79.7) 

Klebsiella 

aerogenes 
41 11 24 6 30 (73.2) 

Shigella flexneri 40 3 30 7 37 (92.5) 

Proteobacteria (non-Enterobacteriaceae) 

Species Total plasmids 
Replicon carriage 

Single-replicon Multi-replicon Untyped Typed 

Acinetobacter 

baumannii 
245 245 0 0 0 (0) 
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Yersinia pestis 116 3 103 10 113 (97.4) 

Xanthomonas 

citri 
80 80 0 0 0 (0) 

Helicobacter 

pylori 
68 68 0 0 0 (0) 

Pseudomonas 

aeruginosa 
64 49 13 2 15 (23.4) 

Phaeobacter 

inhibens 
62 62 0 0 0 (0) 

Piscirickettsia 

salmonis 
57 57 0 0 0 (0) 

Zymomonas 

mobilis 
51 51 0 0 0 (0) 

Rhizobium 

leguminosarum 
49 49 0 0 0 (0) 

Serratia 

marcescens 
49 5 26 18 44 (89.8) 

Firmicutes 

Species Total plasmids 
Replicon carriage 

Single-replicon Multi-replicon Untyped Typed 

Staphylococcus 

aureus 
316 18 163 135 298 (94.3) 

Bacillus 

thuringiensis 
306 275 31 0 31 (10.1) 

Lactobacillus 

plantarum 
251 168 83 0 83 (33.1) 

Enterococcus 

faecium 
159 22 105 32 137 (86.2) 

Lactococcus 

lactis 
151 94 55 2 57 (37.7) 

Bacillus cereus 104 98 6 0 6 (5.8) 

Bacillus 

anthracis 
70 36 34 0 34 (48.6) 

Staphylococcus 

epidermidis 
65 9 39 17 56 (86.2) 

Clostridium 

botulinum 
60 60 0 0 0 (0) 

Enterococcus 

faecalis 
60 10 38 12 50 (83.3) 

other 

Species Total plasmids 
Replicon carriage 

Single-replicon Multi-replicon Untyped Typed 

Borreliella 

burgdorferi 
285 285 0 0 0 (0) 

uncultured 

bacterium 
267 210 50 7 57 (21.3) 

Borreliella 

afzelii 
54 54 0 0 0 (0) 

Borreliella 

garinii 
33 33 0 0 0 (0) 

Rhodococcus 

hoagii 
29 29 0 0 0 (0) 

Bifidobacterium 

longum 
27 27 0 0 0 (0) 

Chlamydia 

trachomatis 
27 27 0 0 0 (0) 
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Corynebacterium 

glutamicum 
21 21 0 0 0 (0) 

Mycobacterium 

chimaera 
21 21 0 0 0 (0) 

Salinibacter 

ruber 
20 20 0 0 0 (0) 

Taxonomic metadata was present for all plasmids, although not always informative (e.g. uncultured bacterium). 

For replicon carriage, single- and multi-replicon categories reflect the number of unique replicon types detected 

(e.g. IncFIB, IncFIC type is categorised multi-replicon whereas IncFIC, IncFIC is categorised single-replicon). 

Untyped means no replicon loci were detected on a plasmid. Typed means one or more replicon loci were 

detected on a plasmid. The Typed column includes number of plasmids replicon typed and % total plasmids 

replicon typed. 

 

Supplementary Table 4. The top 10 most frequent isolation source sub-categories within 

each factor level of the isolation source explanatory variable (based on the dataset of 14143 

plasmids). 

human livestock other 

Sub-category n Sub-category n Sub-category n 

human 2645 aquaculture 192 uncategorised† 5541 

sewage* 309 cow 156 - 4317 

  chicken 155 agriculture†† 623 

  pig 135   

  turkey 26   

  sheep 16   

  poultry 13   

  goat 6   

  goose 4   

  duck 3   

*The sewage sub-category was manually curated with the aim of including only human-derived wastewater. 

†Uncategorised means some taxonomic metadata was present (in any of the following fields used for curating 

isolation sources: host, isolation_source, host_description, env_broad_scale, env_local_scale, env_medium, 

description), but human/livestock/agriculture isolation source was not assigned; “-” indicates no metadata was 

present in any of the fields. BioSample metadata for the 5541 plasmids with ‘uncategorised’ isolation source is 

shown in Supplementary Data 1h. 

††Non-livestock agriculture (this sub-category was ultimately included in the “other” factor level due to a 

relatively small sample size, and a primary interest in human vs livestock categories). 

 

 

Supplementary Table 5. The top 10 most frequent countries within each factor-level of the 

geographic location explanatory variable (based on the dataset of 14143 plasmids) 

high-income 

not elsewhere classified 

middle-income 

not elsewhere classified 

European Union and 

the United Kingdom 
China 

Country n Country n Country n Country n 

South Korea 552 Mexico 150 Germany 328 China 1248 

Japan 355 India 147 United Kingdom 157   

Canada 207 Russia 107 Spain 129   

Australia 115 Brazil 101 France 121   

Switzerland 99 Vietnam 51 Netherlands 85   
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Chile 66 Thailand 49 Denmark 79   

Argentina 62 Malaysia 37 Sweden 66   

Norway 60 Colombia 30 Italy 53   

Hong Kong 42 Nigeria 24 Finland 32   

New Zealand 32 South Africa 24 

Czechia, 

Greece, 

Ireland 

29   

United States other 

Country n Country n 

United States 1491 - 7284 

  Taiwan* 93 

  Antarctica* 58 

  Réunion* 10 

  Nepal† 9 

  
Raas Cabaad, 

Somalia† 
8 

  Tanzania† 7 

  Syria† 6 

  Rwanda† 6 

  The Gambia† 5 

“-” indicates geographic location information was missing. 

“high-income not elsewhere classified”: World Bank high-income countries (not included in other categories). 

“middle-income not elsewhere classified”: World Bank lower-middle income countries (n = 362) and World 

Bank upper-middle income countries (n = 593) combined (not included in other categories). 

“other”: includes plasmids with missing location data, missing World Bank income categorisation (*), or rare 

income category (†) (specifically, World Bank low-income countries, n = 70). 

 

A given plasmid can encode multiple replicon types; therefore, a plasmid can be assigned a 

haplotype representing the combination of encoded replicon types. In total, in the dataset of 

14143 plasmids, there were 555 replicon type combinations (haplotypes). Plasmid replicon 

types can be grouped into higher-level replicon families (e.g. IncFIA, IncFIB etc. belong to the 

IncF replicon family). However, even at the replicon family level, there were 231 haplotypes 

(Supplementary Figure 3).  Hence, for downstream statistical analysis, plasmid replicon types 

were re-coded to produce a 3-level replicon carriage variable (untyped, single-replicon, multi-

replicon). Single- vs multi-replicon factor levels reflect the number of unique replicon types 

detected; for example, an “IncFIB, IncFIC” plasmid would be considered a multi-replicon 

plasmid whereas an “IncFIC, IncFIC” plasmid would be considered a single-replicon type 

plasmid. 
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Supplementary Figure 3. Cleveland dotplot showing the frequency of plasmid replicon family 

haplotypes in the dataset of 14143 plasmids. In total, there were 231 replicon family 

haplotypes. Replicon haplotypes represented by fewer than 10 plasmids are categorised as 

“Other” in the dotplot. For 8230 plasmids, no replicon was detected. 

 

Among plasmids with non-missing collection dates, there was weak correlation (Pearson’s 

r=0.314) between accession create dates and collection dates (Supplementary Figure 4). The 

earliest create date was ~2000, whereas collection dates extended back to the early 20th century, 

so correlation is presumably very poor among plasmids collected pre-2000. However, even 

when restricting to plasmids collected since 2000, correlation remained weak (Pearson’s 

r=318) (Supplementary Figure 5). 
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Supplementary Figure 4. Density scatter plot showing the relationship between collection 

date and create date, for all plasmids with non-missing collection dates. To handle overplotting, 

the datapoints were binned; the density of points within a bin is indicated using a blue-red 

colour gradient. The plot was generated using the stat_bin2d ggplot2 R function combined with 

custom R code available in a GitHub repository (PlasmidARGCarriage v1.0). 

(https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R). 

 

 

 

Supplementary Figure 5. Density scatter plot showing the relationship between collection 

date and create date, for plasmids with post-2000 collection dates. To handle overplotting, the 

datapoints were binned; the density of points within a bin is indicated using a blue-red colour 

https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R
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gradient. The plot was generated using the stat_bin2d ggplot2 R function combined with 

custom R code available in a GitHub repository (PlasmidARGCarriage v1.0). 

(https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R). 

 

 

1.5 Literature search strategy for determining dates of first recorded plasmid 

antibiotic resistance gene (ARG), for each ARG type 

We determined dates of first recorded plasmid-mediated resistance for the 10 ARG types, by 

searching PubMed using the following term (substituting the name of each ARG type): 

(plasmid OR transferable) AND ARG type 

Early articles from the literature search were read, and relevant citations were followed-up until 

a plausible earliest article was retrieved, per ARG type. Separately, relevant review articles on 

the history of antibiotic resistance were retrieved by ad hoc searching, and relevant cited 

articles were read. From this process, we determined the date (year of publication) when the 

first article describing plasmid-mediated resistance was published, for each ARG type. In 

addition, where given, the collection date for the isolate described in the first article was 

determined. 

 

1.6 GAM modelling methods 

GAM models were constructed using the mgcv package [34], with the following structure: 

gam(resistance ~ s(log10PlasmidSize, k = 5, pc = 0) + s(InsertionSequenceDensity, k = 5, pc 

= 0) + s(NumOtherResistanceTypes, k = 5, pc = 0) + s(CollectionDate, k = 5, pc = 0) + 

Integron + BiocideMetalResistance + Virulence + ConjugativeSystem + RepliconCarriage + 

HostTaxonomy + GeographicLocation + IsolationSource, family = ‘binomial’, data = 

FilteredPlasmids.tsv, method = ‘REML’, gamma = 1.5) 

 

The gam.check() function was used to confirm model convergence, and test for non-random 

patterns in residuals (indicative of insufficient basis dimensionality). Smoothing parameters 

were selected using the maximum likelihood (ML) method initially; once model structure was 

confirmed, restricted maximum likelihood (REML) was used. ML/REML reduce overfitting 

compared with other available methods [35]. The gamma parameter was set to 1.5 to reduce 

overfitting [36]. For each GAM, the statistical significance of smooth and parametric 

(categorical) terms was tested using anova.gam() and summary.gam() functions, which 

implement Wald tests [34]. Smooth and parametric effect plots were visualised using mgcViz 

[37].  

  

https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R
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2 Results 

 

2.1 Results of manual examination of identical plasmid accessions 

To better understand redundancies, a subset of identical plasmid accessions which had been 

deduplicated automatically were selected for retrospective manual examination. According to 

NCBI documentation, when submitting to GenBank, BioSample and BioProject accessions 

should be used to delineate different isolates and sequencing projects, respectively [38]. 

However, we identified 8 clusters of identical plasmids comprising accessions with different 

BioSample identifiers, primary BioProject identifiers (the cognate GenBank BioProject 

accession identifier in the case of RefSeq accessions), as well as submitter contact name and 

affiliation (Supplementary Table 6). Manual examination suggested that 4/8 clusters could 

represent independently isolated plasmids (therefore, all plasmids belonging to these clusters 

were retained rather than deduplicated – that is, 4 plasmids that would otherwise have been 

excluded by automated deduplication of identical plasmids were instead retained). Other 

clusters comprised non-independent/redundant accessions (due to re-resubmission with 

semantically equivalent metadata, or sequencing of laboratory mutant derivatives). The same 

types of redundancy emerged when examining clusters of identical plasmids with different 

BioSample/primary BioProject identifiers but shared or missing submitter metadata (an 

arbitrary subsample of 8 of 121 such clusters was examined, see Supplementary Table 7). 

Overall, plausible examples of independently isolated plasmids with 100% identical sequences 

are encountered, but very rarely. GenBank BioProject identifiers do not always delimit 

independent sequencing projects, but if multiple items of metadata are examined, duplicate 

accessions (i.e. redundant or otherwise non-independently isolated) commonly differ in one or 

more items (submitter metadata, BioSample/BioProject identifiers, strain names). These 

findings informed later methods for filtering similar plasmids (excluding replicate plasmids) to 

reduce bias from uneven sampling intensity, where multiple metadata items were used in 

conjunction with sequence similarity thresholds (Supplementary Figure 1).  

Failure to sufficiently delimit independent sampling units and exclude duplicate and replicate 

plasmids accordingly may bias downstream inferences (e.g. of transmission links). Indeed, in 

a recent study, Douarre et al. identified 234 accession clusters comprising identical plasmids 

associated with the same species but different strain names, and concluded that these 

represented cases of intra-species plasmid dissemination [39]. Although the authors conducted 

some manual curation, duplicate clusters identified in our study through manual investigation 

(clusters 8, 10, 11, 13; see Supplementary Tables 6 and 7 below) appear to be spuriously 

included among the 234 intra-species plasmid dissemination clusters reported by Douarre et al. 

(see Supplementary Table 2 in Douarre et al.). 
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Supplementary Table 6. Manual examination of 8 clusters of identical accessions not sharing 

BioSample/primary BioProject identifiers or submitter name/affiliation metadata. 

Clusters BioSample 

accession id 

Primary 

BioProject 

accession id 

Submitter 

name 

Affiliation name Retained 

Cluster 1 

MG710483.1 SAMN10679998 512490 

Fabricio 

Campos 

Federal University of 

Tocantins 

✓ 

NZ_CP010009.1 SAMN03216682 238238 

Hajnalka 

Daligault 

Los Alamos National 

Laboratory 

✓ 

The plasmid accessions were isolated independently from different Bacillus thuringiensis serovars and from 

different isolation sources. According to BioSample metadata, accession MG710483.1 (strain Bti-UFT6.51; 

plasmid pBtiUFT6.51.2; B. thuringiensis serovar israelensis) was isolated from soil in Brazil in 2016; 

accession NZ_CP010009.1 (strain HD 1i; plasmid unnamed11; B. thuringiensis serovar kurstaki) was 

isolated from insect larvae in 2000. Consequently, both accessions were retained based on available 

information. 

More details are provided by Campos et al. [40] who sequenced accession MG710483: 

“In this work, we sequenced two plasmids found in a Brazilian Bacillus thuringiensis serovar israelensis 

strain which showed 100% nucleotide identities with Bacillus thuringiensis serovar kurstaki plasmids.” 

(The other accessions mentioned as identical in Campos et al. (MG710485 and NZ_CP004874.1) actually 

show 99.9% identity and were therefore not detected as identical). 

Accession MG710483.1 was Illumina sequenced and assembled using a reference-mapping approach (using 

accession NZ_CP010009.1 as the reference): 

“DNA sequence assembly using the map to reference function in Geneious version 9.1.8 was used”. 

Cluster 2 

NZ_CP013283.1 SAMN04288432 303961 

Alexei 

Sorokin MICALIS INRA 

 

NZ_CP009344.1 SAMN03010437 236049 

Shannon 

Johnson 

Los Alamos National 

Laboratory 

 

NZ_CP013283.1 is a plasmid from a commercial strain of bioinsecticide (B. thuringiensis serovar israelensis 

strain AM65-52) [41]. My interest was in naturally occurring plasmids, so this accession was excluded. 

NZ_CP009344.1 was isolated from a sewage sample according to BioSample metadata. However, I decided 

to exclude this accession too in case of a transmission link with the plasmid from the commercial strain. 

Cluster 3 

NZ_CP030795.1 SAMN09534371 230403 Peyton Smith CDC ✓ 

NZ_CP018773.2 SAMN06159501 218110 

Rebecca 

Lindsey 

Centers for Disease 

Control and Prevention 

 

Both accessions were submitted by the same institution (CDC), but indicated with different metadata text 

(CDC vs Centers for Disease Control and Prevention). Therefore, these accessions were deduplicated (based 

on a stringent criterion that non-duplicate accessions should have different submitter metadata as well as 

BioSample/BioProject identifiers). 

Cluster 4 

NZ_CP016508.1 SAMN04334629 305824 

Caroline 

Vincent 

Laboratoire de sante 

publique du Quebec 

✓ 

NZ_CP016523.1 SAMN05263513 298211 Roger Johnson 

National Microbiology 

Laboratory at Guelph 

✓ 

NZ_CP016508.1 is from Salmonella enterica subsp. Enterica serovar Heidelberg, strain SH12-003, which 

was isolated from a Canadian (Quebec) hospital patient in 2012, according to BioSample metadata. 

NZ_CP016523.1 is from S. enterica subsp. Enterica serovar Heidelberg, strain SA02DT09004001, which 

was isolated from chicken meat from Canada (British Columbia) in 2009. S. Heidelberg is known to be a 

clonal serovar [42], so these accessions may represent a vertical transmission link between humans and 

poultry (Genevieve Labbé, pers. comm.). It was confirmed that the accessions were not redundant (i.e. did 

not represent re-submission of the same sequencing data) (Genevieve Labbé, pers. comm.). 

NZ_CP016508.1 was Illumina sequenced and assembled using the MIRA assembler 

(https://sourceforge.net/p/mira-assembler/wiki/Home/), with a reference-mapping approach (the reference 

was NZ_CP016511.1) (Genevieve Labbé, pers. comm.). 

Cluster 5 

https://sourceforge/
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NZ_CP025496.1 SAMN04966146 321117 

Douglas 

Merrell 

Uniformed Services 

University 

✓ 

NZ_CP025490.1 SAMN03787328 287576 Ryan Johnson 

Uniformed Services 

University of the 

Health Sciences 

✓ 

NZ_CP025496.1 (Staphylococcus aureus subsp. aureus, strain 3020.C01) and NZ_CP025490.1 (S. aureus 

subsp. aureus, strain 2014.C01) are plasmids from clinical isolates. The isolates were collected from the 

same military battalion on 19th and 12th July 2011, respectively [43]. It was confirmed that these were non-

redundant sequences from independent isolates (D. Scott Merrell, pers. comm.), so both accessions were 

retained. 

Both accessions were Illumina sequenced, and it appears from LaBreck et al. [43] that contigs were assigned 

as plasmid/chromosomal using a reference-guided approach: “contig sequences were compared to each other, 

to published reference genomes, and to PCR, Sanger sequencing, and agarose gel electrophoresis results of 

restriction enzyme digested and non-digested DNA in order to correctly assign contigs as chromosomal or 

plasmid as well as to look for assembly artifacts.” 

Cluster 6 

NZ_CP009457.1 SAMN03078687 260989 Woori Kwak 

Seoul National 

Univerisity 

✓ 

NZ_CP011119.1 SAMN03434891 279015 

Gnanasekaran 

Gopalsamy 

Seoul National 

University 

 

Both accessions were submitted by the same institution, but indicated with different metadata text due to a 

typo). Therefore, these accessions were deduplicated. 

Cluster 7 

NZ_CP016567.1 SAMN05263514 298211 Roger Johnson 

National Microbiology 

Laboratory at Guelph 

✓ 

NZ_CP016509.1 SAMN04334629 305824 

Caroline 

Vincent 

Laboratoire de sante 

publique du Quebec 

✓ 

NZ_CP016567.1 is from S. Heidelberg, strain AMR588-04-00318, which was isolated from chicken faeces 

from Canada (Ontario) in 2013, according to BioSample metadata. NZ_CP016509.1 is from S. Heidelberg, 

strain SH12-003, which was isolated from a hospital patient in Canada (Quebec) in 2012. It was confirmed 

that the accessions were not redundant (Genevieve Labbé, pers. comm.). As mentioned for cluster 4, this may 

represent a vertical rather than horizontal transmission link. 

NZ_CP016509.1 was Illumina sequenced and assembled using the MIRA assembler 

(https://sourceforge.net/p/mira-assembler/wiki/Home/), with a reference-mapping approach (the reference 

was NZ_CP016583.1) (Genevieve Labbé, pers. comm.). 

Cluster 8 

NZ_CP013346.1 SAMN04288116 303954 Fusako Kawai 

Kyoto Institute of 

Technology 

✓ 

NZ_CP009431.1 SAMN03031197 260764 

Yoshiyuki 

Ohtsubo Tohoku university 

 

These accessions (NZ_CP013346.1, strain 203N, culture collection NBRC 111659; NZ_CP009431.1, strain 

203, culture collection NBRC 15033) are not from independent strains; see Ohtsubo et al. [44,45]: “The 

complete genome of NBRC 15033 was determined, but the genes for PEG utilization were missing, and 

repeated cultivation was assumed to be the reason for the loss. From a laboratory stock, we recovered a 

strain, designated 203N, harboring the pegA gene and capable of growing on PEG” [44].  

Except for cluster 2 (see text), at least one accession per cluster was retained, while the second accession was 

either retained (✓) or excluded as a duplicate (), based on manual investigation. Accessions deemed non-

duplicate fulfilled the following criteria: they did not share submitter metadata or BioSample/BioProject 

identifiers, and were confirmed as non-redundant/independently isolated following manual examination and 

submitter correspondence where necessary. 

Acknowledgements: Sincere thanks to the following researchers for their correspondences regarding identical 

plasmid sequences: Genevieve Labbé and Roger Johnson (Cluster 4 and 7); Douglas Scott Merrell (Cluster 5). 

 

https://sourceforge/
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Supplementary Table 7. Manual examination of a subset (n=8) of clusters of identical 

accessions not sharing BioSample/primary BioProject identifiers. 

Cluster BioSample 

accession id 

Primary 

BioProject 

accession id 

Submitter 

name 

Affiliation name Plausibly 

non-

duplicate 

Cluster 9 

MH785255.1 SAMN09846914 486725 

Michal 

Bukowski Jagiellonian University 

✓ 

MH785230.1 SAMN09846907 486718 

Michal 

Bukowski Jagiellonian University 

Accessions MH785255.1 and MH785230.1 are from different strains (Staphylococcus aureus strains tu1 and 

ch8, respectively) [46]. 

Cluster 10 

NZ_CP018678.1 SAMN05362953 328023 - JCVI  

NZ_CP007713.1 SAMN02709859 242902 Hao Xu 

California State 

University, Los 

Angeles 

The associated publication [47] states that “the LAC-4 genome consists of a circular chromosome of 

3,954,354 base pairs and two circular plasmids, one with 8,006 base pairs while the other with 6,076 base 

pairs.” Accessions NZ_CP018678.1 and NZ_CP007713.1 are both 8,006 bp and the recorded strain is 

“LAC4” and “LAC-4” respectively. Therefore, it appears that the accessions represent redundant re-

submission of the same plasmid sequence with slightly different strain name. 

Cluster 11 

NZ_CP011933.1 SAMN03780437 287300 

Kazuhito 

SATOU 

Okinawa Institute of 

Advanced Sciences 

 

NZ_CP011936.1 SAMN03780438 287301 

Kazuhito 

SATOU 

Okinawa Institute of 

Advanced Sciences 

NZ_CP011933.1 and NZ_CP011936.1 (Leptospira interrogans serovar Manilae, strains UP-MMC-NIID LP 

and UP-MMC-NIID HP) are laboratory derivatives (Low and high passage [LP/HP]) of the same ancestral 

strain, as indicated in Satou et al. [48]: “L. interrogans serovar Manilae strain UP-MMC-NIID examined in 

this study had originally been isolated from the blood of a patient with severe leptospirosis. The virulent and 

avirulent variants were derived by serial subculture after 1 (low) and 67 (high) passages, respectively.” 

Cluster 12 

NZ_CP010765.1 SAMN03294493 273605 Boyke Bunk 

Leibniz Institute 

DSMZ 

✓ 

NZ_CP010607.1 SAMN03294494 273606 Boyke Bunk 

Leibniz Institute 

DSMZ 

NZ_CP010765.1 and NZ_CP010607.1 appear to be from distinct strains (Phaeobacter inhibens strains P80 

and P83, respectively), isolated from the same location in Spain [49]. 

Cluster 13 

NC_017720.1 SAMEA3138382 50407 - EBI  

NC_016858.1 SAMN02602988 56087 - NCBI 

These accessions represent a parental strain and its derivative, as indicated in Kröger et al. [50]: 

“Bacterial strain S. enterica serovar Typhimurium SL1344 [accession NC_017720.1] and its parental strain 

ST4/74 [accession NC_016858.1] were used throughout the study”. 

Cluster 14 

NC_017151.1 SAMD00060949 31141 - DDBJ  

NC_017135.1 SAMD00060948 31139 - DDBJ 

NC_017147.1 SAMD00060947 31137 - DDBJ 

NC_017127.1 SAMD00060946 31135 - DDBJ 

NC_017110.1 SAMD00060945 31133 - DDBJ 

NC_017119.1 SAMD00060944 31131 - DDBJ 

NC_017114.1 SAMD00061107 32203 - DDBJ 

NC_013212.1 SAMD00060943 31129 - DDBJ 

These accessions are mutant derivatives from an experimental genome evolution study [51]. 

Cluster 15      
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NZ_CP010759.1 SAMN03294493 273605 Boyke Bunk 

Leibniz Institute 

DSMZ 

✓ 

NZ_CP010602.1 SAMN03294494 273606 Boyke Bunk 

Leibniz Institute 

DSMZ 

NZ_CP010759.1 and NZ_CP010602.1 appear to be from distinct Phaeobacter inhibens strains (P80 and P83, 

respectively). 

Cluster 16      

NC_022605.1 SAMN02370325 222409 

Feng-Jui 

Chen 

National Health 

Research Institutes 

✓ 

NC_017332.1 SAMEA2272282 36647 - EBI 

Accessions NC_022605.1 and NC_017332.1 are from distinct strains of Staphylococcus aureus (strains Z172 

and TW20, respectively) isolated from Taiwan and England, respectively [52,53]. 

Following manual investigation, cluster accessions were assigned as plausibly non-duplicate (✓) or duplicate (). 

In contrast to clusters 1–8, submitters were not contacted to confirm whether plausibly non-duplicate cluster 

accessions were indeed non-duplicates, and therefore none of these accessions were retained following automated 

deduplication. 
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2.2 Results of data retrieval, curation, and cleaning 

 

Supplementary Figure 6. Plasmid dataset curation flowchart. Flowchart indicates numbers of 

plasmid accessions during the curation process from initial retrieval (n=32727) to the final 

filtered dataset of curated plasmids (n=14143). The number of plasmids excluded at curation 

steps is shown on the right. Curation steps are described in text on the left. From the dataset of 

14143 plasmids, a subset of 3639 encoding ≥ 1 major antibiotic resistance gene (ARG) type 

(of the 10 major ARG types modelled), were visualised using Microreact, to show the global 

distribution of antibiotic resistance plasmids in our analysis. 

*Of 16270 plasmids retained after initial curation, 11848 (71%) were linked to a BioSample 

accession (5195 BioSample accessions). 
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Supplementary Data 1. Tabular data (.xlsx file, sheets A–I). The data can be accessed here: 

https://github.com/AlexOrlek/PlasmidAMRCarriage_paper/blob/main/data/Data_S1.xlsx 

a Geocoding results for BioSample accessions for which there was a discrepancy between the 

geocoded latitude/longitude (derived from the geo_loc_name BioSample attribute) and the 

BioSample latitude/longitude (lat_lon attribute). Discrepancies were identified if inter-

coordinate geodesic distance exceeded 50 km, and the lat_lon coordinate fell outside the 

geocoded Google map viewport. A discrepancy category is assigned to indicate whether 

discrepancies are likely to reflect lat_lon coordinate error, or geocoded coordinate error, or the 

reason is unclear (respectively labelled: biosample latlon is invalid, biosample latlon is valid, 

biosample latlon is discrepant). 

b Culture collection samples with linked BacDive metadata are shown; the BacDive-guided 

curation of host, isolation source, and geographic location metadata is indicated. BioSample 

metadata prior to BacDive-guided curation has a pink header while post-BacDive curated 

metadata has a green header. BacDive metadata used for curation is given to the right. In the 

green headed section, yellow fill indicates addition of metadata where metadata was previously 

missing; orange fill indicates correction to previous metadata; blue fill indicates 

addition/clarification to previous metadata. The rightmost columns document the curation 

process and where possible explain discrepancies (in the Notes column). In the Notes column, 

yellow fill indicates cases where species authority date is given instead of genuine collection 

date. 

c Samples with early (pre-1950) collection dates are shown. Two collection date fields are 

given (blue text): the collection_date field contains the original collection date metadata 

retrieved from NCBI BioSample. The collection_date_curated field contains the collection 

metadata after curation (after removing invalid metadata such as ‘unknown’ and conducting 

BacDive-guided curation). The rightmost columns document the manual curation of the pre-

1950 dates. During manual curation, incorrect dates were removed from the 

collection_date_curated field, as indicated in the Notes column. In the Notes column, yellow 

fill indicates cases where species authority date is given instead of genuine collection date. 

d–f Sheets D and E show BioSample accessions which were included and excluded 

(respectively) following metadata curation and vector contaminant filtering steps (117 samples 

were excluded comprising 356 plasmids; see Supplementary Figure 6). Associated raw and 

‘_curated’ metadata columns are provided. Sheet F lists the 356 plasmids which were excluded 

following the metadata curation and vector contaminant filtering steps, with reason for 

exclusion indicated.  

g The set of 15914 plasmids (prior to final filtering step; see Supplementary Figure 6). The set 

of 14143 plasmids which were included in the final filtered dataset used for downstream 

statistical analyses are indicated (column labelled ‘InFinalDataset’).  

h BioSample metadata for the 5541 plasmids with ‘uncategorised’ isolation source. 

i Results of ARG annotation using the ResFinder database. Detected resistance genes for each 

plasmid are listed (set of 14143 plasmids used for statistical analysis). The ARGProbe column 

refers to the gene probe name as recorded in ResFinder. ARGName is the gene name extracted 

from the probe name. ARGClass is the gene class as per ResFinder database sub-division. 

https://github.com/AlexOrlek/PlasmidAMRCarriage_paper/blob/main/data/Data_S1.xlsx
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ARGType is a modification of ARGClass with beta-lactam sub-types (including carbapenem 

and ESBL) appended. ARGlabel is a label constructed from gene name and ARGType. 

j The set of 14143 plasmids used for statistical analysis; transformed explanatory variables 

(following winsorising and re-factoring) are provided. 

 

 

2.3 Results of statistical analysis (exploratory, unadjusted, and adjusted analysis) 

 

 

Supplementary Figure 7. Co-occurrence of antibiotic resistance gene (ARG) types is 

determined from their presence/absence in the dataset of 1007 plasmids with collection dates 

2016–2019, and visualised using heatmaps. ARG types are ordered by the inferred timeline of 

known plasmid-mediated resistance acquisition (see Table 2) from earliest (aminoglycoside, 
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sulphonamide) to most recent (colistin). Counts along the diagonal indicate total plasmids 

carrying a given ARG type. Counts in the upper-left triangle indicate pairwise ARG type 

intersections i.e. the number of plasmids where a given pair of ARG types co-occur. Heatmaps 

are coloured by similarity metrics (a Jaccard index, b overlap coefficient) indicating the degree 

of co-occurrence between ARG types (red = more co-occurrence; light blue = less co-

occurrence). Heatmaps were generated using custom R code available in a GitHub repository 

(PlasmidARGCarriage v1.0). 

(https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R). 

 

 

Supplementary Figure 8. Co-occurrence network of aminoglycoside and sulphonamide 

antibiotic resistance genes (ARGs) built using igraph, based on ARGs detected in the dataset 

of 14143 curated plasmids. Nodes are aminoglycoside and sulphonamide ARGs. Edges 

represents pairwise co-occurrence between aminoglycoside–sulphonamide gene pairs; edge 

thickness is scaled according to the number of plasmids where the co-occurring genes occur. 

The network was pruned to exclude edges represented by fewer than 50 plasmids. The most 

frequently co-occurring gene pairs were aph(3'')-Ib–sul2 (n=491) and aph(6)-Id–sul2 (n=470). 

Note that the gene aac(6’)-Ib-cr confers both aminoglycoside and quinolone resistance. 

 

https://github.com/AlexOrlek/PlasmidARGCarriage/blob/v1.0/exploratory_analysis.R
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Supplementary Data 2 Tabular data (.xlsx file, sheets A–C). The data can be accessed here: 

https://github.com/AlexOrlek/PlasmidAMRCarriage_paper/blob/main/data/Data_S2.xlsx 

a Association statistics between explanatory variables. A colour scale indicates the absolute 

value of association statistics which range between 0 to 1 or -1 (Spearman's correlation 

coefficient) or between 0 to 1 (Cramer's statistic and Kruskall-Wallis eta statistic). 

b Cross tabulations of categorical explanatory variables and ARG type presence/absence are 

provided, across all ARG type outcomes. Unadjusted odds ratios, 95% confidence intervals, 

and p-values are also provided. Odds ratios and 95% confidence intervals are also presented 

on the log-scale. 

c Adjusted odds ratios, 95% confidence intervals, and p-values for each parametric term in the 

full GAM model (as outlined in main text Methods). Odds ratios and 95% confidence intervals 

are also presented on the log-scale. The difference between unadjusted and adjusted 

coefficients is also given; grey shading indicates the magnitude of the difference (darker 

indicates a larger difference between unadjusted and adjusted coefficients); positive/negative 

differences (relative to unadjusted coefficients) are indicated using red/green font, respectively. 

 

2.4 Model checking 

All GAM models converged. Basis dimensionality checking indicated non-random patterns in 

the residuals for log10 plasmid size smooths across all models, and for insertion sequence 

density smooths in 5/10 models. This was not resolved by increasing the basis dimensionality. 

The terms were retained, but the smooths should be interpreted cautiously. Model R2 values 

ranged from 0.26 (ESBL) to 0.77 (sulphonamide). 

 

2.5 Categorical explanatory variable effect plots 

All multivariable-adjusted plots shown in this section are from the full model. 

 

 

a      Unadjusted b      Adjusted 

https://github.com/AlexOrlek/PlasmidAMRCarriage_paper/blob/main/data/Data_S2.xlsx
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Supplementary Figure 9. The association between biocide/metal resistance gene presence (vs 

absence) and the log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types. a 

log-odds ratios from the unadjusted analysis. b log-odds ratios from the adjusted analysis. Log-

odds ratios indicate the effect of biocide/metal resistance gene presence, relative to reference 

(absence), and error bars show 95% confidence intervals. 

 

 

Supplementary Figure 10. The association between conjugative system (non-mobilisable 

[reference], mobilisable, conjugative) and the log-odds of antibiotic resistance carriage (y-

axis), across 10 ARG types. a log-odds ratios from the unadjusted analysis. b log-odds ratios 

from the adjusted analysis. Log-odds ratios indicate the effect of a given factor level, relative 

to reference (non-mobilisable), and error bars show 95% confidence intervals. 

 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 11. The association between geographic location and the log-odds of 

antibiotic resistance carriage (y-axis), across 10 ARG types. a log-odds ratios from the 

unadjusted analysis. b log-odds ratios from the adjusted analysis. Log-odds ratios indicate the 

effect of a given factor level, relative to reference (high-income not elsewhere classified), and 

error bars show 95% confidence intervals. 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 12. The association between host taxonomy (Enterobacteriaceae 

[reference], Proteobacteria (non-Enterobacteriaceae), Firmicutes, other) and the log-odds of 

antibiotic resistance carriage (y-axis), across 10 ARG types. a log-odds ratios from the 

unadjusted analysis. b log-odds ratios from the adjusted analysis. Log-odds ratios indicate the 

effect of a given factor level, relative to reference (Enterobacteriaceae), and error bars show 

95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 13. The association between integron presence (vs absence) and the 

log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types. a log-odds ratios from 

the unadjusted analysis. b log-odds ratios from the adjusted analysis. Log-odds ratios indicate 

the effect of integron presence, relative to reference (absence), and error bars show 95% 

confidence intervals. 

 

 

 

a      Unadjusted b      Adjusted 
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Supplementary Figure 14. The association between isolation source (human [reference], 

livestock, other) and the log-odds of antibiotic resistance carriage (y-axis), across 10 ARG 

types. a log-odds ratios from the unadjusted analysis. b log-odds ratios from the adjusted 

analysis. Log-odds ratios indicate the effect of a given factor level, relative to reference 

(human), and error bars show 95% confidence intervals. 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 15. The association between replicon carriage (untyped [reference], 

single-replicon, multi-replicon) and the log-odds of antibiotic resistance carriage (y-axis), 

across 10 ARG types. a log-odds ratios from the unadjusted analysis. b log-odds ratios from 

the adjusted analysis. Log-odds ratios indicate the effect of a given factor level, relative to 

reference (untyped), and error bars show 95% confidence intervals. 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 16. The association between virulence gene presence (vs absence) and 

the log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types. a log-odds ratios 

from the unadjusted analysis. b log-odds ratios from the adjusted analysis. Log-odds ratios 

indicate the effect of virulence gene presence, relative to reference (absence), and error bars 

show 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a      Unadjusted b      Adjusted 
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2.6 Continuous explanatory variable effect plots 

 

All plots shown in this section are from the full model. 

 

 

Supplementary Figure 17. The association between collection date and the log-odds of 

antibiotic resistance carriage (y-axis), across 10 ARG types. a effect on log-odds from the 

unadjusted analysis b effect on log-odds from the adjusted analysis. The grey shading around 

estimated smooth lines indicates 95% confidence limits. 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 18. Unadjusted analysis of the association between collection date and 

the log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types, based on a subset 

of plasmids (n=6375) with non-imputed collection dates only. The grey shading around 

estimated smooth lines indicates 95% confidence limits. 
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Supplementary Figure 19. The association between the insertion sequence density and the 

log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types. a effect on log-odds 

from the unadjusted analysis b effect on log-odds from the adjusted analysis. The grey shading 

around estimated smooth lines indicates 95% confidence limits. 

 

 

 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 20. The association between the number of other ARG types and the 

log-odds of antibiotic resistance carriage (y-axis), across 10 ARG types. a effect on log-odds 

from the unadjusted analysis b effect on log-odds from the adjusted analysis. The grey shading 

around estimated smooth lines indicates 95% confidence limits. 

 

 

 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Figure 21. The association between plasmid size (log10-transformed and 

centred on 10 kb) and the log-odds of antibiotic resistance carriage (y-axis), across 10 ARG 

types. a effect on log-odds from the unadjusted analysis b effect on log-odds from the adjusted 

analysis. The grey shading around estimated smooth lines indicates 95% confidence limits. 

 

 

 

 

 

a      Unadjusted 

b      Adjusted 
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Supplementary Table 8. Frequency table of quinolone resistance genes encoded by small 

plasmids (<10kb). 

Quinolone gene name n 

qnrD1 32 

qnrS2 19 

qnrB19 16 

aac(6')-Ib-cr 2 

qepA3 2 

qnrD2 2 

qnrVC5 2 

qnrS6 1 

Table shows quinolone genes encoded by small plasmids (<10kb) and the number of plasmids encoding each 

gene; a gene was counted no more than once per plasmid. The replicon type combinations (“haplotypes”) of the 

plasmids encoding the top 3 genes are as follows: qnrD: Col3M (30); Col3M,Col3M (2). qnrS2: IncQ2 (15); 

IncQ1 (2); untyped (2). qnrB19: Col4401 (15); untyped (1). 

Note, aac(6')-Ib-cr confers both quinolone and aminoglycoside resistance.  

 

2.7 Investigation of confounding 

Differences between unadjusted and adjusted odds ratios were noted in the main text (see also 

Sections 2.5 and 2.6 above). These differences can be explained by confounding 

interrelationships between explanatory variables, as described below. To investigate 

confounding, alternative adjusted models were fitted, with various terms removed relative to 

the main model. The terms selected for removal were guided by the exploratory association 

statistics (see Supplementary Data 2a – for a given explanatory variable where differences 

between adjusted and unadjusted effects were observed, more highly associated explanatory 

variables were preferentially removed). 

 

2.7.1 Host taxonomy 

For host taxonomy, the unadjusted analysis showed negative associations with resistance 

carriage for Proteobacteria (non-Enterobacteriaceae), Firmicutes, and other bacteria, relative 

to Enterobacteriaceae (the reference factor level), across all ARG type outcomes. However, in 

the adjusted analysis, negative associations were attenuated or reversed (Supplementary Figure 

12). For example, multivariable-adjusted analysis suggested that Firmicutes plasmids were 

more likely to carry macrolide ARGs compared with Enterobacterial plasmids, whereas 

unadjusted analysis indicated the reverse. 

The association statistics indicated that host taxonomy was most strongly associated with 

replicon carriage and the number of other ARG types (Supplementary Data 2a). Moreover, 

when these two factors were removed from the multivariable model, the host taxonomy 

adjusted log-odds ratios shifted to around halfway between adjusted and unadjusted log-odds 

ratios (Supplementary Figure 22). The GAM modelling results showed that replicon carriage 

and number of other ARG types were both positively associated with resistance carriage (see 

Supplementary Figures 15, 20). Hence, the difference between unadjusted/adjusted effects may 
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at least partly result from confounding with the effects of replicon carriage and number of other 

ARG types. 

 

Supplementary Figure 22. The association between host taxonomy (with Enterobacteriaceae 

as the reference factor level) and the log-odds of antibiotic resistance carriage (y-axis), 

compared across 3 different analyses: log-odds ratios from the main multivariate-adjusted 

model (the full model, as presented in the main text) (coloured circles); log-odds ratios from a 

multivariable-adjusted model which omitted the explanatory variables replicon carriage, and 

number of other ARG types (triangles); log-odds ratios from the unadjusted analysis (crosses). 

 

Enterobacteriaceae plasmids were predominantly from clinically-relevant source species 

(Supplementary Table 3); overall, compared with plasmids from other host taxonomy 

categories, they were more likely to encode one or more replicon types, and for a given ARG 

type outcome, they were more likely to encode other resistance gene types (Supplementary 

Figure 23). Therefore, adjusting for replicon carriage and number of other ARG types at least 

partially accounts for the attenuation/reversal of negative unadjusted log-odds ratios observed 

in non-Enterobacteriaceae taxa. 

Regarding Firmicutes plasmids, in contrast to Enterobacteriaceae plasmids, they were from a 

mixture of clinically relevant species (e.g. Staphylococcus aureus, Enterococcus faecium) and 

less clinically relevant species (e.g. Bacillus thuringiensis) (Supplementary Table 3). Known 

replicon carriage appeared to be a proxy for clinical relevance with 94% and 86% of 

Staphylococcus aureus and Enterococcus faecium, respectively carrying detected replicons vs 

10% Bacillus thuringiensis plasmids (Supplementary Table 3) (presumably because the 

PlasmidFinder replicon typing scheme has so far been developed using plasmids from 

clinically relevant taxa [54]). When unadjusted analysis was conducted at the species-level, 

Staphylococcus aureus and Enterococcus faecium were found to be more likely to carry 

macrolide resistance than Enterobacteriaceae plasmids, whereas plasmids from other major 

Firmicutes species were less likely to encode macrolide resistance (Supplementary Figure 24). 

Therefore, when analysing Firmicutes plasmids overall, adjustment for factors such as replicon 

carriage led to the reversal of the unadjusted odds ratio. 

Adjusted 

Adjusted minus RepliconCarriage, NumOtherARGTypes 

Unadjusted 
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b 

a 



45 

Supplementary Figure 23. The association between host taxonomy and a replicon carriage 

(untyped, single-replicon, multi-replicon); b for a given ARG type outcome, the number of 

other ARG types encoded on the same plasmid (across the 10 ARG type outcomes). 

Enterobacteriaceae plasmids tend to encode one or more replicon loci (single/multi replicon 

carriage) whereas other taxa are most frequently untyped. Enterobacteriaceae plasmids 

encoding a resistance gene from a given type more frequently encode one or more resistance 

genes from other types, in comparison with plasmids from other taxa. 

 

 

Supplementary Figure 24. Unadjusted analysis of the association between host taxonomy, 

broken down by Firmicutes species, and the log-odds of antibiotic resistance carriage (y-axis), 

across 10 ARG types. Enterobacteriaceae was the reference factor level. Firmicutes factor 

levels were as follows: all Firmicutes, and the most frequent Firmicutes species: Bacillus 

cereus, Bacillus thuringiensis, Enterococcus faecium, Lactobacillus plantarum, Lactococcus 

lactis, Staphylococcus aureus. Log-odds ratios indicate the effect of a given factor level, 

relative to reference (Enterobacteriaceae), and error bars show 95% confidence intervals. Log-

odds ratios for B. cereus plasmids (n=104) and B. thuringiensis plasmids (n=306) are not shown 

since no plasmids from these species encoded known macrolide resistance genes. 

 

2.7.2 Biocide/metal resistance gene presence, integron presence, number of other ARG 

types 

Biocide/metal resistance gene presence, integron presence, and number of other ARG types, 

were generally positively associated with antibiotic resistance carriage. In the unadjusted 

analysis, strong positive associations were found across all ARG type outcomes; adjusted log-

odds remained positive across most ARG type outcomes, but there was attenuation 

(Supplementary Figures 9, 13, 20). The three explanatory variables were positively co-

associated (Supplementary Figure 25). Removing two of the three co-associated explanatory 

variables from the model reduced attenuation of the effects of the remaining variable in each 

case (Supplementary Figures 26–28), consistent with confounding bias. 
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b 
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Supplementary Figure 25. The association between a presence of integrons and presence of 

biocide/metal resistance genes; b for a given ARG type outcome, the presence of biocide/metal 

resistance genes and the number of other resistance gene types encoded on the same plasmid 

(across 10 ARG type outcomes); c for a given ARG type outcome, the presence of integrons 

and the number of other resistance gene types encoded on the same plasmid (across 10 ARG 

type outcomes). Positive co-associations are found between all three explanatory variables 

(integron presence, biocide/metal resistance gene presence, the number of other resistance gene 

types). 

 

c 
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Supplementary Figure 26. The association between the number of other ARG types and the 

log-odds of ARG carriage (y-axis), across 10 ARG types. Smooths displayed with solid, 

coloured lines are from the main adjusted model (the full model, as presented in the main text). 

Smooths displayed with dashed, black lines are from an adjusted model which omitted the 

explanatory variables integron presence, and biocide/metal resistance gene presence. Smooths 

displayed with dotted, black lines are from an unadjusted model. 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 27. The association between biocide/metal resistance gene presence 

(vs absence) and the log-odds of antibiotic resistance carriage (y-axis), compared across 3 

different analyses: log-odds ratios from the main adjusted model (the full model, as presented 

in the main text) (coloured circles); log-odds ratios from an adjusted model which omitted the 

explanatory variables integron presence, and number of other resistance gene types (triangles); 

log-odds ratios from the unadjusted analysis (crosses). 

Adjusted 

Adjusted minus BiocideMetalResistance, Integron 

Unadjusted 

Adjusted 

Adjusted minus Integron, NumOtherARGTypes 

Unadjusted 
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Supplementary Figure 28. The association between integron presence (vs absence) and the 

log-odds of antibiotic resistance carriage (y-axis), compared across 3 different analyses: log-

odds ratios from the main adjusted model (the full model, as presented in the main text) 

(coloured circles); log-odds ratios from an adjusted model which omitted the explanatory 

variables biocide/metal resistance gene presence, and number of other resistance gene types 

(triangles); log-odds ratios from the unadjusted analysis (crosses). 

 

2.7.3 Conjugative system 

Unadjusted log-odds indicated a link between plasmid transmissibility (especially, conjugative 

plasmids) and resistance carriage across all ARG type outcome, relative to non-mobilisable 

plasmids; positive associations were attenuated in the adjusted analysis, although a positive 

association between conjugative plasmids and carbapenem resistance carriage remained 

(Supplementary Figure 10).  

The association statistics indicated that conjugative system was most strongly associated with 

log10 plasmid size (moderately strong association; Spearman's ρ = 0.74). Mean plasmid sizes 

for conjugative, mobilisable, and non-mobilisable plasmids were 111 kb, 69 kb, and 67 kb, 

respectively, and visualising the distribution of plasmid sizes by conjugative system showed 

conjugative plasmids are at least ~15kb and their size distribution peaks around 100kb, whereas 

mobilisable and non-mobilisable plasmids do not show a bias towards being larger 

(Supplementary Figure 29).  

Adjusted 

Adjusted minus BiocideMetalResistance, NumOtherARGTypes 

Unadjusted 
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Supplementary Figure 29. Density curves showing the relationship between log10 plasmid 

size (centred on 10kb) and plasmid conjugative system (conjugative, mobilisable, non-

mobilisable). 

 

However, removing log10 plasmid size from the model did not substantially reduce attenuation 

effects (Supplementary Figure 30). Further exploration (models with additional terms 

removed) indicated complex confounding interrelationships; only when log10 plasmid size, 

insertion sequence density, number of other resistance gene types, integron presence, replicon 

carriage, and host taxonomy were removed (i.e. retaining only conjugative system, collection 

date, biocide/metal resistance, geographic location, isolation source, and virulence gene 

presence), did the log-odds ratios resemble unadjusted log-odds ratios more closely 

(Supplementary Figures 31, 32). 
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Supplementary Figure 30. The association between conjugative system (non-mobilisable 

[reference], mobilisable, conjugative) and the log-odds of antibiotic resistance carriage (y-

axis), compared across 3 different analyses: log-odds ratios from the main adjusted model (the 

full model, as presented in the main text) (coloured circles); log-odds ratios from an adjusted 

model which omitted the explanatory variable log10 plasmid size (triangles); log-odds ratios 

from the unadjusted analysis (crosses). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 31. The association between conjugative system (non-mobilisable 

[reference], mobilisable, conjugative) and the log-odds of antibiotic resistance carriage (y-

axis), compared across 3 different analyses: log-odds ratios from the main adjusted model (the 

full model, as presented in the main text) (coloured circles); log-odds ratios from an adjusted 

model which omitted the explanatory variables log10 plasmid size, number of other ARG types, 

host taxonomy (triangles); log-odds ratios from the unadjusted analysis (crosses). 

 

Adjusted 

Adjusted minus log10PlasmidSize 

Unadjusted 

Adjusted 

Adjusted minus log10PlasmidSize, NumOtherARGTypes, HostTaxonomy 

Unadjusted 
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Supplementary Figure 32. The association between conjugative system (non-mobilisable 

[reference], mobilisable, conjugative) and the log-odds of antibiotic resistance carriage (y-

axis), compared across 3 different analyses: log-odds ratios from the main adjusted model (the 

full model, as presented in the main text) (coloured circles); log-odds ratios from an adjusted 

model which omitted the explanatory variables log10 plasmid size, insertion sequence density, 

number of other resistance gene types, integron presence, replicon carriage, host taxonomy 

(triangles); log-odds ratios from the unadjusted analysis (crosses). 
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