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1 Supplementary Methods

1.1 Participants

We used data from the Social and Health Impact of Network Effects (SHINE) study, a larger study designed
to provide insight into health behaviors and social interactions among young adults. Eligible social groups
included on-campus organizations containing 20-100 members, with at least 80% of the members interested
in participating in the study. Of eligible social groups, 925 individuals were invited to enroll in the study.
These individuals were from 24 social groups across the two universities (33% performing arts groups, 29%
sororities or fraternities, 25% sports clubs, 8% technology clubs).

1.2 Eligibility criteria

Participants were eligible to enroll in the study if they were a member of one of the social groups invited to
participate. Those who were willing to participate were invited to complete the baseline survey. Eligibility
for the MRI session was determined by participant responses to questions in the baseline survey and the
response completion rate of the social group. Social groups were eligible if more than 15 people completed
the survey or if more than 20% of the group members completed the survey. Based on these criteria, 19
social groups were eligible. Of these groups, individuals were eligible to complete the MRI session if they:
were 18 years or older, fluent in English, and free from MRI contraindications; weighed less than 350 lbs;
were not claustrophobic, pregnant, or studying abroad at the time; had no history of serious medical issues,
psychiatric hospitalization, or drug abuse; and drank alcohol and listed at least two people in their social
group who drank the least in the group apart from themselves. Of the participants who completed the
baseline survey 113 participants were invited to complete the MRI session.
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One participant was deemed ineligible for the MRI scan due to a contraindication discovered at the session,
but they completed all behavioral components of the session. Another participant was scanned but the data
was lost due to a technical error. This yielded a total of 77 participants in the mindful (n = 38) or baseline
(n = 39) groups.

1.3 Group assignment

Participants who enrolled in the MRI session component were randomly assigned to one of three intervention
groups: mindful attention, perspective-taking, or baseline. In the mindful attention and perspective-taking
groups, participants were trained to use cognitive strategies to regulate their responses to alcohol cues. The
baseline participants was instructed to respond naturally without trying to alter their responses. In this
paper, we focused on investigating the effects of mindful attention compared to the baseline condition.

1.4 MRI data acquisition

Scans were acquired using 3-Tesla Siemens Prisma scanners equipped with a 64-channel head coil. For each
participant, scans were acquired in the following sequence: a resting-state scan, two runs of a face perception
(“faces”) functional MRI (fMRI) task, a T1-weighted structural scan, four runs of a cue-reactivity fMRI
task, a fieldmap for the diffusion-weighted (DWI) scan, a diffusion-weighted (DWI) scan, and a T2-weighted
structural scan. DICOM images were converted to NIfTI files in the Brain Imaging Data Structure [1] format
using HeuDiConv [2]. The DWI data were preprocessed and reconstructed through QSIprep (Version 0.8.0;
[3]). Briefly, the data was first denoised and bias corrected, and then underwent susceptibility distortion
correction, as well as motion and eddy current correction via FSL 6.0, and were coregistered to the T1 space.
We also warped both the Schaefer atlas [4] and the Harvard Oxford subcortical atlas [5] into individual T1
space to subdivide the brain into 400 cortical and 14 subcortical regions. Then, the preprocessed DWI data
was reconstructed using generalized Q-sampling Imaging [6] in DSI-Studio (http://dsi-studio.labsolver.org).
Deterministic tractography [7] was performed until 5×106 streamlines were reconstructed, yielding individual
structural networks with brain regions as nodes and the number of streamlines connecting each brain region
pair as weighted edges. Preprocessing was performed using QSIPrep (Version 0.8.0), which is based on
Nipype (Version 1.4.2; [8]).

1.5 Anatomical data preprocessing

The structural, resting-state, and task-based fMRI scans were preprocessed using fMRIPrep (Version 20.0.6;
[9]), which is based on Nipype (Version 1.4.2; [8]). The T1-weighted (T1w) image was corrected for inten-
sity non-uniformity (INU) with N4BiasFieldCorrection [10], distributed with ANTs 2.2.0 [11], and used as
T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype imple-
mentation of the ANTs brain extraction workflow, using OASIS30ANTs as the target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM) was performed on the
brain-extracted T1w using fast (FSL, Version 5.0.9; [12]). Brain surfaces were reconstructed using recon-all
(FreeSurfer, Version 6.0.1; [13]), and the brain mask estimated previously was refined with a custom variation
of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray matter
of Mindboggle [14]. Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym;
[15]) was performed through nonlinear registration with antsRegistration (ANTs, Version 2.2.0), using brain-
extracted versions of both the T1w reference and the T1w template.

We used subnetwork definitions from previous work [16] which found data-driven parcellations of intrinsic
functional connectivity consistent with previously identified regions comprising putative frontoparietal con-
trol [17] and dorsal and ventral attention [18] networks. We used a more recent parcellation atlas [4] that
remained consistent with these network divisions. The “frontoparietal control network” included regions
within the parietal, temporal, orbitofrontal, lateral prefrontal, lateral ventral prefrontal, cingulate, and me-
dial posterior prefrontal cortices and the precuneus. The “dorsal attention network” included regions within
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frontal eye fields and the precentral and postcentral gyri. The “ventral attention network” included regions
within the insula, parietal operculum, frontal operculum, and the temporal occipital, lateral prefrontal, pari-
etal medial, frontal medial, temporal occipital, temporal parietal cortices, and the precentral gyrus. The
standardized spatial coordinates of regions included in each subnetwork are (publicly available).

1.6 Resting-state and task-fMRI data preprocessing

For each of the resting-state and task BOLD scans, the following preprocessing was performed. First, a
reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep.
A B0-nonuniformity map (or fieldmap) was estimated based on two echo-planar imaging (EPI) references
with opposing phase-encoding directions, with 3dQwarp in AFNI [19]. Based on the estimated susceptibility
distortion, a corrected EPI reference was calculated for a more accurate co-registration with the anatom-
ical reference. The BOLD reference was then co-registered to the T1w reference using bbregister from
FreeSurfer, which implements boundary-based registration [20]. Co-registration was configured with six de-
grees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices,
and six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering
using mcflirt (FSL, Version 5.0.9; [21]). BOLD runs were slice-time corrected using 3dTshift from AFNI. The
BOLD time-series were resampled onto their original, native space by applying a single, composite transform
to correct for head motion and susceptibility distortions. The BOLD time-series were resampled into stan-
dard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. All resamplings were
performed with a single interpolation step by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs),
configured with Lanczos interpolation to minimize the smoothing effects of other kernels. Non-gridded
(surface) resamplings were performed using mri vol2surf (FreeSurfer). Various confounds (e.g., framewise
displacement, DVARS, global signal) were also calculated for each TR. The outputs from fMRIPrep were
then manually quality checked to ensure adequate preprocessing.

1.7 fMRI motion regression

Following preprocessing with fMRIPrep, these data were denoised using the xcpEngine pipeline [22]. Specifi-
cally, xcpEngine was used to remove motion-related confounds from BOLD sequences using the most stringent
of current standards [22]. These steps were as follows: (1) demeaning and removal of linear and quadratic
trends from time series, (2) de-spiking using AFNI’s 3DDESPIKE utility, (3) temporal bandpass filtering
using a first-order Butterworth filter to retain signal in the range 0.01–0.08Hz, (4) 36-parameter confound
regression including 6 realignment parameters, mean signal in white matter, CSF and mean global signal,
as well as the first power and quadratic expansions of their temporal derivatives. These denoised time series
were then used in further analyses. We used Nipype (Version 1.4.2; [8]) and Nilearn (Version 0.7.0; [23]) to
extract activity time courses during the mindful attention task. A low-pass filter of 0.1 Hz and a high-pass
filter of 0.01 Hz was applied. We added 6 seconds to every event onset to account for hemodynamic delay.
For example, if an event took place during 10 to 16 TRs, a time-series was extracted for 16 to 22 TRs. We
did not include events shorter than 1 TR (i.e., 1 sec), which were usually fixation periods.

Prior to first-level modeling, we generated motion regressors using an automated motion assessment tool
([24]; https://github.com/dcosme/auto-motion-fmriprep). This tool is a predictive model that utilizes the
confound files generated by fMRIPrep and classifies whether or not fMRI volumes contain motion artifacts.
The classifier is applied to each participant’s task run and returns a binary classification indicating the
presence or absence of motion artifacts for each volume. In addition, this tool transforms the realignment
parameters into Euclidean distance for translation and rotation separately, and calculates the displacement
derivative of each. This procedure yields a total of 5 motion regressors for first-level modeling. Task runs that
contain >10% of volumes classified as containing a motion artifact will be excluded from further analyses
(n = 1). For group-level analyses, multiple comparisons will be corrected using cluster-extent thresholding
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was implemented using AFNI [19]. In accordance with recent guidelines [25], the spatial autocorrelation
function was first estimated for each subject and task run separately using AFNI’s 3dFWHMx on the
residuals, and then averaged across subjects. To determine probability estimates of false-positive clusters
given a random field of noise, Monte-Carlo simulations were conducted with AFNI’s 3dClustSim using the
average autocorrelation across subjects. Following motion exclusions, the sample included n = 37 mindful
and n = 39 baseline participants.

1.8 Diffusion data preprocessing

MP-PCA denoising as implemented in MRtrix3’s dwidenoise [26] was applied with a 5-voxel window. After
MP-PCA, Gibbs unringing was performed using MRtrix3’s mrdegibbs [27]. Following unringing, B1 field
inhomogeneity was corrected using dwibiascorrect from MRtrix3 with the N4 algorithm [10]. After B1 bias
correction, the mean intensity of the DWI series was adjusted so that the mean intensity of the b = 0
images was matched across DWI scanning sequences. FSL (Version 6.0.3:b862cdd5)’s eddy was used for
head motion correction and eddy current correction [28]. Eddy was configured with a q-space smoothing
factor of 10, a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level
model and a linear second level model were used to characterize spatial distortions related to eddy currents.
The q-space coordinates were forcefully assigned to shells. The field offset was attempted to be separated
from subject movement. Shells were aligned after eddy current correction. Eddy’s outlier replacement was
run [28]. Data were grouped by slice, only including values from slices determined to contain at least 250
intracerebral voxels. Groups deviating by more than 4 standard deviations from the prediction had their
data replaced with imputed values. Fieldmaps were collected with reversed phase-encode blips, resulting in
pairs of images with distortions going in opposite directions. Here, a b = 0 fieldmap image with reversed
phase encoding direction was used along with b = 0 images extracted from the DWI scans. From these
pairs, the susceptibility-induced off-resonance field was estimated using a method similar to that described
in Ref. [29]. The fieldmaps were ultimately incorporated into the eddy current and head motion correction
interpolation. Final interpolation was performed using the jac method.

Several confounding time-series were calculated based on the preprocessed DWI. Framewise displacement
(FD) was calculated using the implementation in Nipype (following the definitions in [30]). The head-
motion estimates calculated in the correction step were also placed within the corresponding confounds file.
Slicewise cross correlation was also calculated. The DWI time-series were resampled to ACPC, generating a
preprocessed DWI run in ACPC space with 1.7 mm isotropic voxels. Many internal operations of QSIPrep
use Nilearn (Version 0.7.0; [23]) and Dipy [31].

1.9 Ecological assessment measure of drinking

Drinking was defined as the number of alcohol servings consumed per assessment distributed throughout
the 28-day period. To obtain the number of alcohol servings per occasion, we summed the number of wine,
beer, and liquor drinks at each signal level. The three largest and improbable values of drinks per drinking
occasion (24, 36, 60) observed across three individuals, were set to 16 drinks per occasion. We observed no
substantial differences in results when including these outlier values in the main models as part of additional
sensitivity analyses.

1.10 Task stimuli

Stimuli were presented using PsychoPy [32] and participants responded to stimuli using a five-button box.
The reliability of the alcohol cues were established in a prior study [33]. In this prior study, researchers
studied how the emotional valence of alcohol cues related to different levels of drinking behavior. College
students were stratified into three groups (non-drinkers, low risk drinkers, and high risk drinkers) by a well-
validated assessment [34]. All participants rated the emotional valence (pleasure/displeasure) and arousal
(excitement/calm) of stimuli on 9-point scales [35]. High risk drinkers exhibited greater valence scores for
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alcohol images than non-drinkers and low risk drinkers. All participants exhibited greater arousal for alcohol
images than non-alcohol images. The images had high internal consistency of self-reported valence and
arousal within the drinking groups.

Additionally, the image set was normed and tested for subjective (complexity) and objective (brightness and
color) values. The images did not include beverage brands to avoid confounds with brand preference and
balanced the social contexts of the cues. Finally, participants were able to reliably recognize the type of
beverage (> 95%).

1.11 Operationalizing mindful attention

Mindful attention is thought to support psychological distancing by decentering one’s cognitive and emotional
experience [36]. This operationalization of mindful attention has been linked to down-regulating negative
affect, pain, and nicotine craving [37, 38, 39]. Notably, these studies demonstrate that mindful attention
can be an effective self-regulatory strategy for people with no experience in meditation. As a self-regulatory
strategy, a mindful attention task can help elicit psychological distancing and reduce craving, representing
a practical short-term preventative approach in contrast to longer-term formal interventions.

Our operationalization of mindful attention parallels the open monitoring component of mindfulness [40, 41].
Open monitoring involves psychological distance, non-reactive meta-cognitive monitoring, and non-reactive
awareness of automatic cognitive and emotional interpretations of exogenous and endogenous stimuli [40, 41].
When people practice mindfulness with an emphasis on open monitoring, they might quickly and less emo-
tionally become aware of their sense of identity based on past memories and expected future experiences [40].
Prior hypotheses state that brain regions involved in open monitoring may also be implicated in vigilance and
disengaging attention from information that distracts one from the present, ongoing stream of experience.
Consistent with these hypotheses, we found that mindful attention elicited a present-focused flow of neural
dynamics of the frontoparietal, dorsal attention, and ventral attention networks. Frontoparietal regions have
been previously associated with the engagement and disengagement of attention, while dorsal and ventral
attention regions have been associated with vigilance to salient information [42, 18]. Present-focused neural
dynamics involve effortful control input in addition to a reduced propensity to dwell on neural states. Our
model suggests that training can increase the efficiency of mechanisms that non-linearly lower the effortful
control input required to engage or disengage from the ongoing stream of experience.

The baseline (natural react) trials are different from traditional meditative practices like Vipassana because
baseline trials. This difference arises from the instructions allowing natural reactions to include judgment,
elaborated cognitive and emotional processing, and lack interoception—all in contrast to Vipassana. Vipas-
sana, in turn, is more similar to our mindful attention condition due to a shared focus on psychological
distance and non-judgmental, meta-cognitive awareness. We used natural reactivity as the experimental
control because it contrasts of mindfulness characterized by open monitoring, non-reactive meta-cognitive
monitoring, and non-reactive awareness of cognitive and emotional interpretations of exogenous and en-
dogenous stimuli, and reduced evaluation and judgement that amplify the initial event. Operationalizing
mindful attention thus opposes the natural reactivity of gut reactions, which may include judgment, include
elaborated cognitive and emotional processing, and lack interoception. Notably the instructions for mindful
attention include explicit directions to observe the situation without judgement, and these instructions are
also common to mindfulness inductions as traditionally used in meditative practices like Vipassana, which
necessarily include interoception and non-judgmental awareness. To better elucidate different types of at-
tention that occur during experimental conditions, future work could use machine learning classifiers to
identify the modes of attention that are elicited by different mindfulness instructions [43]. This research
could also elucidate the extent the mindful attention instructions or react naturally baseline constituted a
placebo because placebo effects tend to focus on spatially separable brain systems [44, 45].
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1.12 Task Instructions and Piloting

As reported previously in Jovanova et al. [46], researchers guided participants through the instructions on
how to respond to alcohol cues on a computer screen in a laboratory setting. During practice, partici-
pants completed an abbreviated version of the fMRI task in which they viewed image cues of alcoholic and
non-alcoholic beverages while being prompted to react naturally or to respond with mindful attention. Re-
searchers verbally checked participant comprehension. This procedure was replicated in a separate sample
collected remotely during the COVID-19 pandemic [46]. The instructions used to operationalize mindful
attention focused on maximizing the self-distancing and de-reification aspects of mindfulness [47, 48, 49, 50].
We developed instructions to train the short-term induction of mindful attention following prior work that
demonstrated the efficacy of short-term training [38, 37]. We allocated 30 minutes for training. The training
session begins with the message:

Now we’ll practice the second task that you’ll complete in the scanner. This task will feel very
long in the scanner - it will take 30 minutes. This is because we need a lot of examples of how
your brain responds. Try to stay focused even if it feels repetitive.

The full instructions for the short-term induction of mindful attention in response to alcohol cues were:

Another way you can relate to these situations is by mentally taking a step back in order to
observe the situation and your response to it in an impartial and nonjudgmental manner.

You may simply notice your thoughts and feelings about these situations, perhaps with some
curiosity. That way, you can actively pay attention to your reaction and see it as just a passing
pattern of thoughts and feelings, without getting caught up in it.

If you see a picture of beer, you can mentally distance yourself by observing the situation, and
your response to it, with a more impartial, nonjudgmental, or curious mindset. When you see the
word MINDFUL, it is critical that you mentally take a step back from the situation, so that you
observe the situation and your response to it without getting caught up in it.

The training involved 8 trials of viewing stimuli that lasted 6 seconds each on the screen, followed by a fixa-
tion cross and a prompt asking for the craving rating (see also Figure 1A of the main text). To inform the
language of the mindful attention intervention, we explored nine different variations of mindfulness-related
instructions [46]. Following the report of [46] on the same data, we describe here a series of 14 online studies
via Amazon’s Mechanical Turk (total n = 700) to test manipulation effects on craving evoked by viewing
alcohol cues. In each pilot, participants viewed one of 9 different versions of mindfulness instructions on
some trials and control instructions on other trials. Three of the pilots emphasized instructions related to
psychological distancing, whereas the remaining versions emphasized different components, such as attention
to the present moment, focus, awareness, or acceptance, and contained no distancing language. We chose
the instructions described in the main text that focused on psychological distancing because they tended to
decrease alcohol craving ratings more than did other types of instructions.

We used methods described in detail in a separate publication [46]. Briefly, participants were probed with
EMA surveys twice a day for 28 days for a total of 56 surveys. EMA surveys were sent via LifeData
(https://www.lifedatacorp.com/), an EMA application installed on participants’ smartphones. Participants
also received two prompts daily on how to respond to alcohol cues in daily life twice a day for 28 days for at
total of 56 signals. We observed high compliance with a median response rate of 91%(50.97± 7.13).

For the survey, we measured drinking behavior with several questions sent at 8:00 am and 6:00 pm. To
assess drinking behavior, a question stated, “Since your EVENING/MORNING survey, have you consumed
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any alcohol? (“No” or “Yes” response option).” Participants who responded “Yes”, were asked to enter
the number of standard servings of beer, liquor, and wine consumed since the previous survey using nu-
meric entry. When participants responded “No” to having consumed alcohol, they answered questions about
physical activity, caffeine use, and water consumption. These questions were matched for length with the
follow-up alcohol questions to minimize the possibility that participants would report no alcohol use in order
to minimize survey completion time. The survey also included questions about mood, conversations about
alcohol, and others that were not the focus of our paper.

In the text reminder prompts, we sent a message to baseline participants at 2:00 pm and 9:00 pm each day
that stated “If you are around alcohol today, REACT NATURALLY—have whatever thoughts and feelings
you would normally have”. We sent a message to the mindful attention participants that stated “If you are
around alcohol today, REACT MINDFULLY—notice, acknowledge, and accept the thoughts and feelings
you have.” For descriptive statistics on the demographics of our participants, study enrollment and retention,
and replication in a separate sample, please see Ref. [46].

1.13 Manipulation checks

After the scan session, participants answered survey questions about the cognitive strategies that they used
during the task and their level of confidence using the strategies. When participants in the mindfulness
condition endorsed encountering alcohol during the morning and evening surveys of the EMA protocol, two
follow-up questions acted as manipulation checks: “Since the Morning/Evening survey, I reacted naturally
to alcohol” and “Since the Morning/Evening survey, I reacted mindfully to alcohol”. Participants responded
to these questions on a scale from 1 (“Strongly Disagree”) to 100 (“Strongly Agree”). To capture practice
over the entire 4 weeks of the EMA protocol, participants also responded to the following question in the
last survey of the EMA protocol: “When you encountered/were around alcohol during the past 4 weeks (i.e.,
since you started getting surveys on your phone), how often did you REACT NATURALLY to alcohol?”
and “When you encountered/were around alcohol during the past 4 weeks (i.e., since you started getting
surveys on your phone), how often did you REACT MINDFULLY to alcohol?” Participants responded to
these questions on a scale from 1 (“Never”) to 100 (“All the time”). See Supplementary Results and Figure
6 for evidence supporting manipulation effects.

1.14 Statistical modeling

To examine associations between mindful attention and average controllability on drinking throughout the
28-day EMA protocol, we used multilevel models. The multilevel models accommodated the nested nature of
the smartphone sampling data including 56 total alcohol conversation signals and 56 total drinking signals,
nested in 104 participants across 10 social groups. We chose a multilevel hurdle model [51] using glmmTMB
in R, specifying a truncated negative binomial function [52]. Count data such as alcohol use data in the
present case (i.e., number of drinks consumed) are often positively skewed and include many observations at
zero. Hurdle models are often used to model this type of data as these include both a count regression (in
this case Poisson/negative binomial) to model the counts, and a logistic regression to model the zeroes in the
data. Here, all the counts are modeled by a truncated Poisson/negative binomial (i.e., truncated as it does
not contain zero), and all the zeroes (non-alcohol use occasions) are modeled with the logistic regression.
Thus, using these models allowed us to independently model and isolate how much a person drinks when
they drink, our primary outcome, and to model the probability of whether a person drinks or not at a
given occasion as part of secondary analyses. We specified nested random effects to include participant ID
and group ID, given that the repeated conversational valence and drinking observations are nested within
participants over 28 days, and those participants in turn are nested within 10 social groups.

Recent work used the most parsimonious models of alcohol consumption behavior change by controlling for
a number of covariates described below (manuscript in preparation). First, to isolate occasions when partic-
ipants talked more positively about alcohol, relative to their own baseline and prior to a drinking occasion
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at the within-person level, we controlled for each person’s usual month level between-person alcohol conver-
sation valence over the 28 days. We additionally controlled for time in the study, as individuals reported
drinking less towards the end of the ecological momentary assessment period; social weekend (Thursday, Fri-
day, or Saturday vs. weekday), given different drinking patterns on “college weekends” vs. weekdays among
students [53]; and smartphone survey response rates. We additionally controlled for demographic variables
such as gender, as drinking patterns often vary across gender [54]; age, the number of alcohol conversations,
and randomization into a drinking intervention as part of a different study. Sensitivity analyses were con-
ducted to test for the robustness and overfitting of subsets of these models (manuscript in preparation).

In this work, we were additionally interested in assessing how average controllability influences later drinking.
Following prior work studying the effects of loving-kindness meditation and self-affirmation on self-regulation
and behavior change [55], we controlled for additional covariates of baseline drinking, race/ethnicity, and
years of education. Including baseline measurements for the frequency or amount of drinking alters the pri-
mary outcome model to be the residualized change from drinking at baseline to drinking during the mindful
attention training [56]. Despite the usefulness of the baseline-adjusted outcome variable, it can ultimately
bias estimates [57]. Therefore, we conducted a sensitivity analysis without the baseline and found consistent
results with or without this covariate as well as the next demographic and personality trait covariates that
we describe (Supplementary Figure 2).

Demographic covariates are useful to model individual differences in education, gender, and race/ethnicity
that are known from prior research to be implicated in alcohol use [58] and meditation training [59, 60].
Lower levels of education have been associated with more consumption of alcohol [61]. In the context of
our study, we included the years of education to account for the observation that undergraduates consume
alcohol differently over the course of their time in college, for example consuming more alcohol during their
first year than in later years [62]. Prior research has also reported racial/ethnic differences in rates of alco-
hol consumption [63], which can be partially explained by several factors including individual differences in
alcohol-related beliefs and contextual influence from cultural orientations to alcohol consumption [64].

Lastly, we controlled for the personality trait of attentional impulsivity for four reasons. First, prior work
suggests that self-reported mindfulness is negatively correlated with self-reported impulsivity [65]. Second,
prior work suggests that controlling for baseline personality differences could strengthen analytic designs
that test for the effects of mindfulness [66]. Third, despite differences in and debate regarding the defi-
nition of mindfulness as used by practioners, clinicians, and psychologists, the regulation of attention is a
shared component [41]. Fourth and finally, mindfulness meditation has been shown to facilitate attention
regulation and emotion regulation, supported by a relationship between self-reported levels of mindfulness
and self-reported measures of adaptive emotion regulation strategies, even after controlling for symptoms of
stress, anxiety, and depression [67]. Attention impulsivity was positively correlated with difficulties in emo-
tion regulation in our dataset and was not collinear with average controllability (Supplementary Figure 1).

The final models are the zero-inflated model of logistic drinking probability as a binary outcome and the
conditional model of the count of drinking amount. They can be written as

Drinking probability ∼ b0 + b1(Condition) + b2(Time) + b3(Gender) + b4(Number of responses) +
b5(Social Weekend) + b6(Baseline drinking frequency) + b7(Age) + b8(Intervention week) +
b9(Average controllability) + b10(Race/ethnicity) + b11(Years of education) + b12(Attentional impulsivity) +
(1|group/participant).

Drinking amount ∼ b0 + b1(Condition) + b2(Time) + b3(Gender) + b4(Number of responses) +
b5(Social Weekend) + b6(Baseline drinking amount) + b7(Age) + b8(Intervention week) +
b9(Average controllability) + b10(Race/ethnicity) + b11(Years of education) + b12(Attentional impulsivity) +
(1|group/participant).
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The predicted probability of drinking was plotted by using the regression model to generate predicted values
of the marginal effect of average controllability.

1.15 Network Control Theory

Average controllability

From the DWI data, we constructed anatomical brain networks by subdividing the brain into 414 regions
using the Schaefer atlas for 400 cortical regions and the Harvard Oxford atlas for 14 subcortical regions
[4, 5, 68]. In these anatomical connectivity matrices, brain regions are defined as nodes, and a link between
two nodes represents the number of streamlines connecting them. Controllability of a dynamical system
describes the possibility of driving the current state of a system to a desired target state via external control
input [69]. Such an approach allows us to gain better insight into the relationship between brain structure
and brain dynamics. Here, we focus on average controllability, which quantifies each region’s capacity to
leverage the brain’s underlying structural connectivity to distribute activity throughout the brain to guide
changes to any new hypothetical states [70]. Networks with high average controllability are more influential
in the control of network dynamics than networks with low average controllability. The relationship between
the mathematical formulation of network control and brain networks is discussed in more detail elsewhere [71].

To ensure system stability, each participant’s structural connectivity matrix was normalized by dividing each
element by the largest absolute eigenvalue of the matrix plus one [69]. Following normalization, average con-
trollability was calculated for each node. Finally, we calculated the mean average controllability over nodes.
These person-averaged estimates of average controllability were then considered further in the subsequent
analyses of between-person differences.

Optimal control inputs. We begin by approximating brain state dynamics through the linear continuous-
time equation

ẋ(t) = Ax(t) +Bu(t), (1)

where, for the task fMRI data, x(t) is a vector of size N × 1 (where N is the 414 brain regions in the network,
consisting of 400 cortical regions and 14 subcortical regions) that represents the state of the system at time
t, A is the weighted symmetric N × N structural matrix estimated through diffusion spectrum imaging, B
is an input matrix of size N × N specifying the set of control nodes, and u(t) is the time-dependent control
signal in each of the control nodes. When analyzing the resting-state fMRI data, x(t) is defined as a N x 1
vector from the the N x R BOLD time series, where R is the set of 300 images acquired at each repetition
time during the scan. The optimal control energy framework [69] defines the unique control input u∗(t)
needed to transition the system from an initial state x(0) = x0 to a final target state x(T ) = xT over the
time horizon T through the cost function that solves the problem:

u(t)∗κ = argmin
uK

J (uκ) = argmin
uκ

∫ T
0(

(xT − x(t))
>

(xT − x(t)) + ρuκ(t)>uκ(t)
)
dt,

(2)

where the parameter ρ determines the relative weighting between the costs associated with the length of the
state trajectory and the input energy. Following prior work, we set δ to 1 such that no specific assumptions
are made about the relative importance of constraints on energy and distance values [69]. The cost function
J(u(t)∗κ) is defined to find the unique optimal control input u(t)∗κ. We then use this optimal control input
to calculate the control inputs required by a single brain region:

E∗i =

∫ T

0

‖u∗i (t)‖
2
2 dt. (3)
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By integrating each control input over time, we can calculate the total control energy required by all brain
regions:

E∗ =

∫ T

0

u(t)Tu(t)dt. (4)

In order to model the unique importance of the 145 regions of the dorsal attention, ventral attention, and
frontoparietal networks, we continued to assign these regions a value of B = 1 (as in the previous simulations)
and set all other regions as B = 0.75. This choice follows prior modeling decisions utilizing a full control
set [72, 73, 74]. Finally, we simulated network dynamics while incrementally decreasing the value of B for
the 20 precuneus/PCC regions using B = [0.75, 0.50, 0.25, 0.10, 0.05]. Following prior work showing that the
choice of T results in high correlated (Pearson’s r > 0.99) control input values across different values of T ,
we chose T = 3 [75].

The persistence energy is the control input E∗i required to transition from xT to xT . With the terminology
above, persistence energy defines x0 = xT . Assuming that states which require greater persistence energy
are less stable, the control stability S of a neural state is defined as

S =
1

log10 (Ex0=xT )
. (5)

2 Supplementary Results

2.1 Network control theory

Network control theory provides a suite of tools to interrogate the effort of network dynamics during mindful
practice. There exist strong interrelationships among the different control metrics of average controllability,
optimal control input, and control stability. By averaging these metrics across all participants to obtain mean
regional values, we observed that brain regions with greater average controllability can efficiently reach any
hypothetical state and tend to be the optimal regions to receive more control input (Spearman’s ρ(142)=0.59,
p<0.001). These regions with greater average controllability tend to have reduced control stability (ρ(142)=-
0.59, p<0.001), suggesting that the regions favor different rather than stably persisting states. The strong
interrelationships among the control metrics suggest that while each metric offers a distinct interpretation
of brain function that is helpful for a fuller understanding of the neural dynamics of mindfulness, they may
collectively contribute to regulatory processing.
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2.2 Multi-level model of drinking behavior and sensitivity analysis
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Figure 1: (A) Participants who have greater self-reported attentional impulsiveness also have greater self-reported difficulties
in emotion regulation. (B) The multi-level model reported in the main results also indicated that participants who had
greater attentional impulsiveness were less likely to drink, but they drank more if they did drink.
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Figure 2: Sensitivity analysis for average controllability predicting later behavior change in the moderation of alcohol
consumption. (A) A sensitivity analysis showing the results of the most parsimonious model. (B) We observed consistent
findings with and without additional covariates of baseline drinking amount or frequency in the past 6 months, demographic
variables, and the personality trait of attentional impulsivity. As reported in [46], when participants received text reminders
to respond mindfully to alcohol cues that they encountered in their daily lives, participants reduced their drinking frequency
from once every 6 days to once every 8 days.
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2.3 Exploratory analysis of regional differences in task-related activation

eulav-peulav-tfdrorredradnatSetamitsEelbairaV

 0.00002944.420.970.2330.1Intercept
Trial condition (mindfully attend to alcohol) 0.0 0.18 37.60 0.13 0.90

Type of network (ventral attention) -1.20 0.20 94.34 -6.0 0.000000036

Trial condition-by-network interaction -0.008 0.05 6715.0 -0.15 0.88

A

B

Figure 3: No differences in network activation between conditions. (A) We used a linear mixed model fit by restricted
maximum likelihood, modeling random effects for the participant, brain region, and trial type. We assessed main effects
of the trial condition, network, and the trial-by-network interaction. We did not find differences in neural activity between
conditions at the network level (b = 0.02, p = 0.90) nor an interaction (b = −0.01, p = .878). (B) A summary table of
the model results.

We did not find differences in the average neural response at the whole-brain level between groups or con-
ditions (whole-brain contrast maps are publicly available here [76]). This result does not preclude the
possibility that regional differences exist. Future work using a priori masks to study regional activation will
be important. For example, in separate work using this dataset, it was recently reported that feelings of
purpose in life influenced whether greater alcohol cue reactivity within the ventral striatum was associated
with increased or decreased alcohol use following craving in daily life [77]. Based on prior work, the ventral
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striatum was an a priori region of interest [78, 79].

We also conducted an exploratory analysis of average differences in regions broadly associated with attention
(Supplementary Figure 3; Table 1) [16]. We found that the most activated regions included the bilat-
eral precuneus, left middle temporal gyrus, left insula, and bilateral superior parietal cortices. These regions
have been associated with imagery, action observation, temporal processing, theory of mind, empathy, pain,
somatosensation, and working memory [80]. The most deactivated regions included the right precuneus,
right inferior parietal cortex, left precentral gyrus, opercular part of inferior frontal gyrus, and the right
supramarginal gyrus. These regions have been associated with somatosensation, working memory, language,
imagery, consciousness, error, and expectancy [80].

We also wish to highlight the different assumptions made by an analysis of regional activity and of a dynamical
systems model. In an analysis of regional activity, if one does not find statistically significant differences
in the regional neural activity elicited by the task, then one typically assumes that those regions are not
implicated in the brain function. In contrast, a dynamical systems model assumes that regional activity
contributes to a task-elicited dynamical trajectory. This trajectory may be largely driven by the activity of
a subset of regions. However, in network control theory, the contribution of regional activity also depends
on how regional activity flows along the anatomical white matter connections. Indeed, the probability of
a neural state is related to the control input needed to drive it as well as the controllability admitted by
anatomical white matter pathways that connect regions [81]. Our main findings support the sensitivity of
the network control theory framework to investigate task-related changes at the network level which may be
obscured by average differences in activity magnitude.

Name (Schaefer atlas) Name (AAL) X Y Z BOLD Neurosynth key word association
Left Med 7 Supp Motor Area L -8 -2 70 0.34 execution, motor, imagery, production
Left Post 15 Precuneus L -8 -58 64 0.33 tracking, imagery, action observation, expertise
Left FEF 1 Precentral L -40 -2 52 0.33 premotor, movements, eye, finger
Left Post 3 Temporal Mid L -56 -62 0 0.31 temporal, objects, tools, lexical
Left Post 4 Temporal Mid L -48 -66 16 0.3 action observation, theory of mind, intentions, empathy
Right Med 5 Precuneus R 10 -44 54 0.29 body, abilities, abstract, accuracy
Left FrOperIns 4 Insula L -40 -14 -2 0.28 pain, somatosensory, noxious, autobiographical
Left Post 7 Parietal Sup L -22 -66 46 0.26 working memory, task, load, demands
Left Post 16 Parietal Sup L -20 -56 66 0.26 movements, pointing, action observation, imagery
Right Post 12 Parietal Sup R 20 -68 52 0.26 calculation, saccade, visuospatial, subtraction
Right Post 6 SupraMarginal R 58 -22 44 -0.34 somatosensory, finger, hand, motor
Right Post 15 Precuneus R 8 -72 52 -0.34 working memory, memory, calculation, execution
Right Post 8 Parietal Inf R 44 -38 50 -0.33 tasks, calculation, spatial, finger
Right Post 11 Parietal Inf R 36 -44 44 -0.33 tasks, working memory, premotor, finger movements
Right Post 9 Postcentral R 46 -28 42 -0.31 finger movements, hand, motor
Left PrCv 1 Precentral L -50 6 26 -0.29 phonological, language, reading, working memory
Left Post 8 Parietal Inf L -46 -30 44 -0.25 finger, hand, somatosensory, grasping
Right FrOperIns 8 Frontal Inf Oper R 54 12 12 -0.25 motor, music, execution, imagery
Right TempOccPar 7 SupraMarginal R 62 -38 36 -0.24 consciousness, motor imagery, error, expectancy
Left Post 6 Parietal Inf L -54 -32 44 -0.23 premotor, finger, grasping, hand, tools

Table 1: Brain regions with the most relative activation or deactivation in the dorsal and ventral attention networks.
Region names are based on a 400-region parcellation publicly available [4]. We have also included the corresponding
automated anatomical labeling (AAL) atlas label [82]. X,Y, and Z coordinates are provided in MNI152 space for region
centroids. We list regions with the most activated or deactivated BOLD activity (standardized mean parameter estimates)
elicited by mindful attention. Key words associating brain functions from literature to the centroid locations were compiled
from the Neurosynth meta-analytic framework [80]. The most activated regions have been associated with imagery, action
observation, temporal processing, theory of mind, empathy, pain, somatosensation, and working memory [80]. The most
deactivated regions have been associated with somatosensation, working memory, language, imagery, consciousness, error,
and expectancy [80].
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2.4 Craving during the cue-reactivity task

Figure 4: Regulating with mindful attention reduces craving. Cues elicited craving as evidenced by reported craving
being non-zero in both the baseline and mindful attention conditions (b = 1.93, p < 0.001). There was no difference in
average craving between groups. Within the mindful attention condition, when participants regulated their reactions, they
reported less craving than they did when responding naturally in the baseline condition (b = −0.17, p = 0.003).
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2.5 Intrinsic timescales related to the control and stability of task activity

Figure 5: (A) Top: For participants in the mindful group, the control input required for naturally reacting was less than
that required for mindful attention (t = −3.3, p = 0.001), suggesting that mindful attention recruits additional effort to
de-automatize habitual reactions. The control input required to naturally react tended to increase over time (ρ = 0.42,
p < 0.001), suggestive of more effort and learned de-automatization of habitual reactions. There was an interaction
between time and condition (t = 5.3, p < 0.001), where natural reactions became more effortful while mindful attention
became more efficient. Bottom: We found similar results when considering only cognitive control nodes (frontoparietal
attention, dorsal attention, and ventral attention). Within subjects, the control input required for naturally reacting was
less than that required for mindful attention (t = −2.1, p = 0.04). The control input required to naturally react tended to
increase over time (ρ = 0.18, p = 0.02). There was no interaction between time and condition. In these simulations, we
constructed B such that all nodes could receive control input [74]. The intrinsic neural timescale is a property of ongoing,
spontaneous brain activity across the whole brain rather than restricted to only task-responsive regions [83]. (B) Intrinsic
timescales, which we refer to here as past persistence, describe temporal windows that may be arranged hierarchically such
that the computational timescales increase as activity propagates from unimodal sensorimotor to transmodal frontoparietal,
default mode, and limibic cortices [84]. Faster timescales correlate with more control input. Slower timescales correlate
with more control stability.
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A within-person analysis of the manipulations checks (Supplementary Figure 6; [Figure 6 of this Re-
sponse Document]) indicates that individuals in the mindfulness condition were significantly more likely to
respond to alcohol prompts mindfully on active weeks when they were prompted to respond mindfully versus
on inactive weeks when they were prompted to respond naturally (B = 18.06, 95% CI [13.12, 23.00], p < .001;
active week (mean = 59.6± 17.7) vs. inactive week (mean = 49.5± 21.7). A between-groups analysis of the
manipulation checks suggests practice effects. On average, individuals in the mindful attention condition
responded to alcohol prompts naturally less frequently relative to individuals in the baseline condition over
the 28 days (Welch two-sample t-test t(40.217) = −6.8, p < 0.001; baseline condition mean= 89.6± 10.6 vs.
mindful attention condition mean= 58.5± 22.2).

Figure 6: Manipulation checks for EMA text reminders Within-person manipulation checks suggest the participants
practiced mindful attention in response to EMA reminders.
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Lindeløv, “Psychopy2: Experiments in behavior made easy,” Behavior research methods, vol. 51, no. 1,
pp. 195–203, 2019.

19
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