
Supplement for Simple sensitivity analysis for control selection bias

In a case-control study we can estimate the odds ratio, conditional on covariates C,

Pr(Y = 1 | A = 1, S = 1, c)

Pr(Y = 0 | A = 1, S = 1, c)

/
Pr(Y = 1 | A = 0, S = 1, c)

Pr(Y = 0 | A = 0, S = 1, c)

where Y indicates case vs. control status, A is the binary exposure of interest, and S is an

indicator of selection into the case-control study.

This quantity can be used to estimate the population odds ratio

Pr(Y = 1 | A = 1, c)

Pr(Y = 0 | A = 1, c)

/
Pr(Y = 1 | A = 0, c)

Pr(Y = 0 | A = 0, c)

without bias, as long as Pr(A = 1 | Y = 0, S = 1, c) = Pr(A = 1 | Y = 0, c) and Pr(A = 1 | Y =

1, S = 1, c) = Pr(A = 1 | Y = 1, c). In other words, selection of both cases and controls must

be independent of exposure.

Although it may be straightforward to randomly sample the cases with respect to the distri-

bution of their exposure, often because the cases can be fully enumerated, control selection is

usually more difficult. When the sampled controls do not represent the exposure distribution

in the source population, selection bias can result.

To quantify the possible size of this bias, consider the ratio of the observable odds ratio from

case-control data to the odds ratio that would have been estimated had the entire cohort been

sampled. Assume then that any bias from the case-control study is due to this selection.

We therefore have:

bias =

{
Pr(Y = 1 | A = 1, S = 1, c)

Pr(Y = 0 | A = 1, S = 1, c)

/
Pr(Y = 1 | A = 0, S = 1, c)

Pr(Y = 0 | A = 0, S = 1, c)

}/
{

Pr(Y = 1 | A = 1, c)

Pr(Y = 0 | A = 1, c)

/
Pr(Y = 1 | A = 0, c)

Pr(Y = 0 | A = 0, c)

}
.

We can rewrite each odds ratio in terms of the probability of the exposure:

bias =

{
Pr(A = 1 | Y = 1, S = 1, c)

Pr(A = 0 | Y = 1, S = 1, c)

/
Pr(A = 1 | Y = 0, S = 1, c)

Pr(A = 0 | Y = 0, S = 1, c)

}/
{

Pr(A = 1 | Y = 1, c)

Pr(A = 0 | Y = 1, c)

/
Pr(A = 1 | Y = 0, c)

Pr(A = 0 | Y = 0, c)

}
.
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Now assume that the cases have been properly sampled independently of exposure status,

such that A⊥⊥ S | Y = 1, but that the independence does not hold for Y = 0:

bias =
Pr(A = 1 | Y = 0, c)

Pr(A = 0 | Y = 0, c)

/
Pr(A = 1 | Y = 0, S = 1, c)

Pr(A = 0 | Y = 0, S = 1, c)
.

Following the logic in Smith & Vanderweele 2019,1 we see that

bias ≤ maxs Pr(A = 1 | Y = 0, S = s, c)

mins Pr(A = 0 | Y = 0, S = s, c)

/
Pr(A = 1 | Y = 0, S = 1, c)

Pr(A = 0 | Y = 0, S = 1, c)

≤ Pr(A = 1 | Y = 0, S = 0, c)

Pr(A = 0 | Y = 0, S = 0, c)

/
Pr(A = 1 | Y = 0, S = 1, c)

Pr(A = 0 | Y = 0, S = 1, c)

=
Pr(A = 1 | Y = 0, S = 0, c)

Pr(A = 1 | Y = 0, S = 1, c)

/
Pr(A = 0 | Y = 0, S = 0, c)

Pr(A = 0 | Y = 0, S = 1, c)
.

Suppose there exists some U such that A⊥⊥ S | Y = 0, C, U . For notational simplicity we will

assume discrete U . Then we can write, by Lemma A.3 in Ding & VanderWeele 2016:2

bias ≤
{∑

u Pr(A = 1 | Y = 0, S = 0, c, u) Pr(U = u | Y = 0, S = 0, c)∑
u Pr(A = 1 | Y = 0, S = 1, c, u) Pr(U = u | Y = 0, S = 1, c)

}/
{∑

u Pr(A = 0 | Y = 0, S = 0, c, u) Pr(U = u | Y = 0, S = 0, c)∑
u Pr(A = 0 | Y = 0, S = 1, c, u) Pr(U = u | Y = 0, S = 1, c)

}
=

{∑
u Pr(A = 1 | Y = 0, c, u) Pr(U = u | Y = 0, S = 0, c)∑
u Pr(A = 1 | Y = 0, c, u) Pr(U = u | Y = 0, S = 1, c)

}/
{∑

u Pr(A = 0 | Y = 0, c, u) Pr(U = u | Y = 0, S = 0, c)∑
u Pr(A = 0 | Y = 0, c, u) Pr(U = u | Y = 0, S = 1, c)

}
≤
{

RRUA1 × RRS0U

RRUA1 + RRS0U − 1

}
×
{

RRUA0 × RRS1U

RRUA0 + RRS1U − 1

}
where

RRUA1 =
maxu Pr(A = 1|Y = 0, u, c)

minu Pr(A = 1|Y = 0, u, c)

RRUA0 =
maxu Pr(A = 0|Y = 0, u, c)

minu Pr(A = 0|Y = 0, u, c)

RRS1U = max
u

Pr(U = u|Y = 0, S = 1, c)

Pr(U = u|Y = 0, S = 0, c)

RRS0U = max
u

Pr(U = u|Y = 0, S = 0, c)

Pr(U = u|Y = 0, S = 1, c)
.

2



REFERENCES

1. Smith LH, VanderWeele TJ. Bounding bias due to selection. Epidemiology. 2019;30:509–

516.

2. Ding P, VanderWeele TJ. Sharp sensitivity bounds for mediation under unmeasured

mediator-outcome confounding. Biometrika. 2016;103:483–490.

3


	References

