Supplemental Information

Table S1. Custom TaqMan gene expression assays used in RT-qPCR.

Forward Primer	Reverse Primer	Reporter
AAAGCCAGAGAGCTTACAAGGAAAA	CGCCCTCCACTAAAAAGATTTCACT	TTGCCTGGAAAATTAG
AAGACATCACTATCAACGAAGGCAA	CGATTTGAACCGGTCTGTCG	CACGCTAACGGCTTTT
TCAAACGCTGATACCCACTTCTC	CATCTGGATTCATCCAAGTCCCTTT	ATGGCGCTTATTTTGC
GGGAGTTTTGTGCGCATTGAT	GCTGTCAGGCCCTAGTTTGA	CCACACAGCCGATCTG
GTGGTTGTTCCCTATCTATCGTGAA	ACACATAAGGGTGGATCATCAAATTCTTT	CCCGCTTTATGAACCC
GCGTCAAGCGACTGGTTTT	CCATTAGAGCCTTACCGCTTGTATA	TAACGCCCAAAATACC
CGCCTATGTGGAAGAGACGATA	CGGCTTGAGTGCCAAAATGC	ACCGCCCTAAATAACA
GGCAAGCAAGTTTATGCACCTAAT	TCGTTATCAATAATATCAGCTAACAAATCGCT	CCACACCCCAAGAGAC
GTATTTGGAGCGAACGCTTTAACAT	GTCGCACATGGTTGGTGAAG	ACACCCCACCATTATC
TGTGGAAGCGAGCTTGGATATTC	CGCCCGTCAATGGAGTGT	AAGGGCGCATTAATTT
GGAATCAAGGGCTTTCGCTTTTAA	TCCTTGCATGATAATAGCTCTCTTCTCT	AACCGCCGATTTTAG
CCATGATTGTGGTTAATCCGTTGGA	CTCAAATAACCTAATAATTCCTTAATTTCGTTTAATTTTCTTC	TCGCCCACATTTTCCA
ATCGGTTTGAGCGCTTTAGAGT	CTCATATACCCCCCACCAAAAA	CCCTAACGCTAAAATC
	Forward Primer AAAGCCAGAGAGCTTACAAGGAAAA AAGACATCACTATCAACGAAGGCAAA TCAAACGCTGATACCCACTTCTC GGGAGTTTTGTGCGCATTGAT GTGGTTGTTCCCTATCTATCGTGAA GCGTCAAGCGACTGGTTTT CGCCTATGTGGAAGAGACGATA GGCAAGCAAGTTTATGCACCTAAT GTATTTGGAGCGAACGCTTTAACAT TGTGGAAGCGAGCTTGGATATTC GGAATCAAGGGCTTTCGCTTTTAA CCATGATTGTGGTTAATCCGTTGGA	Forward PrimerReverse PrimerAAAGCCAGAGAGCTTACAAGGAAAACGCCTCCACTAAAAAGATTTCACTAAGACATCACTATCAACGAAGGCAACGATTTGAACCGGTCTGTCGTCAAACGCTGATACCCACTTCTCCATCTGGATTCATCCAAGTCCCTTTGGGAGTTTTGTGCGCATTGATGCTGTCAGGCCCTAGTTTGAGTGGTTGTTCCCTATCTATCGTGAAACACATAAGGGTGGATCATCAAATTCTTTGCGTCAAGCGACTGGTTTTCCATTAGAGCCTTACCGCTTGTATACGCCTATGTGGAAGAGACGATACGGCTTGAGTGCCAAAATGCGGCAAGCAAGTTTATGCACCTAATTCGTTATCAATAATATCAGCTAACAAATCGCTGTGTGGAAGCGAACGCTTTAACATGTCGCACATGGTTGGTGAAGTGTGGAAGCGAACGCTTTGAATTCCGCCCGTCAATGGAGTGTGGAATCAAGGGCTTTGGATATCCCCTTGCATGATAATAGCTCTCTTCTCTCCATGATTGTGGTTAATCCGTTGGATCCTTGCAATAACTAAATTCCTTAATTTCGTTTAATTTTCTTCATCGGTTTGAGCCTTTAAGATCTCATATACCCCCCACCCAAAAA

Table S2. Validation of a subset of the CrdRS TCS regulon via RT-qPCR.

The reporters have FAM as the fluorophore at the 5' end and NQR as the quencher at the 3' end.

12

			RNA-Seq			RT-qPCR				
Identification		Δ <i>crdS</i> Average		∆ <i>crdR</i> Average		∆crdS Average		∆crdR Average		
RefSeq Identification	Locus Tag	Gene Function	Fold change	P-value	Fold change	P-value	Fold change	P-value	Fold change	P-value
HP_RS03405	HP0696	асхВ	2.54	**	۰ –	ns	4.69	***	4.98	**
HP_RS00585	HP0115	flaB	2.90	**	٥	ns	٥	ns	0.40	**
HP_RS02405	HP0486	hofC	0.44	**	٥	ns	0.31	***	٥	ns
HP_RS03445	HP0706	hopE	0.45	**	٥	ns	٥	ns	٥	ns
HP_RS00060	HP0009	hopZ	٥	ns	0.30	**	٥	ns	٥	ns
HP_RS03300	HP0671	horF	0.38	***	٥	ns	0.40	**	0.68	*
HP_RS05290	HP1076	Flagellar FLiS export co- chaperone	2.60	*	٥	ns	٥	ns	٥	ns

15 Table S2 shows RefSeq identification, locus tag, gene function, average fold change per condition of three

16 biological replicates, and average p-value of each condition. The comparisons were (i) *H. pylori* $26695/\Delta rdx$ A

17 (control) vs. *H. pylori* 26695/\[]\DeltardxA/\[]\DeltacrdS (\[]\Deltards Average) and (ii) *H. pylori* 26695/\[]\DeltardxA (control) vs. *H. pylori*

18 26695/∆*rdx*A/∆*crdR* (∆*crdR* Average) for RNA-Seq and RT-qPCR. ♦ represents non-DE. DESeq2 determined

19 significance between the control and the mutants for RNA-Seq and an ANOVA was performed to determine

significance between the control and the mutants, followed by a Tukey HSD test for RT-qPCR (*** = $p \le 0.001$, **

21 = $p \le 0.01$, * = $p \le 0.05$, ns = p > 0.05). Additional verifications shown in Figure 1.

- 22
- 23
- 24

27 28

Table S3. Confirmation of the CrdRS TCS target regulon via CrdRS phospho-incompetent missense mutants using RT-qPCR.

Identification		Deletion Mutants				Phospho-Incompetent Mutants				
		∆crdS Average		∆crdR Average		CrdS H173A		CrdR D53A		
RefSeq	Locus		Fold		Fold		Fold		Fold	
Identification	Tag	Gene Name	change	P-value	change	P-value	change	P-value	change	P-value
HP_RS02405	HP0486	hofC	0.31	***	0	ns	0	ns	0	ns
HP_RS03300	HP0671	horF	0.40	**	0.68	*	٥	ns	٥	ns

29 Table S3 shows RefSeq identification, locus tag, gene function, average fold change per condition, and average p-

30 value of each condition. The comparisons were *H. pylori* 26695/ $\Delta rdxA$ (control) vs. (i) *H. pylori*

31 26695/\[]\[] z6695/\[] drdxA/\[] crdS (\[] crdS Average), (ii) H. pylori 26695/\[] rdxA vs. H. pylori 26695/\[] rdxA/\[] crdR (\[] crdR \[] rdxA/\[] crdR (\[] crdR \[] rdxA/\[] crdR \[] rdxA/\[] crdR (\[] crdR \[] rdxA/\[] rdxA/\[] rdxA/\[] crdR \[] rdxA/\[] rd

32 Average), (iii) H. pylori 26695/\[]\DeltardxA/CrdS H173A (CrdS H173A), and (iv) H. pylori 26695/\[]\DeltardxA/CrdR D53A

33 (CrdR D53A) for three biological replicates of RT-qPCR. An ANOVA was performed to determine significance

between the control and each mutant, followed by a Tukey HSD test (*** = $p \le 0.001$, (** = $p \le 0.01$, * = $p \le 0.05$,

35 ns = p > 0.05). Additional genes shown in Figure 2.

36 37