1	-Supplementary data-
2	Identification and Characterization of Corynaridin, a Novel
3	Linaridin from Corynebacterium lactis
4	Efthimia Pashou ¹ , Sebastian J. Reich ¹ , Alexander Reiter ^{2,3} , Dominik Weixler ¹ ,
5	Bernhard J. Eikmanns ¹ , Marco Oldiges ^{2,3} , Christian U. Riedel ^{1#} , and Oliver
6	Goldbeck ^{1#}
7	¹ Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
8	² Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich
9	GmbH, 52425 Jülich, Germany
10	³ Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
11	
12	# Corresponding authors.
13	
14	<u>E-mail:</u>
15	oliver.goldbeck@uni-ulm.de, christian.riedel@uni-ulm.de
16	Address:
17	Institute of Microbiology and Biotechnology
18	University of Ulm
19	Albert-Einstein-Allee 11
20	89081 Ulm
21	Germany
22	

23 <u>Table S1:</u> List of oligonucleotides used in this study.

Primer	Sequence $(5' \rightarrow 3')$	Purpose
pk19_fw pk19_rev	GTATGTTGTGTGGAATTGTGAG CAGGGTTTTCCCAGTCACGACG	Control primer flanking MCS pK19mobsacB
Do_crdA_fwd Do_crdA_rev	CAAGCTTGCATGCCTGCAGGAAGAGGAACATTTGCCGC GGTAGTCAGTTAGGTACTAAACTAA	Amplification of downstream region of <i>crdA</i>
Up_crdA_fwd Up_crdA_rev	TTAGTACCTAACTGACTACCTTCCATTCTTAGG TTGTAAAACGACGGCCAGTGGAGGAAGAATGCCGGAGAAAC	Amplification of upstream region of <i>crdA</i>
CorePeptide- HTHHyd- LinL_fwd	AGCGAATTCGAGCTCGGTACCCTAGATTCTAAGATAAGGAGG TAAATAATGCTCGCTACTGCAGTTAATTC	Contruction of pBAD33_crd
CorePeptide- HTHHyd-LinL_rev	TCAGTTCAGGCTCTTGCCGAGGAATGGG	Contruction of pBAD33_crd
ABC-SDR_fwd	TCGGCAAGAGCCTGAACTGAGAAAATTGAC	Contruction of pBAD33_crd
ABC-SDR_rev	CAAGCTTGCATGCCTGCAGGGGGGAAATTACTCTGCTAAAAC	Contruction of pBAD33_crd
pBAD33_fw	ATTATTTGCACGGCGTCA	sequencing of crd-locus
pBAD33_rev	GTTTTATCAGACCGCTTCT	sequencing of crd-locus
S1	GAGCTCGGTACCCTAGATTC	sequencing of crd-locus
S2	GTGGCTGTCTAGGTACTAAC	sequencing of crd-locus
S3	TCCACCAATCGGCTTAAAGG	sequencing of crd-locus
S4	GAGGTCGTGTTCGGGTCTTG	sequencing of crd-locus
S5	CGCAATGACAGCCTTTAACC	sequencing of crd-locus
S6	GATTCAACCGAGAGCAGTTC	sequencing of crd-locus
S7	GTATCGGTCGGGCAGTTGTG	sequencing of crd-locus

24

25 <u>Table S2:</u> List of open reading frames contained in the *C. lactis* RW3-42 corynaridin gene cluster, the

26 respective number of amino acids, putative TM-helices and homology to legonaridin biosynthesis

27 proteins.

orf ¹	amino acids	TM-helices	legonaridin homolog	amino acid identity (%) to legonaridin homologs
crdA	69	-	legA	25
crdG	275	1	legH	32
crdE	324	-	legE	21
crdL	182	-	legF	26
crdT	550	6	legB	31
crdC	243	-	legC	25

¹orf = open reading frame

LegA	1 MS VLAEFAN TELVDV - EPGRLGSEATPTMITPLATLAT PEATPVGFA	ATS 49
CrdA	1 MLATAVNSAQDRGLIPANYDGFLSMGSAPMTCTPTVTVRITVRIMRATKRTVRGAE	P57
LegA	50 <mark>ATAAAVNMITHDVTRH</mark>	65
CrdA	58 AASDRVETLVA V-	69

- 31 Figure S1: CLUSTALW sequence alignment of LegA (Legonaridin) from *Streptomyces* sp. CT34 and
- 32 CrdA (corynaridin) from *C. lactis* RW3-42.
- 33

LegH	1 VASLGTLVS <mark>AL</mark> EMLSQHRKLADGEL <mark>LSA</mark> QLESTRP <mark>EFA</mark> KR <mark>F</mark> PRLTRALSSKK	52
CrdG	1MID <mark>AL</mark> KG <mark>L</mark> QRVVQKP-LQAPLEFAERASAFSQLLATLEGISPKER	44
LegH	53 A <mark>G</mark> V AL YG I QAGASAA TM IW AHKRGVRAAGSA	83
CrdG	45 RFG <mark>G</mark> I NDWD YTK YL FNSGG <mark>G I SDA</mark> GVRE I FVRCLATAR I GAS VVLLLP TGNNTRLVASS 1	03
LegH	84 VLAVTGAASRLRTPFGGDGADQLQQVINVVLAS-TGTFKDGDKGRDVAMRALALETTIS	41
CrdG	104 VSALSYLLGNRYTINGSDGAEQYSAIILASSALGRIDGGKNRDLAVDFIAAQTAFS	59
LegH	142 YVASGV <mark>VK</mark> LVSPVWLSGEAFSG <mark>VIRT</mark> HNYGDPNIYKLVHKYPMLGKLITWTTVAAEVGF 2	200
CrdG	160 YFVAGAVKSLGREWRNGTAVERVVRTEVYGNRIFYRFLRRNPRLSESLTYSTVVVEMLF 2	218
LegH	201 PLVFVLPKPAAKAY <mark>LGSM</mark> TL <mark>FH</mark> LGIGQF <mark>MGLNRF</mark> VLAFAATHPALLYVFDQSGRRPAVA 2	259
CrdG	219 PFLLLH-RGMRKVALASMFAFHAANVPLMGLGRFFIVFTSTYPAVMNSTNRLKGRFSD-2	275
LegH CrdG	260 GNAVAALAPAAA 2	71

34

- 35 Figure S2: CLUSTALW sequence alignment of LegH (HTTM-domain protein) from *Streptomyces* sp.
- 36 CT34 and CrdG (HTTM-domain protein) from *C. lactis* RW3-42.
- 37

LegE	1WRRTALITGGALGALKAGEMFGAFYAD <mark>RF</mark> TGKRERARRYLT <mark>HER</mark> PDGSLV <mark>EV</mark> DV-	28
CrdE	1 VTDFYRKTALITGGALGALKAGEMFGAFYAD <mark>RF</mark> SRNWRRHMRKTCARNEVAV	53
LegE	29 N I P P N A R M V <mark>L L</mark> D N <mark>G L G T T H E YWD W V C E</mark> A L P A D M G Y V <mark>R F N R P G Y G</mark> L <mark>S</mark> T P S K R Y	81
CrdE	54 K R A G V D D S Q G C I <mark>L L</mark> V H <mark>G M G</mark> N S S V S L V R L G E I S E L T G R T V I R Y D <mark>R P G Y G</mark> A <mark>S</mark> R F C T D A P Y	112
LegE	82 GLERHFAL <mark>L</mark> QE <mark>LRE TY</mark> VADLPLVLA <mark>GHSLGG</mark> YFVAAYAS <mark>L</mark> HPGAKEGVTGVVMID	136
CrdE	113 SVTQSVDELAE I I RWLHEQY HWVTVV <mark>GHS</mark> F <mark>GG</mark> LLAY LALMGLEEPSWCNALL IE	166
LegE	137 ATD VAH <mark>L</mark> RSS <mark>RR</mark> AD I DRWS <mark>R</mark> QSMLME Q - VF <mark>A</mark> VAGLS <mark>AL</mark> RPALNQHKT	182
CrdE	167 PSH LHEA <mark>RR</mark> DPKRMLGVMLGVEELNRRHLLSPFGGELLDAS I GPRALDGRRHPHVD	222
LegE	183 YRPE I N <mark>RS</mark> YTAFL <mark>A</mark> Q <mark>RR</mark> TWALAYRD - YRDAM - TY <mark>P</mark> ELAS VDSPLT <mark>V</mark> I TAENNKGDNAAH	239
CrdE	223 AVRRER <mark>RS</mark> SRC VR <mark>A TRR</mark> EFTTLAKLLFDGTV I RAPQ PSAE VH <mark>V</mark> VASARS VGD VRQK	278
LegE	240 QK VQAK LATLSKRSRQRC I DGSD <mark>H</mark> ESLLS I QPHAAQ VAE <mark>I</mark> I ADEPPT <mark>G</mark> RAD <mark>A</mark> ERRKS AG	298
CrdE	279 ELFAEYI CSPADMT I LGETSHDT I VLDKDAVNR I SQI VNG <mark>G</mark> S I H <mark>A</mark> A	324
LegE CrdE	299 ARPAVKSAADREKEL	313

38

- 39 Figure S3: CLUSTALW sequence alignment of LegE (Alpha-beta hydrolase) from *Streptomyces* sp.
- 40 CT34 and CrdE (Alpha-beta hydrolase) from *C. lactis* RW3-42.

LegF	1 VTVRVNTERLKTAAVTTSLAA <mark>W</mark> LVA <mark>T</mark> AVAQMPEQRFDNLLKRGKLRTPTPNWRFFGP	57
CrdL	1MLRNVIEVVFGSWFTL <mark>T</mark> FLGQHPGGNHRSRGLLFRLSSTTFMPNWAFFAP	50
LegF	58 NPGVKDNHLLYRDVTDGKPGEWQEIPITRDRAWYALAWNARNRSPKALFDAVQDVY	113
CrdL	51 NPGVYDDHLFYRVREGNEFSPWKEVVTSRNDDGPAWLSPFYSGASRRSKGIIDIFSTLE	109
LegF	114 VRSAAYGTAMEPV <mark>V</mark> QSS <mark>GYQ</mark> LLSGYIRHHLPHAEGASH <mark>S</mark> QFL <mark>VM</mark> YSYL <mark>AA</mark> PEARQIEPI	172
CrdL	110 SLASPTLSRTDCN <mark>V</mark> IQA <mark>GRQ</mark> AIANFMVVNADEI-SPHT <mark>S</mark> EYE <mark>VM</mark> LVR-AAGYAQDEDPV	166
LegF	173 FVSREFPLEDEGVVQPEPYPVAA	195
CrdL	167 FYYR-FAVRNGIADAPH	182

- 43 Figure S4: CLUSTALW sequence alignment of LegF (LinL protein) from *Streptomyces* sp. CT34 and
- 44 CrdL (LinL protein) from *C. lactis* RW3-42.
- 45

LegF	1 MLL I T <mark>GVLL</mark> GLLGVGASL TQPWA I GKLTEAAGK GESLAFP I VRLVGLF	48
CrdL	1 MTAFNLLRNNAGL I TLG I LLSLLSTAVTLFQPALVGQL I SGVSSGELQQ - PLMLLLLTV	58
LegF	49 CLGA <mark>V</mark> FS <mark>A</mark> LQA <mark>YV</mark> IGRAGENI <mark>VYD</mark> VRQVLTGRLLRADLTEFGKRPQGDILTRTVTDTSL	107
CrdL	59 LGTSVLTAATMYVVSIAADRTVRDMRKKITNHLLYLRVRELEKGGSGSFTTRVTSDTSI	117
LegF	108 VKIALSQSLAQLIVSGATVIGGVVLMFLIDVRLMLITMGCLGVASLLSLSIARKLRRVA	166
CrdL	118 VSTAFSSTLTDFVGGFTVIIGALIYMAVVDWKLLLVVIAVLLVALAIIVSISSSLQNLS	176
LegF	167 VQNRDDTGEFGTAVQRVLAALPTVKASRAETRETARIGRLAERARRSGIRVNAYNALFM	225
CrdL	177 SKVQDHLAALGEILQSALSAIRTIKAFRVETKVIGNLSAEIDHAYRNRRMSFVEAVLE	235
LegF	226 PSMNVGTQGALAVVVGAGMAWVARGEMNMADLTTFIMYLFQLVSPLVTFFMGVGQFIQG	284
CrdL	236 PLSTVASYMALLAVVLFGSIRLSNGDLSGEALTVFVTALFLMLAPIVQVSQSLGAFFEA	294
LegF	285 RAAIQRVDELAQMPQEGNGAQAAR <mark>SS</mark> VPIGPLPQHLPAVEFHDVRFGYRRGEEGERTQV	343
CrdL	295 RGALDRINQLLRLEVEDSTESS <mark>SS</mark> LCTGPTPLGTIEFDAVSYVREKRTI	343
LegF	344 LHGISLTVPARGLTAVVGP <mark>SGAGKTS</mark> MFQLIERFYALDGGVILLGGQNIGTLPLDTVRG	402
CrdL	344 LDNATVTVKSGEKVALTGASGSGKTSILSLLLKFYDVSAGHIRIGGKDLEDWNRRDLRA	402
LegF	403 LVGYVQQDSATMR <mark>GTVRENL</mark> TYAHPHASEDDIWEA-VEMA <mark>GL</mark> TSVVANLPK <mark>GL</mark> DTEL <mark>G</mark> D	460
CrdL	403 MVTYVEQEPDLLS <mark>GTLRENL</mark> ILGTGESFDDETLIAMLGQF <mark>GL</mark> ENFASVD <mark>GL</mark> SRSVGS	459
LegF	461 QG <mark>SGLSGG</mark> QRQRLCTARTLLQKPAVMLLDEATSNLDSDSERDFRDVLRRVSQQCAVTAT	519
CrdL	460 GN <mark>SGLSGGERQR</mark> VATTRAVLQNAPVTLVDEPTSALDSASAELSMSRLLETDST <mark>VT</mark> FT	516
LegF	520 AHRIST <mark>V</mark> VD <mark>AE</mark> KIVVLEG <mark>GR</mark> VRATGVHRELMEHDELYRRLAGSQLHAGAAPVATATHWV	578
CrdL	517 SHDANIVNLAERTLVVVDGRIVENSPNSRKSSNA	550
LegF CrdL	579 SGEPGAGPLASALGWHQWGSGLNEQTVRLRPIRIEEQW	616

- 47 Figure S5: CLUSTALW sequence alignment of LegB (ABC transporter) from *Streptomyces* sp. CT34
- 48 and CrdT (ABC transporter) from *C. lactis* RW3-42.

LegF	1 VNSADVA I VGTGPN <mark>GLAAGV</mark> V <mark>LARAG</mark> LRVEL - YEAADT I GGGLRT - EPL <mark>FD</mark> NGVVHD	55
CrdL	1 MRKHVLVTGATRG I GRAVVSRLLREGYDVSYTWLSSDEAASN I QMEASQFDGSVYPY	57
LegF CrdL	56 CSAVHPMAAASPFFREFDLEARGVELLHPE SYAHPLDGGRAA	99 101
LegF	100LAYR <mark>S</mark> LADTCAH <mark>LGP</mark> DGPRWRRLMGPLLERSE <mark>A</mark> VVDLILSGQRSLPRDPAA	150
CrdL	102 QDWMAPLNINLV <mark>S</mark> PFILCSRLGPSLGADG <mark>A</mark>	132
LegF	151 ALLLAGR <mark>VAV</mark> HGT <mark>G</mark> LGAARFQGEE <mark>A</mark> AALLTGVAAHAVGK <mark>L</mark> PSFAAGAVAMLLGHLAHGT 2	209
CrdL	133 VMVSSPN <mark>VAV</mark> CQE <mark>G</mark> MS - TYAASK <mark>A</mark> A <mark>LES</mark>	159
LegF CrdL	210 GWPLPRGGSARIAEAMAQDITAHGGVLHTGHPVTDLAELRRARAVLLDTSPKGFLALAG	268
LegF	269 DRLPRSYA <mark>RGL</mark> TRFRY <mark>GP</mark> GAAK <mark>V</mark> DFLVSEPIPWADPAVGRAGTVHLGGTHAEMVRQETR	327
CrdL	160 FSRVLA-RELGPAGVRVNVVRPGPTL T - EGFTAQAPDGGVIDELC 2	202
LegF	328 NARRVRTRE <mark>P</mark> FVLLVD <mark>P</mark> - A <mark>VTD</mark> PGRALP <mark>GK</mark> RPVWAYAHVPNGDPTDPYELVRARIERYA	385
CrdL	203 LATPLGRVANPDDVADAIYSLLGKDNRWV	231
LegF	386 PGFGDTVIAHRSVPAAAYETYNPNYVG <mark>GDI</mark> GSGAMT <mark>L</mark> YQSIARPVPRIDPYRTPLPGVF	444
CrdL	232S <mark>GDI</mark> LNVSGG <mark>LF</mark>	243
LegF CrdL	445 LCSSATPPGPSVHGMSGYLAAVSALRHCFGKCDVPNVGTQSASFASGDLA	494

Figure S6: CLUSTALW sequence alignment of LegC (SDR oxidoreductase) from *Streptomyces* sp.

51 CT34 and CrdC (SDR oxidoreductase) from *C. lactis* RW3-42.

59 Figure S8: Putative linaridin gene clusters in Corynebacterium strains (1) compared with BGCs for other

- bacteriocins of the linaridin family. Gene cluster and annotation according to BLASTP analyses.

	C. lactis RW3-42	MLATAVNSAQDRGLIPANYDGFLSMGSA <mark>PMTCTP</mark> TVTVRITVRIMRATKRTVRGAEPAASDRVETLVAV
	C. striatum 1329_CAUR	MLATAVNSAQDRGLIPADRDGFLAIGSA <mark>PMTCTP</mark> TVTVRITVRIMRAVTRKQRGAEPAATDHKETLVAV
	C. diphtheriae HC01	MQPFSGFSLSSDERLAYFSIGHFILFQTTFQGVDLSALSQLVNDNTAFRGRLDGMAETALP PVTATP AIAVTAAKAAGAVIGGGAVSGAAYAAYRAVIK
		MSRLSTLVNNDQITLEQVHS <mark>PVMATP</mark> AAFGAGVVAGAKACGALVAAAGVGAAIASATKK
	C. timmonense DSM 45434	MRNNITKFADEADLQQVGSLYGDSEP <mark>VLATI</mark> ITTTITATTATTATTAAGYHSSRPDEVMAGIDEDAPVSEMLAARKDAMLV
	C. propinquum DSM 44285	MSRLSTLVNNDQITLEQVHS <mark>PVMATP</mark> AAFGAGVVAGAKACGALVAAAGVGAAIATATKE
	C. urealyticum VH5913	MSRLSTLVNNDQITLEQVHS <mark>PVMATP</mark> AAFGAGVVAGAKACGALVAAAGVGAAIASATKK
	S. griseus IFO 13350	MRSEMTLTSTNSAEALAAQDFANTVLSAAAPGFHADCET <mark>PAMATP</mark> ATPTVAQFVIQGSTICLVC
62	Streptomyces sp. CT34	MSVLAEFANTELVDVEPGRLGSEAT <mark>PTMITP</mark> LATLATPEATPVGFAATSATAAAVNMITHDVTRH
63	Figure S9: Predicted pred	cursor peptide sequences in Corynebacterium strains (1) compared with BGCs
64	for other bacteriocins of t	he linaridin family. Threonine residues are displayed in red, serine residues in
65	blue letters. The predicted	d hexapeptide cleavage site PxxxTP is highlighted in yellow.

67 <u>**Table S3:**</u> Results of cross-streak and spot-on-lawn assays with different indicator bacteria. Cross 68 streak assay with *C. lactis* RW3-42 streaked in the middle of a BHI agar plate and indicator bacteria 69 lateral to it. Nisin (250 μ g/mL) and corynaridin RPC-fraction (>300 μ g/mL) were spotted in 10 μ I drops 70 onto the plates. Spots were documented using an iBright imaging device or a light-table and camera. 71 n.d. = not detected.

Strain	Cross streak	Nisin	Corynaridin
Bacillus subtilis DSM 402		0	n.d.
Corynebacterium ammoniagenes DSM 20306			\bigcirc
Corynebacterium amycolatum DSM 6922			\bigcirc
Corynebacterium canis DSM 45402		n.d.	n.d.
Corynebacterium casei DSM 44701		0	
Corynebacterium efficiens DSM 44549		\bigcirc	\bigcirc
Corynebacterium glutamicum ATCC 13032		0	\bigcirc
Corynebacterium lipophiloflavum DSM 44291			\bigcirc
Corynebacterium striatum DSM 20668		0	\bigcirc
Corynebacterium xerosis DSM 20743		and the second	
Cutibacterium acnes DSM 16379		· Co	0
Escherichia coli K12 MG1655		n.d.	n.d.
72			→ continued

- 73 74 75
- 76

77 <u>Table S3: continued.</u>

strain	cross streak	nisin	corynaridin
Lactobacillus plantarum DSM 1055	Clark		n.d.
Lactococcus lactis IL1403		\bigcirc	0
Listeria innocua LMG2785		0	0
Listeria monocytogenes EGD-e			n.d.
Micrococcus luteus DSM 20030			
Pediococcus acidilactici 347			n.d.
Pseudomonas fluorescens DSM 50090		n.d.	n.d.
Staphylococcus aureus ATCC 29213		0	n.d.
Staphylococcus epidermidis DSM 3269		•	n.d.

82 Figure S10: Improved procedure to obtain corynaridin in higher purity. (a) Activity over time of C. 83 lactis supernatants after growth in CLIV minimal medium with 1 % (w/v) glucose, tested via spot on lawn 84 assay. Values represent mean and standard deviation of three biological replicates. (b and c) 85 Purification of corynaridin from supernatants obtained after growth of C. lactis RW3-42 in CLIV minimal 86 medium by ion exchange chromatography (b) and subsequent reversed phase chromatography (c). Red 87 boxes indicate fractions that were used for further experiments. (d) Silver stained Novex™ 10-20% TRIS 88 Tricine gel loaded with different amounts of RPC-purified corynaridin. (e) Activity of the RPC purified 89 fraction against C. glutamicum and C. striatum. The pooled fractions were vacuum dried and 90 resuspended in H₂O (HPLC grade) to a concentration of 200 µg/mL.

- 91 <u>Table S4:</u> Complete list of all corynaridin variants with different number of dehydrated serine/threonine
- 92 residues identified by LC-MS. Variants were considered identified if mass spectra for at least three
- 93 charges with four isotopes had minimum signal intensities (counts per second; cps) of 10³.

95 References

- 96 1. Georgiou MA, Dommaraju SR, Guo X, Mast DH, Mitchell DA. 2020. Bioinformatic and reactivity-
- 97 based discovery of linaridins. ACS Chem Biol 15:2976–2985.