1123 Supplemental Materials for

1124 SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the

1125 CD47/SIRPα axis

- 1126 Yiqing Li¹, Hui Zhou¹, Pan Liu¹, Dandan Lv², Yichun Shi¹, Bufu Tang³, Jiaqi Xu⁴,
- 1127 Tingting Zhong⁴, Wangting Xu⁵, Jie Zhang⁶, Jianying Zhou⁵, Kejing Ying², Yongchao
- 1128 Zhao⁷, Yi Sun⁷, Zhinong Jiang⁴, Hongqiang Cheng⁸, Xue Zhang^{1*}, Yuehai Ke^{1*}
- 1129 *Correspondence to: <u>yke@zju.edu.cn</u> or <u>zhangxue@zju.edu.cn</u>.
- 1130 This PDF file includes:
- 1131 Supplemental Methods
- 1132 Supplemental Figures 1 to 7
- 1133 Supplemental Tables 1 to 4
- 1134
- 1135
- 1136
- 1137
- _...
- 1138
- 1139
- 1140
- 1141
- 1142
- 1143
- 1144

1145 Supplemental Methods

1146 **Reagents**

- 1147 The information on all the reagents used in this article was listed in the Supplemental
- 1148 Table 1.

1149 **Expression vectors**

- 1150 To construct SIRPa, SHP2, NSH2, CSH2, PTP, 2SH2, SHP1, NEDD8, SENP8,
- 1151 UBE2M, UBE2F, Cbl-c, c-Cbl, MDM2, TRIM4, XIAP, RBX1, CD11b, CD18, LAMP1,
- 1152 PDL1, the corresponding human full-length sequences were cloned and inserted into
- 1153 the PXJ40 expression vectors.
- 1154 NEDD8 K11R, NEDD8 K48R, SHP2 K358R, SHP2 K364R, SHP2 K358R/ K364R,
- 1155 SHP2 D61G, SHP2 A72G, SHP2 E76K, SHP2 E139D, SHP2 N308D, SIRPa
- 1156 4YF(Y429F/Y452F/Y470F/Y476F), and SHP2 R32A/R138A PXJ40 vectors were
- 1157 produced by base mutation in cDNA encoding sequences.
- 1158 To produce SRC, XIAP, SHP2 WT, SHP2 D61G, SHP2 E76K, SHP2 K358R/ K364R,
- and SHP2 K364R recombinant protein, the corresponding human sequences were
- 1160 cloned and inserted into the Pcold-GST plasmids. All constructs were verified by
- 1161 sequencing.

1162 Analysis of public scRNA-seq datasets

- 1163 ScRNA-seq data of tumor-infiltrating myeloid cells from different human tumors were
- 1164 acquired accompanying cluster annotations, they were downloaded from the Gene
- 1165 Expression Omnibus (GEO) with accession codes GSE46771 and GSE154763.
- 1166 Harmony algorithm is used for performing integration of single-cell genomics datasets,

and variable genes across monocyte and macrophage clusters were computed.

ScRNA-seq data from tumor single-cell suspensions between MMRd and MMRp 1168 1169 subtypes in colorectal cancer patients were downloaded from GEO with accession code GSE178241. Firstly, the processed data from the database was extracted. Seurat 3.1 was 1170 1171 used for quality control and expression level normalization and normalization and 1172 clustering of cells. Macrophage populations were extracted for further analysis. After TSNE dimensionality reduction, GO was used for gene differential enrichment analysis. 1173 The differential genes were logfc.threshold = 0.25, and the top 100 genes with 1174 differential values were used for GO analysis. GO entries take the top 10 visualizations. 1175 ScRNA-seq data from tumor-infiltrating myeloid cells from patients with MSS 1176 colorectal cancer receiving NAC were downloaded from the author's website 1177 1178 http://www.cancerdiversity.asia/scCRLM. The data are reproduced according to the standards of the article. 1179

1180 Flow sorting of TIMs

1181 The tumor was minced and digested in DMEM containing 300 units /mL collagenase

1182 IV (Worthington) and 50 U/ml DNase I (Sigma) at 37°C for 1 h. Red blood cells are

1183 removed by ACK Lysing Buffer. The cell mixtures were then filtered through 75 mm

- 1184 cell strainers. All the TIMs were isolated by flow sorting. The panel contains CD45-
- 1185 APC, CD68-FITC, and live/dead stains.

1186 **Organoids**

1187 Patient-derived tumor organoids were cultured by air-liquid interface methods. Human

tissues from resected tumors were minced finely on ice, washed twice in ADMEM/F12

(Gibco), resuspended in 1mL of a mixture of Type I collagen gel (Trevigen) containing 1189 10X Ham's F12 (Thermo) and reconstitution buffer (2.2 g NaHCO3 in 100 ml, 0.05 N 1190 1191 NaOH, 200 mM HEPES) in a ratio of 8:1:1, respectively. Next, the fragment-collagen solution was added on top of a 0.4 µm transwell insert (PICM03050, Millicell-CM, 1192 1193 Millipore), which was previously coated with 1 ml of the mentioned solution, The 1194 transwell containing tumor tissue and collagen was placed into an outer 60 mm cell culture dish containing 1.0 mL of ADMEM/F12 supplemented with 50% Wnt3a, R-1195 spondin1 conditioned medium as well as HEPES (Gibco), Glutamax (Gibco), 1196 1197 Nicotinamide (Sigma), N-Acetylcysteine (Sigma), B-27 without vitamin A (Gibco), A83-01 (Tocris), Penicillin-Streptomycin (Gibco), Gastrin (Tocris), SB-202190 1198 (Sigma), hIL-2 (Novoprotein) and EGF (Novoprotein). Organoids were passaged by 1199 1200 dissociation with 300 units /m1 collagenase IV (Worthington) at 37°C for 30 min and replated at the desired density. 1201

1202 In vitro neddylation assay

1203 Human XIAP, SHP2 WT, SHP2 D61G, SHP2 Y62D, SHP2 E76K, SHP2 K358R/

1204 K364R, and SHP2 K364R were purified in-house. Relative recombinant proteins were

1205 incubated with components of the NEDD8 Conjugation Initiation Kit (Boston Biochem)

1206 for 1h at 37°C. Samples were separated on SDS-PAGE and analyzed by 1207 immunoblotting.

1208 **Recombinant protein purification**

1209 GST-tagged fusion proteins were purified from BL21 cells. Cells were grown in

1210 constant shaking (220 rpm) at 37°C until the log phase, then induced with 0.1 mM IPTG

1211 at 16°C for 12 h. Cells were harvested, resuspended in lysis buffer (20 mM Tris-HCL

1212 PH 7.5, 300 mM NaCl, 1% Triton X-100, and Protease Inhibitor Cocktail), and

sonicated. Cell debris was removed by centrifugation and supernatant was incubated
with glutathione-sepharose overnight at 4°C. The bound proteins were cleaved with

1215 HRV 3C protease for the fusion tag.

1216 SHP2 full length and PTP domain enzyme activity

1217 The catalytic activity of neddylated SHP2 or PTP was monitored using the surrogate 1218 substrate DiFMUP. Overexpressed Myc-SHP2 or Myc-PTP Cells were lysed in Co-IP

- 1219 lysis buffer without phosphatase inhibitor and incubated with Myc antibody-conjugated
- 1220 magnetic beads. Beads were finally kept in assay buffer (60mM HEPES, pH 7.2, 75mM
- 1221 NaCl, 75mM KCl, 1mM EDTA, 0.05% P-20, 5mM DTT). SHP2 bonded beads need
- 1222 extra incubation with 1µM 2P-IRS-1 (H2N-LN (pY) IDLDLV (dPEG8) LST (pY)
- 1223 ASINFQK-amide) for 30 min incubation at 25 °C. Then, substrate DiFMUP was added
- 1224 and reacted at 25 °C for 30min. The reaction was then quenched, and the fluorescence
- signal was monitored using excitation and emission wavelengths of 340 nm and 450
- 1226 nm on a microplate reader (M5, Molecular Devices).

1227 Immunofluorescence staining and confocal microscopy

For immunofluorescence staining, cells were fixed in 4% PFA (pH7.0) and permeabilized with 0.5% Triton X-100 before blocking with 4% goat serum. Samples were incubated with primary antibody followed by secondary antibody incubation and

- 1231 then mounted in an antifade mounting medium with DAPI. The samples were imaged
- 1232 using an Olympus IX83-FV3000 confocal microscope (Olympus).

1233 Total internal reflection fluorescence microscopy

TIRF microscopy was conducted on a Nikon N-STORM & A1 Cell TIRF system with 1234 1235 a DU897 EMCCD 100Xoil TIRF objective and the fluorescence image were collected with Nis-Elements software (Nikon). BMDMs and MEFs were removed from their 1236 1237 culture dish using 5% EDTA in PBS, washed, and resuspended in the HEPES imaging 1238 buffer (20 mM HEPES, 135 mM NaCl, 4 mM KCl, 10 mM glucose, 0.1 mM Cacl₂, 0.1 mM Mgcl₂) before being added to the coated TIRF chamber. After 30 min interaction 1239 with specific coating ligands, BMDMs were stained for analysis, MEFs need 1h 1240 1241 interacting. For live-cell imaging, BMDMs were labeled with Wheat Germ Agglutinin (Thermo) and Alexa Fluor-488 Phospho-Tyrosine antibody (CST) before being added 1242 to the coated TIRF chamber. Cells were imaged on a heated stage and supplemented 1243 1244 with warmed (37°C) humidified air. Timeseries images were analyzed with ImageJ software. 1245

1246 Stochastic optical reconstruction microscopy (STORM) image acquisition

STORM microscopy was conducted on a Nikon N-STORM & A1 Cell TIRF system 1247 with a DU897 EMCCD 100Xoil TIRF objective and the fluorescence image was 1248 1249 collected with a Nikon N-STORM super-resolution system (Nikon Instruments Inc.) Besides required channels, a 405 nm laser was used to increase the number of on-state 1250 fluorophores according to generally recommended. Cells were stained and then 1251 immersed in STORM imaging buffer, and Nikon microscopic imaging device provided 1252 a Perfect Focus System (PFS) to achieve real-time correction of focus drift in the Z-1253 axis direction. For live MEF imaging, MEFs were treated with SHP099 for 4h and then 1254

labeled with Wheat Germ Agglutinin (Thermo) before being added to the ICAM-1
coated TIRF chamber. Cells were imaged on a heated stage and supplemented with
warmed (37°C) humidified air.

STORM imaging buffer was freshly prepared before data acquisition, which contained
7 µl of oxygen-scavenging GLOX buffer (14 mg of glucose oxidase, 50 µl of 17 mg/mL
catalase in 200 µl of 10 mM Tris, 50 mM NaCl, pH 8.0), 70 µl of MEA buffer (77 mg
MEA in 1.0 mL 0.25N HCl) and 620µl of Buffer B (50 mM Tris-HCl (pH8.0) + 10 mM
NaCl + 10% Glucose). For live-cell STORM imaging, it's 7 µl of oxygen-scavenging
GLOX buffer, 3.5µl of BME, and 690µl phenol red-free media growth medium with 75
mM HEPES.

1265 Förster resonance energy transfer, fluorescence resonance energy transfer (FRET)

1266 FRET-based SHP2 biosensor (Addgene) was transfected in control and SENP8 KO 1267 HEK293T cells. After 48 h of transfection, the cells were hungered and stimulated with EGF (10ng/ml) or not and fixed by 4% PFA. Acceptor photobleaching FRET was 1268 performed using the FV1000 confocal microscope (Olympus). The ECFP and Ypet 1269 fluorophores were excited with excitation wavelengths of 405 and 514 nm, respectively. 1270 After acquiring the emission images, the cells were marked by a region of interest, and 1271 this region was bleached by a high laser power (20 iterations, 100% laser power, 514 1272 nm). The FRET efficiency was measured as the percentage increase of donor after 1273 photobleaching the acceptor: FRET/ECFP ratio = $100\% \times (ECFPpost -$ 1274 ECFPpre)/ECFPpost. Spectral FRET was performed using the FV3000 confocal 1275 microscope (Olympus). The spectrum was measured from 450 nm to 580 nm in 10 nm 1276

1277 increments with excitation from 405 nm. The maximum fluorescence emission intensity

1278 of ECFP and Ypet fluorophores was 460nm and 520 nm. FRET ratio = 100%

- 1279 × fluorescence Spectra λ_{520} / fluorescence Spectra $\lambda_{460.}$
- 1280 In vitro SHP2 binding and activation assays

1281 In SHP2 binding assays, beads bounded wild-type or 4YF mutant SIRPa proteins were 1282 purified from HEK293T and incubated with recombinant SRC in reaction buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM MgCl₂, 5 mM ATP, and 10 mM BME) at 1283 37°C for 30 min. Thereafter, these beads with bound proteins were washed five times 1284 1285 in washing buffer PBS-T (PBS + 0.1% Tween 20). Subsequently, phosphorylated SIRPa was incubated with recombinant SHP2 at 37°C for 1 h. The beads were then 1286 washed 5 times with washing buffer and finally eluted with loading buffer for western 1287 1288 blot analysis. For SHP2 allosteric inhibition, recombinant SHP2 was incubated with SHP099 before binding with SIRPa. In SHP2 activation assays, phosphorylated SIRPa 1289 was incubated with recombinant SHP2 or SHP2 E76K at 37°C for 1 h. Then, substrate 1290 DiFMUP was added and reacted at 25 °C for 30min. The reaction was then quenched, 1291 and the fluorescence signal was monitored using excitation and emission wavelengths 1292 of 340nm and 450nm on a microplate reader (M5, Molecular Devices). 1293

1294 Fluorescent labeling

Proteins, as well as antibodies, were labeled using AlexaFluor488 NHS Ester (Succinimidyl Ester, Thermo Fisher Scientific) reconstituted in anhydrous DMSO (dimethylsulfoxide, Sigma Aldrich). Dye was mixed with protein at a 5X molar ratio (dye: protein ratio was 5:1) and incubated at room temperature for 1 h. Excess dye was removed by purifying protein over NAP-5 columns (GE Healthcare). Labeling wasconfirmed using NanoDrop 2000 (Thermo Fisher).

1301 Bead preparation

1303

 $1302 \sim 8X10^5$ streptavidin beads were washed three times with PBS, mixed within PBS plus

0.4% BSA, and incubated with biotinylated mouse CD47 or anti-streptavidin IgG at

room temperature for 0.5 h with end-over-end mixing to allow for protein coupling. For
the specific purpose, IgG and mouse CD47 were labeled using AlexaFluor488 NHS
Ester. Beads were then washed 3 times to remove excess protein. Unless otherwise

indicated, anti-streptavidin mouse IgG (BioLegend) was added at 10 nM as the lowest
IgG concentration that triggered engulfment. Biotinylated mouse CD47
(ACRObiosystem) was added at 50 nM for target particle experiments.

1310 Quantification of engulfment by High Content Screening

1X10⁴ BMDMs were plated in one well of a 96-well Plate 24h before the experiment. 1311 To disrupt SHP1 and SHP2 function, inhibitors were added for 4h while Mn²⁺ mediated 1312 integrin activation lasted 30min. To disrupt integrin function, the blocking antibodies 1313 or isotype control were added at 10 mg/mL 30 min before beads as macrophages were 1314 washed into non-serum culture media before antibody treatment to eliminate any 1315 potential serum components that may serve as integrin ligands. $\sim 8 \times 10^5$ beads were 1316 added to the well and engulfment was allowed to proceed for 30 min. The plate was 1317 washed 3 times to remove extra beads. Cells were fixed with 4% PFA and stained with 1318 CellMask (Invitrogen) and DAPI. Images were obtained with the Operetta high-content 1319 cell imaging analysis system (PerkinElmer). Data were analyzed by images collected 1320

- 1321 from 10 representative fields in each group. Single cells were identified based on DAPI
- 1322 as a reference, while the beads quantification was performed based on the area and
- 1323 intensity of the beads channel.

1324 Subcellular Protein Fractionation Extraction

- 1325 CD47 coating beads were added to BMDMs and interaction was allowed to proceed for
- 1326 30 min. The BMDMs were washed 3 times to remove extra beads. Then use the
- 1327 subcellular Protein Fractionation Kit (Thermo Fisher) according to the manual.

1328 GTPases activation assay

- 1329 BMDMs were lysed and the supernatants were used to carry out a GST precipitation
- 1330 assay to detect the GTPases activation. GTP-bound RAP1 was assayed by binding to

1331 recombinant GST-fused RalGDS. RAP1 activation was normalized to total RAP1.

1332 Bimolecular fluorescence complementation

- 1333 The bimolecular fluorescence complementation (BiFC) system is established by fusing
- two complementary parts of green fluorescent protein (GFP), GFP S1-10 and GFP S11,
- 1335 SIRPaGFP S1-10. SHP2 WT and 2KR GFP S11 were transfected into HEK293T cells,
- 1336 after 48h, cells were added to CD47 coated chamber and then stained with Na/K ATPase
- 1337 antibody (Abcam) to visualize membrane.

1338 Precipitation with integrin tail related proteins

- 1339 BMDMs were washed and treated with 5 mM DTBP (Thermo Fisher Scientific) for 30
- 1340 min, and then lysed with TBS lysis buffer (containing 1% Triton X-100, 0.05% NP-40,
- 1341 Protease Inhibitor Cocktail, 1 mM Cacl₂, 1 mM Mgcl₂) for 30 min on ice. The lysates
- 1342 were then immunoprecipitated with indicated antibodies. Before western blot,

1343 crosslinks with DTBP need to be cleaved by reducing the disulfide bond of the spacer
1344 arm with 100mM DTT at 37°C for 30 minutes.

1345 *In vivo* recover tumor cells assay

MC38 cells were labeled with Cell Proliferation Dye eFluor450 (Invitrogen) or 1346 eFluor670(Invitrogen) for 15min at room temperature respectively. Directly after 1347 1348 labeling, eFluor670 dyed cells were opsonized by isotype control (Bio X Cell) and eFluor450 dyed cells by anti-PDL1 antibody (Bio X Cell). Subsequently, $Senp8^{+/+}$ and 1349 $Senp8^{+/-}$ mice were injected intraperitoneally (i.p.) with 1×10^7 cells in 200µl PBS in a 1350 1:1 mixture. At 24h after injection, mice were euthanized, the peritoneal cavity was 1351 washed with PBS containing 5mM EDTA, and the absolute recovered number of cells 1352 was determined by NovoCyte flow cytometry (Agilent). 1353

1354 **Tumor cells phagocytosis and digestion Assay**

BMDMs were plated 8X10⁴ per well in a 24-well plate and were transfected with 1355 SHP2WT, SHP2 K358R/ K364R plasmid, or empty vector. MC38-hPDL1 cells were 1356 opsonized with a range of anti-hPDL1 antibody (BioLegend) concentrations and 1357 stained with Cell Proliferation Dye eFluor450 at 37°C for 15 min. Each phagocytosis 1358 reaction reported in this work was performed by co-culture of 2X10⁵ target cells and 1359 macrophages for 1 h at 37°C. Macrophages were identified by FITC-labeled anti-1360 CD11b (BioLegend) as flow cytometry (Agilent) was performed. Phagocytosis was 1361 calculated as the percentage of eFluor450⁺ CD11b⁺ cells among CD11b⁺ cells. In the 1362 same way, endogenous PDL1 opsonized MC38 cells were co-cultured with BMDMs 1363 for phagocytosis reaction, then extra tumor cells were washed out. Tumor cell digestion 1364

1365 lasted 24h, Then BMDMs were detached from the plate and determined by NovoCyte1366 flow cytometry (Agilent).

1367 Histology and Immunohistochemistry

Haematoxylin-eosin (HE) staining and Masson's trichrome stain were performed 1368 according to established staining protocols of our routine laboratory. For 1369 1370 immunohistochemistry (IHC) staining, IHC staining of human tissue and organoids was performed according to established staining protocols of the routine laboratory, and 1371 mice tumors performed with 1372 IHC staining of was Multi-fluorescent Immunohistochemical Staining Kit (Absin) according to the manufacturer's 1373 instructions. 1374

1375 **Tumor cell phagocytosis imaging**

1376 For the 3D image, CSFE (Invitrogen) labeled MC38 cells were opsonized by anti-PDL1 antibody, and tumor cells were added to Lamp1-mcherry overexpressed BMDMs for 1 1377 h at 37°C. Then extra tumor cells were washed out and cells were stained with DAPI. 1378 For live-cell imaging, PDL1 antibody opsonized MC38 cells were stained with Hoechst 1379 33342 to show nucleus, BMDMs were stained with Lysotracker to show lysosomes, 1380 and cells were imaged every 0.5 min after 10min co-culture. Cells were imaged on a 1381 heated stage and supplemented with warmed (37°C) humidified air. Fluorescent images 1382 were processed and assembled into figures using Fiji. Z-stack was created and rendered 1383 with Imaris (Bitplane). 1384

1385 ELISA

1386 Tumor tissues were minced and 50-100 mg tissues were homogenized in NP40

1387 (w:v = 1:5). Tumor homogenates were centrifuged at 12,000g for 30 min, then the 1388 supernatants were filtered through a $0.22 \,\mu\text{m}$ filter. Cytokine levels in tissue 1389 homogenates were measured by the mouse ELISA kit (Invitrogen) according to the 1390 manufacturer's instructions. In the same way, human blood plasma was utilized to 1391 detect human CEA. Absorbance at 450 nm was measured on a microplate reader (M5, 1392 Molecular Devices).

1393 **Deneddylation assay**

For the deneddylation assay in macrophage extracts, the fluorogenic substrate, NEDD8-1394 1395 7-amino-4-methylcoumarin (R&D Systems) was used according to the instructions provided by the manufacturer. For tumor cell and macrophage interaction, MC38 cells 1396 were pre-incubated with pep-20-D12 (awsATWSNYwrh, lowercase letters in the 1397 1398 sequence mean D-configuration amino acids) for CD47/SIRPa blockage, before adding to macrophages for co-culture for 30min at 37°C. Macrophages were sorted out by 1399 CD68 conjugated beads and then lysed in RIPA buffer with normalized protein 1400 concertation. For ALI-PDOs, organoid cultures were established as above and 1401 supplemented with 10µg/ml anti-CD47(BIO x cell) antibody or control for 7 days, then 1402 dissociated in collagenase IV. The single-cell suspension is derived from 0.05% 1403 trypsin/EDTA digestion for 5 min at 37 °C. Infiltrating macrophages were sorted out by 1404 CD68 conjugated beads, lysed in RIPA buffer and protein concentration was normalized. 1405 In the same way, to analyze the deneddylation activity of human peripheral blood 1406 leukocytes, cells were lysed in RIPA buffer and protein concentration was normalized. 1407

1408 Molecular docking and molecular dynamics

Chemically conjugated docking application from Rosetta program suite version 3.4 was 1409 used to dock NEDD8 to SHP2. Cryo-EM structure models of SHP2 (PDB ID 5ehr) 1410 1411 were first relaxed by using the Relax ScriptManager application and models with the lowest energy scores were chosen for Chemically conjugated docking of NEDD8. 1412 There are two important novel chunks of code associated with this algorithm. The C-1413 1414 terminus of NEDD8 (glycine) is chemically linked to K364 of SHP2, resulting in an isopeptide bond between the proteins. It is this bond that this protocol remodels. Phil 1415 Bradley deserves credit for helping set up this chemical conjugation code. The 1416 1417 remodeling algorithm is straightforward. It uses Rosetta's standard Metropolis/Monte Carlo random sampling tools. A series of possible Pose modifications are chosen from 1418 each Monte Carlo cycle. These include effective psi and phi angles of NEDD8's 1419 1420 terminal glycine. These are treated directly by TorsionDOFMover instead of more familiar sidechain/backbone movers because the extra chemical bond changes the 1421 torsional preferences at these bonds, meaning that the Ramachandran and Dunbrack 1422 libraries do not apply. TorsionDOFMover internally checks against a molecular-1423 mechanics bond torsion term (although this term is not in the broader score function). 1424 Other possible Monte Carlo moves include standard Small/Shear moves on the 1425 penultimate NEDD8 residues (the number of mobile residues is command-line flagged), 1426 and also KIC loop modeling. After a random move, the pose runs through Rotamer 1427 Trials (to quickly pack sidechains) and a minimization step before the Metropolis 1428 criterion is applied. Some fraction of MC cycles instead performs a full repack of the 1429 interface. All the molecular graphics were rendered by the UCSF Chimera57 software 1430

version. Molecular dynamics (MD) simulations were conducted by GROMACS. 1431

Microscale thermophoresis 1432

- 1433 The interaction between 2P-IRS-1 and NEDD8-SHP2 conjugation was measured using
- the Monolith NT.115 MST instrument (Nanotemper Technologies). 2P-IRS-1 were 1434
- 1435 fluorescently labeled with Cy5. The NEDD8-SHP2 conjugation conducted from in vitro
- 1436 neddylation assay was purified by Superdex 75 gel filtration column (GE Healthcare)
- and the purities were determined by SDS-PAGE. A solution of unlabeled protein was 1437
- serially diluted in the presence of 100 nM labeled 2P-IRS-1. The samples were loaded 1438
- 1439 into capillaries (Nanotemper Technologies). Measurements were performed at 25 °C,
- Data analyses were performed using Nanotemper Analysis software. 1440

1441 **Real-time PCR**

1442 Total RNA of human peripheral blood leukocytes was extracted by Trizol and then

reverse-transcribed into cDNA using ReverTraAce qPCR RT kit (Toyobo). Real-time 1443

PCR was conducted using an SYBR Green reagent (CWBIO) on CFX96 Touch Real-1444

Time PCR Detection System (Bio-Rad). Primer sequences are listed in the 1445 Supplemental Table 1.

RNA sequencing 1447

1446

A total amount of 4 µg RNA/sample was used for the RNA sample preparations. 1448

Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep 1449

- Kit for Illumina® (NEB, USA) and index codes were added to attribute sequences to 1450
- each sample. Library preparation, clustering and sequencing were done by Novogene 1451
- Experimental Department (Novogene). The GEO number of RNA-seq is GSE199585. 1452

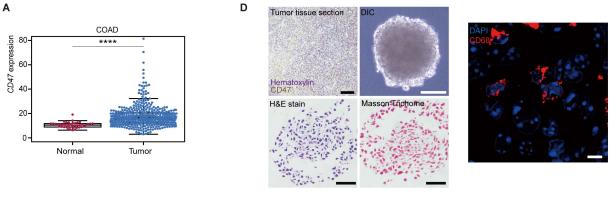
1453 Mass spectrometry

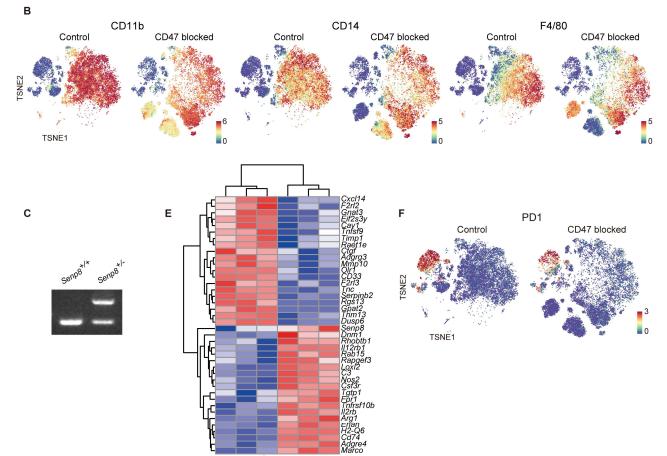
1454 HEK293T lysates were separated on SDS-PADE and followed by in-gel digestion,

1455 desalted, and then analyzed with the assistance of PTM-Biolabs Inc. Data analysis was

1456 carried out with Maxquant (v1.6.8.0).

1457 **Proximity ligation assay**


1458 Duolink® Proximity Ligation Assay (Sigma-Aldrich) was conducted according to the manual. PLA technology uses a pair of monoclonal or polyclonal antibody probes 1459 labeled with an oligodeoxynucleotide (single-stranded DNA). When the two probes 1460 1461 recognize the same protein, the distance between the two probes is close, resulting in the so-called proximity effect (proximity). The fragmented DNA on the PLA probe can 1462 be joined together to form a new DNA fragment by ligase. The new DNA fragment can 1463 1464 be amplified and quantified by fluorescent PCR, so as to quantify the corresponding target protein. 1465


1466 Cytometry by Time-Of-Flight (CyTOF)

The tumor was minced and digested in DMEM containing 300 units /mL collagenase 1467 IV (Worthington) and 50 U/ml DNase I (Sigma) at 37°C for 1 h. Red blood cells are 1468 removed by ACK Lysing Buffer. The cell mixtures were then filtered through 75 mm 1469 cell strainers. For mass cytometry analysis, purified antibodies panel were listed in 1470 Supplemental Table 4. Antibody labeling with the indicated metal tag was performed 1471 using the MaxPAR antibody Labelling kit (Fluidigm). Conjugated antibodies were 1472 titrated for optimal concentration before use. Cells were thawed and washed with PBS 1473 and then stained with 100µL of 250nM cisplatin (Fluidigm) for 5min on ice to exclude 1474

1475	dead cells, and then incubated in Fc receptor blocking solution before stained with
1476	surface antibodies cocktail for 30 min on ice. Cells were washed twice with FACS
1477	buffer (PBS+0.5%BSA) and fixed in 200 μ L of intercalation solution (Maxpar Fix and
1478	Perm Buffer containing 250nM 191/193Ir, Fluidigm) overnight. After fixation, cells
1479	were washed once with FACS buffer and then perm buffer (eBioscience), stained with
1480	intracellular antibodies cocktail for 30 min on ice. Cells were washed and resuspended
1481	with deionized water, adding into 20% EQ beads (Fluidigm), acquired on a mass
1482	cytometer (Helios, Fluidigm). Data analysis was done by PLTTECH Experimental
1483	Department (PLTTECH). The accession number of FlowRepository is FR-FCM-Z563.
1484	
1485	
1486	
1487	
1488	
1489	
1490	
1491	
1492	
1493	
1494	
1495	
1496	

Α

Senp8^{+/+}

-1.5-1-0.50 0.51 1.5

CD47 beads

Senp8^{+/-}

1497	Supplemental Figure 1.	CD47 blockage modulates	neddylation of CRC TIMs.

1498 (A) The *CD47* expression from TCGA-COAD cohort (n of adjacent normal colon tissue

samples=41, n of colon adenocarcinoma tissue samples=473). (B) TSNE visualization

1500 of CD11b, CD14, and F4/80 expression in tumor-infiltrating leukocytes from Figure

1501 1D groups. (C) Genotyping of Senp8 heterozygous mice strain. (D) CD47 stain of

1502 human surgical tumor resections as well as DIC, H&E stain, and Masson's trichrome

stain of organoids derived from human surgical tumor resections, scale bars, 100µm

1504 (left). Confocal microscopy visualization of organoid stained with CD68 and DAPI to

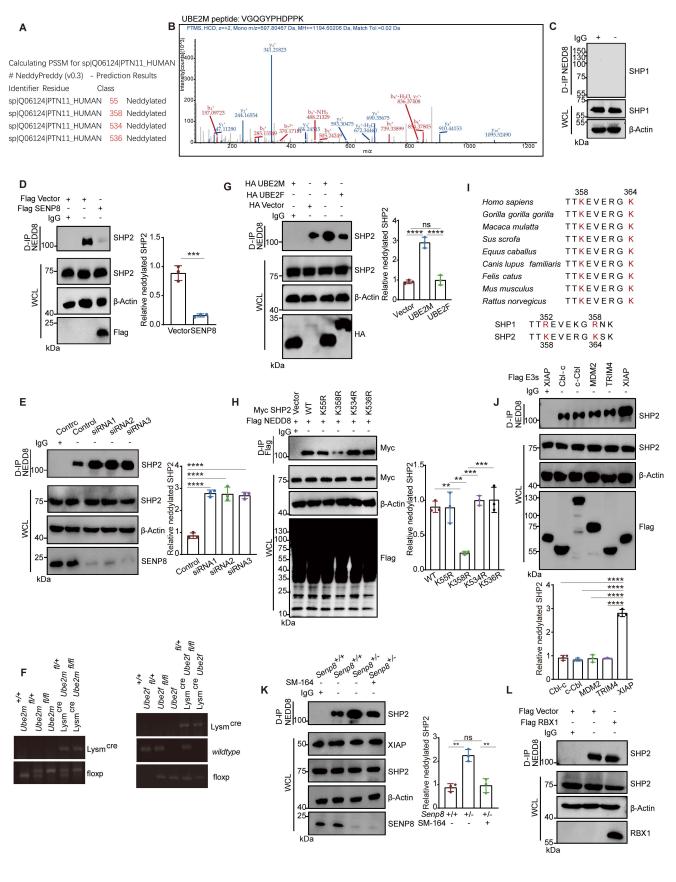
1505 show TIMs, scale bars, 10µm (right). (E) Heatmap of top genes differentially expressed

1506 in indicated BMDMs (n=3). (F) TSNE visualization of PD1 expression in tumor-

1507 infiltrating leukocytes from Figure 1D groups. Data are expressed as mean \pm SD;

1508 Wilcoxon test (A); non-significant (ns), p > 0.05; *p < 0.05; *p < 0.01; ***p < 0.01; *

- 1509 ***p < 0.0001.
- 1510
- 1511
- 1512


1513

1514

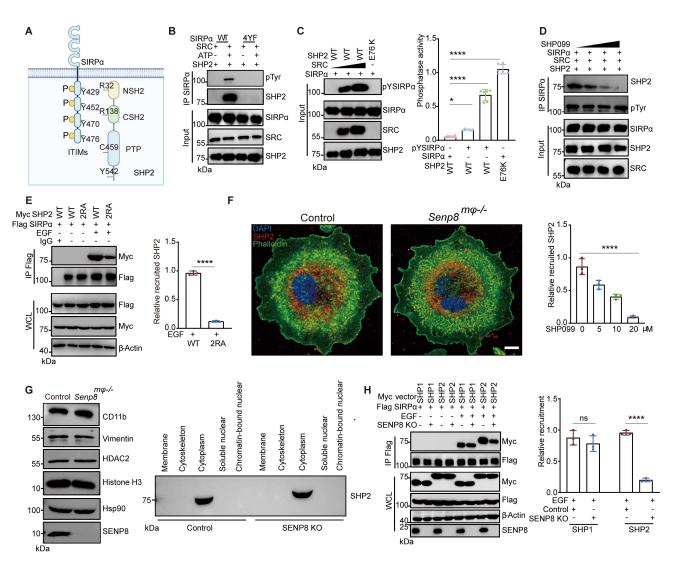
1515

1516

1517

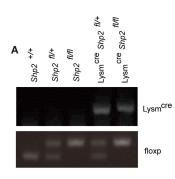
1519 Supplemental Figure 2. Neddylation cascade of SHP2.

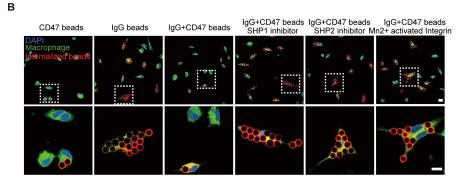
D-IP: Denaturing immunoprecipitated, WCL: the whole-cell lysate. (A) Potential 1520 neddylated lysine sites of SHP2 predicted by NeddyPreddy. (B) Mass spectrum of the 1521 UBE2M peptide from SHP2 co-immunoprecipitate in lysates of HEK293T cells. (C) 1522 Western blot of BMDMs indicating that neddylation is not involved in SHP1. D-E 1523 1524 SENP8 deneddylated SHP2 (n=3). HEK293T cells were transfected with SENP8 siRNA (D) or over-expressed with SENP8-Flag (E). (F) Genotyping of macrophage-1525 specific Ube2f $m_{\phi'}$ and Ube2m $m_{\phi'}$ mice strain. (G) UBE2M mediated SHP2 1526 neddylation in HEK293T cells (n=3). (H) SHP2 mutation K358R did not completely 1527 abolish its neddylation in HEK293T cells (n=3). (I) Sequence alignment of the region 1528 which contains the neddylation site of SHP2 in different species (up). Sequence 1529 1530 alignment between SHP1 and SHP2 (down). J-K XIAP mediated SHP2 neddylation in HEK293T cells and BMDMs (n=3). SM-164: inhibitor of XIAP (100 nM,4h). (L) 1531 RBX1 (neddylation E3 of Cullin1) RBX1 was not involved in SHP2 neddylation in 1532 HEK293T cells. Data are expressed as mean \pm SD; 2-tailed unpaired Student's t-test 1533 (D), 1-way ANOVA followed by Tukey's posthoc test (E, G, H, J, K); non-significant 1534 (ns), p > 0.05; *p < 0.05; *p < 0.01; ***p < 0.001; ****p < 0.001; ****p < 0.0001. 1535


- 1536
- 1537
- 1538

1539

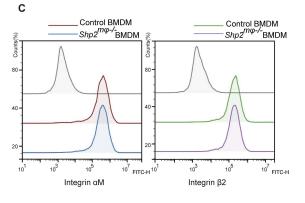
1541	Supplemental Figure 3. SHP2 neddylation inhibits its binding to phospho-ligand.
1542	(A) FRET efficiency of SHP2 biosensor was assessed by acceptor photobleaching EGF
1543	stimulation (10ng/ml,15min), scale bars, 10µm, (cell number=24). (B) MST
1544	measurement of SHP2 and NEDD8-SHP2 conjugation binding to fluorescently labeled
1545	2P-IRS-1, (n=3). Data are expressed as mean \pm SD; 2-tailed unpaired Student's t-test
1546	(A); non-significant (ns), $p > 0.05$; * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$.
1547	
1548	
1549	
1550	
1551	
1552	
1553	
1554	
1555	
1556	
1557	
1558	
1559	
1560	
1561	
1562	

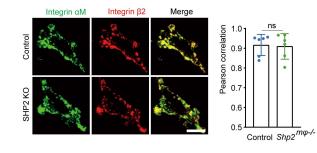

1563 Supplemental Figure 4. Phosphorylated SIRPα recruits and activates SHP2.

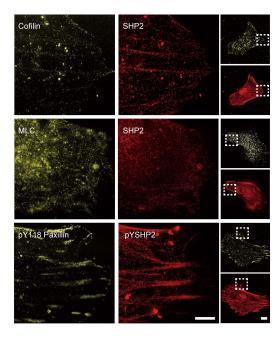

D-IP: Denaturing immunoprecipitated, WCL: the whole-cell lysate. (A) The schematic 1564 1565 diagram of the SIRPa ITIM motif activating SHP2 was shown. (B) SIRPa and its mutation protein were phosphorylated by SRC in vitro, and SHP2 was added to detect 1566 its binding. (C) SIRPa proteins were phosphorylated by SRC in vitro. Then SHP2 was 1567 1568 mixed with pY-SIRPa, and in vitro SHP2 phosphatase assay showed phospho-ITIMs activated SHP2 (n=6). (D) SIRPa proteins were phosphorylated by SRC in vitro. 1569 SHP099 pre-treated SHP2 was mixed with pY-SIRP α to detect its binding (n=3). (E) 1570 Western blot indicating SHP2 recruitment toward SIRPa receptor under EGF 1571 stimulation (10ng/ml,15min) in HEK293T cells (n=3). (F) Confocal microscopy 1572 visualization of SHP2 localization in indicated BMDMs, scale bars, 10µm. (G) Western 1573 1574 blot indicating SHP2 location of different subcellular fractionation in indicated BMDMs. (H) Western blot indicating that SHP2 but not SHP1 recruitment of SIRPa 1575 receptor was disrupted by neddylation under EGF stimulation (10ng/ml,15min) in 1576 HEK293T cells (n=3). Data are expressed as mean \pm SD; 2-tailed unpaired Student's t-1577 test (E), 1-way ANOVA followed by Tukey's posthoc test (C, D), 2-way ANOVA 1578 followed by Tukey's posthoc test H; non-significant (ns), p > 0.05; *p < 0.05; *p < 0.05; *p < 0.01; 1579 ****p < 0.001; *****p < 0.0001.1580

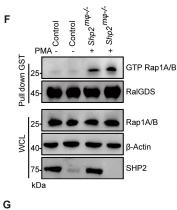
1581

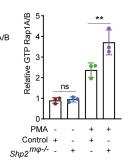
1582

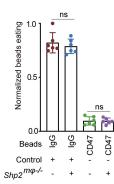

1583




D

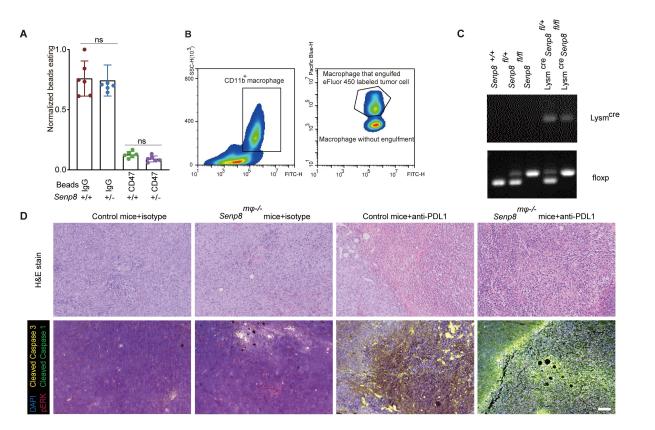

F



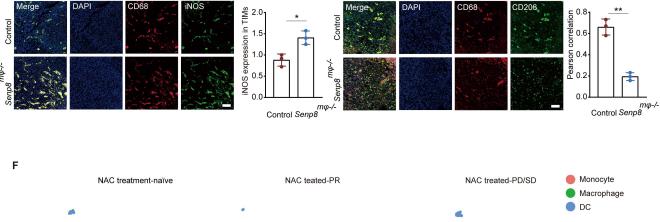


(A) Genotyping of macrophage-specific $Shp2^{m\varphi-/-}$ mice strain. (B) High content 1587 screening images depicted the normalized beads eating of indicated BMDMs described 1588 in Figure 6A. BMDMs were labeled with CellMask and DAPI, beads are outlined in 1589 red, scale bars, 10 μ m. (C) Surface expression of integrin α M or β 2 in Control and SHP2 1590 KO BMDMs were analyzed by flow cytometry. (D) Confocal microscopy images 1591 showed colocalization of integrin αM and $\beta 2$ in indicated BMDMs (n=6), scale bars, 1592 10µm. (E) The colocalization between SHP2 and Cofilin, Myosin / pY542 SHP2 and 1593 pY118 Paxillin were detected in MEF cells under PMA stimulation, scale bars, 5µm. 1594 (F) Western blot analysis of SHP2 deletion effect on Rap GTPase under PMA 1595 1596 stimulation (100 ng/ml,15min) (n=3). (G) The normalized IgG or CD47 beads eating of indicated BMDMs (n=6). Data are expressed as mean \pm SD; 1-way ANOVA followed 1597 by Tukey's posthoc test (G, F), Pearson correlation (D); non-significant (ns), p > 0.05; * 1598 p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.1599

1600

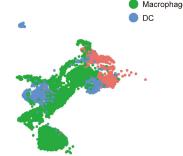

1601

1602

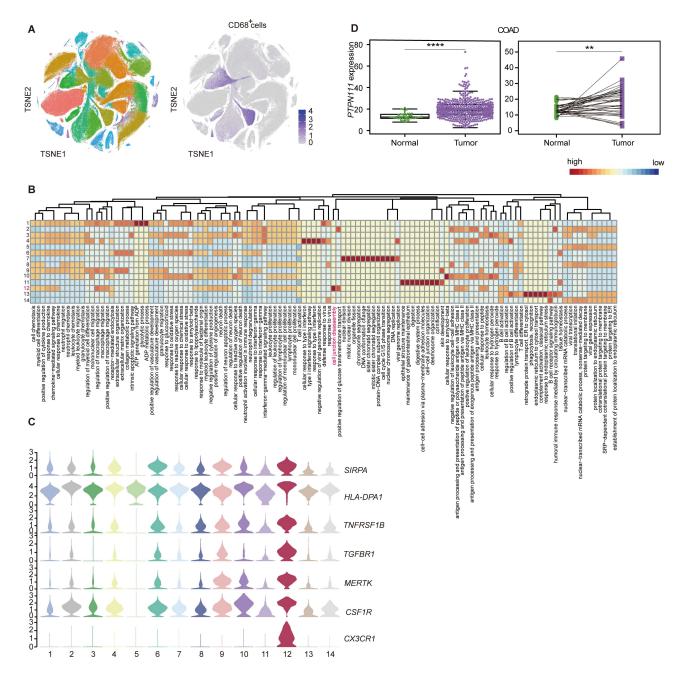

1603


1604

1605



Е


1607 Supplemental Figure 6. Enhancement of SHP2 neddylation promotes macrophage
 1608 engulfment in response to antibodies.

1609 (A) The normalized beads eating of indicated BMDMs (n=6). (B) Representative flow
1610 analysis plots of BMDMs that had swallowed the tumor cells. Phagocytosis was

1611 calculated as the percentage of eFluor405⁺CD11b⁺ cells among CD11b⁺ cells. (C)

- 1612 Genotyping of macrophage-specific $Senp \delta^{m\varphi-/-}$ mice strain. (D) Representative images
- 1613 of MC38 tumor section under 10X magnification of Figure 9E, scale bars, 100µm. (E)
- 1614 Images of indicated MC38 tumors (Figure 9E) staining iNOS, CD206 and CD68 (n=3),
- 1615 scale bars, 50µm. (F) TSNEs of tumor-infiltrating myeloid cells in all samples (n of
- 1616 treatment naïve samples=12, n of NAC-treated PR samples=8, and n of NAC-treated
- 1617 PD/SD samples=5). Data are expressed as mean \pm SD; 1-way ANOVA followed by
- 1618 Tukey's posthoc test (A); Pearson correlation (E); 2-tailed unpaired Student's t-test (E).
- 1619 non-significant (ns), p > 0.05; *p < 0.05; *p < 0.01; ***p < 0.001; ****p < 0.001; ****p < 0.0001.
- 1620
- 1621
- 1622
- 1623
- 1624
- 1625
- 1626

1627

Supplemental Figure 7. The immunosuppressive microenvironment of colorectal
 cancer relies on the CD47/SIRPα axis.

1631 (A) TSNEs of all type cells of dissociated CRC tumor tissues, CD68⁺ cells were

- 1632 extracted (n of MMRd samples=28, n of MMRp samples=34). (B) GO analysis of
- 1633 tumor-infiltrating macrophage clusters in MMRd and MMRp tumor samples. (C) Violin
- 1634 plot showed the relative expression of cell clusters-associated genes in MMRd and
- 1635 MMRp tumor samples. (D)The PTPN11 expression from TCGA-COAD cohort (n of
- 1636 adjacent normal colon tissue samples=41, n of colon adenocarcinoma tissue
- 1637 samples=473). Data are expressed as mean \pm SD; Wilcoxon test (D); non-significant
- 1638 (ns), p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001; ****p < 0.0001.
- 1639
- 1640
- 1641
- 1642
- 1643
- 1644
- 1645
- 1646
- 1647
- 1648
- 1649
- 1650

Supplemental	Table 1	
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies (applications)		
Rabbit Anti CD47	Abcam	Cat: ab218810
Rabbit Anti SIRP alpha	Abcam	Cat: ab191419
Rabbit Anti SHP2 (phospho Y542)	Abcam	Cat: ab62322
Rabbit Anti NEDD8	Abcam	Cat: ab81264
Rabbit Anti UBE2M	Abcam	Cat: ab109507
Rabbit Anti XIAP	Abcam	Cat: ab229050
Rabbit Anti FAK (phospho Y397) antibody	Abcam	Cat: ab81298
Mouse Anti Talin 1	Abcam	Cat: ab108480
Rabbit Anti Talin 2	Abcam	Cat: ab108967
Rabbit Anti Ki-67	Abcam	Cat: ab16667
Rabbit Anti Anti-Hsp90 beta	Abcam	Cat: ab203085
Rabbit Anti Na/K ATPase	Abcam	Cat: ab76020
Rabbit Anti HDAC2	Abcam	Cat: ab32117
Rabbit Anti Cullin1	Abcam	Cat: ab75817
VeriBlot	Abcam	Cat: ab131366
Rabbit Anti β-Actin	Abclonal	Cat: AC026
Mouse Control IgG	Abclonal	Cat: AC011
Rabbit Control IgG	Abclonal	Cat: AC005
Purified Mouse IgG2a, κ Isotype Ctrl Antibody	BioLegend	Cat: 401501
Purified Rat IgG2b, κ Isotype Ctrl Antibody	BioLegend	Cat: 400643
Purified anti-mouse/human CD11b Antibody	BioLegend	Cat: 101248
Anti-human CD274 (B7-H1, PD-L1) Antibody	BioLegend	Cat: 329728
Purified Mouse IgG2b, κ Isotype Ctrl Antibody	BioLegend	Cat: 402201
Anti-mouse CD18 FITC	BioLegend	Cat: 101405
Anti-mouse CD11B FITC	BioLegend	Cat: 101205
Anti-human CD45 APC	BioLegend	Cat:304011
Anti-mouse CD45 APC	BioLegend	Cat:157605
Anti-human CD68 FITC	BioLegend	Cat:137005
Anti-human CD68 FITC	BioLegend	Cat:333805
Anti-human activated CD11B APC	BioLegend	Cat: 301409
PE anti-streptavidin antibody	BioLegend	Cat: 410503
Zombie Violet [™] Fixable Viability Kit	BioLegend	Cat: 423113
Anti-mouse PD-L1 (B7-H1)	BIO x cell	Cat: BP0101
Rat IgG2b isotype control	BIO x cell	Cat: BP0090
Anti-mouse/human/rat CD47	BIO x cell	Cat: BE0283
Mouse IgG1 isotype control	BIO x cell	Cat: BE0083
Rabbit Anti SHP2	CST	Cat: 3397
Rabbit Anti Cleaved Caspase-3	CST	Cat: 9579
Rabbit Anti Phospho-Akt (Ser473)	CST	Cat: 4060

Rabbit Anti CD11b	CST	Cat: 17800
Rabbit Anti Histone H3	CST	Cat:4499
Rabbit Anti Vimentin	CST	Cat: 5741
Rabbit Anti Myosin Light Chain 2	CST	Cat: 3672
Rabbit Anti Cofilin	CST	Cat: 5175
Rabbit Anti Phospho-Cofilin (Ser3)	CST	Cat: 3311
Rabbit Anti Phospho-Paxillin (Tyr118)	CST	Cat: 69363
Rabbit Anti Phospho-Myosin Light Chain 2 (Thr18/Ser19)	CST	Cat: 95777
Rabbit Anti Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)	CST	Cat: 4370
Mouse Anti Phospho-Tyrosine Alexa Fluor® 488 Conjugate)	CST	Cat: 9414
Rabbit Anti Phospho-Tyrosine	CST	Cat: 8954
Rabbit Anti Flag	CST	Cat: 14793
Rabbit AntI Phospho-SHP-1 (Tyr564)	CST	Cat: 8849
Mouse Anti HA	CST	Cat: 2367
Rabbit Anti INOS	CST	Cat:13120
Rabbit Anti INOS	CST	Cat:24595
Anti-Mouse CD80 APC	eBioscience	Cat: 17-0801- 81
Anti-Mouse CD86 APC	eBioscience	Cat: 17-0862- 81
Anti-Mouse MHCII PE	eBioscience	Cat: 12-5322- 81
FDbio-Femto Ecl	FUDE biological	Cat: FD8030
Goat anti Mouse IgG (H+L) Alexa Fluor Plus 488	Invitrogen	Cat: A32723
Goat anti Rabbit IgG (H+L) Alexa Fluor Plus 488	Invitrogen	Cat: A32731
Goat anti Mouse IgG (H+L) Alexa Fluor Plus 555	Invitrogen	Cat: A32727
Goat anti Rabbit IgG (H+L) Alexa Fluor Plus 555	Invitrogen	Cat: A32732
Goat anti Rabbit IgG (H+L) Alexa Fluor Plus 647	Invitrogen	Cat: A32733
Goat anti Mouse IgG (H+L) Alexa Fluor Plus 647	Invitrogen	Cat: A32728
Donkey anti Goat IgG (H+L) Alexa Fluor Plus 647	Invitrogen	Cat: A32849
Rabbit Anti Kindlin 3	Invitrogen	Cat: PA5- 116402
Rabbit Anti SENP8	Invitrogen	Cat: PA5- 118500
Donkey Anti SHP2	Invitrogen	Cat: PA5- 17956
Goat anti mouse IgG HRP	MultiSciences	Cat: 70- GAM007
Goat anti rabbit IgG HRP	MultiSciences	Cat: 70- GAR007
Rabbit anti Myc	Origene	Cat: TA591009

Mouse anti Myc	Origene	Cat:
		TA150121
Mouse anti-Flag	Origene	Cat: TA50011-100
HRP Goat Anti-Mouse IgG LCS	Abbkine	Cat: A25012
HRP Goat Anti-Mouse IgG HCS	Abbkine	Cat: A25112
Mouse Anti CD18	Santa Cruz	Cat: sc-8420
Mouse Anti CD68	Santa Cruz	Cat: sc-20060
Mouse Anti Paxillin	Santa Cruz	Cat: sc- 365379
Mouse Anti SENP8	Santa Cruz	Cat: sc- 271498
Mouse Anti Cullin5	Santa Cruz	Cat: sc- 373822
Mouse Anti SHP1	Santa Cruz	Cat: sc-7289
Mouse Anti SHP2	Santa Cruz	Cat: sc-7384
Rabbit Anti UBE2F	Santa Cruz	Cat: sc- 398668
Anti-streptavidin antibody	Santa Cruz	Cat: sc-52234
Duolink ® In Situ Red Starter Kit Mouse/Rabbit	Sigma	Cat: DUO92101
Mouse Anti NEDD8	Sigma	Cat: N2786
Transfection Reagents		
Mouse macrophage nucleofector Kit	Lonza	Cat: VVPA- 1009
INTERFERin	Polyplus	Cat: 101000028
Lipo3000	Thermo	Cat: L3000008
Other Reagents		
Multi-fluorescent Immunohistochemical Staining Kit	Absin	Cat: abs50029
Biotinylated Mouse CD47 Protein	Acro biosystem	Cat: CD7- M82E4
SHP2 biosensor	Addgene	Cat: 134346
Hoechst 33342	Beyotime	Cat: C1028
JC-1	Beyotime	Cat: C2005
SureBeads [™] Protein G Magnetic Beads	BIO-RAD	Cat:1614023
SureBeads [™] Protein A Magnetic Beads	BIO-RAD	Cat:1614013
Biotin and Cy5 label of SHP2 Activating Peptide	BIOSS antibodies	N/A
pep-20-D12	Genesript	N/A
2P-IRS-1	Genesript	N/A
FBS	Gibco	Cat: 10099141C

DMEM	Gibco	Cat: 11995065
RPMI1640	Gibco	Cat: 61870036
0.25% Trypsin-EDTA	Gibco	Cat: 25200072
Advanced DMEM/F-12	Gibco	Cat: 12634010
Opti-MEM	Gibco	Cat: 51985034
HEPES	Gibco	Cat: 15630106
Glutamax	Gibco	Cat: 35050061
B-27 Supplement Minus Vitamin A	Gibco	Cat: 12587010
Penicillin-Streptomycin	Gibco	Cat: 15140122
		Cat:
PBS	Hyclone	SH30256.01
		Cat:
EDTA	Invitrogen	AM9260G
		Cat: 65-0850-
CFSE	Invitrogen	84
LysoTracker	Invitrogen	Cat: L7528
DiFMUP	Invitrogen	Cat: D6567
Streptavidin	Invitrogen	Cat: S888
CellMask Plasma Membrane Stains	Invitrogen	Cat: C10046
Wheat Germ Agglutinin Conjugates	Invitrogen	Cat: W32466
Dynabeads Sheep anti-Rat IgG	Invitrogen	Cat: 11035
		Cat: 65-0842-
Cell Proliferation Dye eFluor [™] 450	Invitrogen	85
	. .	Cat: 65-0840-
Cell Proliferation Dye eFluor™ 670	Invitrogen	85
Dynabeads Streptavidin Trial Kit	Invitrogen	Cat: 65801D
	T	Cat: 88-7064-
IL-6 Mouse Uncoated ELISA Kit	Invitrogen	88
	I	Cat: 88-7013-
IL-1 beta Mouse Uncoated ELISA Kit	Invitrogen	88
THE date Manage II. as the FI ISA 124	I	Cat: 88-7324-
TNF alpha Mouse Uncoated ELISA Kit	Invitrogen	88
MCP-1/CCL2 Mouse Uncoated ELISA Kit	Invitrogen	Cat: 88-7391-
MCF-1/CCL2 Mouse Oncoated ELISA Kit	liivittogen	88
IFN gamma Mouse Uncoated ELISA Kit	Invites con	Cat: 88-7314-
I'N gamma wouse Oncoated ELISA Kit	Invitrogen	88
Mouse interleukin 8 ELISA Kit	MyBioSource	Cat:
Wouse interfeakin 8 ELISA Kit	Мувюзонсе	MBS1601073
M-CSF	Novoprotein	Cat: CJ46
NovoPee® plus One stop DCD Classica Vit	Novoprotein	Cat: NR005-
NovoRec [®] plus One-step PCR Cloning Kit	novoprotein	01A
IL-2	Novoprotein	Cat: C013
hEGF	Novoprotein	Cat: C029

NEDD8 Conjugation Initiation Kit	R&D Systems	Cat: K-800
RhNEDD8 AMC	R&D Systems	Cat: UL-552-
KIINEDD8 AMC	K&D Systems	050
Protein A/G PLUS-Agarose	Santa Cruz	Cat: sc2003
MLN4924	Selleck	Cat: S7109
SHP099	Selleck	Cat: S6388
TPI-1	Selleck	Cat: S6570
TN0155	Selleck	Cat: S8987
Anti-FLAG®M2 Magnetic Beads	Sigma	Cat: M8823
3dGRO™ L-WRN Conditioned Media Supplement	Sigma	Cat: SCM105
РМА	Sigma	Cat: P1585
DNase I	Sigma	Cat: DN25
Nicotinamide	Sigma	Cat: 72340
N-Acetylcysteine	Sigma	Cat: A0737
SB-202190	Sigma	Cat: S7067
		Cat: SEKH-
Human CEACAM5 ELISA kit	Solarbio	0130
		Cat: 73-SVP-
Streptavidin polystyrene particles	Spherotech	50-5
DTBP	Thermo	Cat: 20665
BCA Protein Assay Kit	Thermo	Cat: 23225
Ham's F-12 Nutrient Mix powder	Thermo	Cat: 21700075
Pierce Glutathione Agarose Resin	Thermo	Cat: 16109
DAPI	Thermo	Cat: 62248
Subcellular Protein Fractionation Kit for Cultured Cells	Thermo	Cat: 78840
A83-01	Tocris	Cat: 2939
Gastrin	Tocris	Cat: 3006
		Cat: 3440-
Type I collagen gel	Trevigen	100-01
		Cat:
Collagenase IV	Worthington	LS004188
		Cat:
TRITC Phalloidin	Yeasen Biotechnology	40734ES75
		Cat:
FITC Phalloidin	Yeasen Biotechnology	40735ES75
Plasmids		
pLKO.1-TRC Cloning Vector	Addgene	Cat: 632561
psPAX2	Addgene	Cat: 12260
pMD2.G	Addgene	Cat: 12259
LentiCRISPRv2	Addgene	Cat: 10878
PXJ40(Myc, Flag, HA, mCherry)		N/A
	L	1
Squence for gene knockdown		

siSENP8#1: 5'-CCACUGGAGUUUAUUGGUCUA-3'	General Biol Inc	N/A
siSENP8#2:5'-GCAUACAUCACAAAGAAGATT-3',	General Biol Inc	N/A
siSENP8#3:5'-ACCAACUUAUUUGAACAUUUA-3'	General Biol Inc	N/A
ShScramble: 5'-CCTAAGGTTAAGTCGCCCTCG-3',	TsingkeBiotechnology	N/A
ShSHP2: 5'-TTGAGACCAAGTGCAACAATT-3'	TsingkeBiotechnology	N/A
ShSIRPa1: 5'-AAGTGAAGGTGACTCAGCCTG-3'		
ShSIRPa2: 5'-AATCAGTGTCTGTTGCTGCTG-3'		
gRNA hSENP8#1: 5'-CCATGTAACTCAAGACTACG-3'	TsingkeBiotechnology	N/A
gRNA hSENP8#2: 5'-CAACTCAGTTCACGCAAAGC-3'	TsingkeBiotechnology	N/A
Primers for mice identification		
Lysm ^{cre} -M-F: 5'-CCCAGAAATGCCAGATTACG-3'	TsingkeBiotechnology	N/A
Lysm ^{cre} -M-R: 5'-CTTGGGCTGCCAGAATTTCTC-3'	TsingkeBiotechnology	N/A
Lysm ^{cre} -WT-F: 5'-TTACAGTCGGCCAGGCTGAC-3'	TsingkeBiotechnology	N/A
Ube2m ^{fl/fl} -F: 5'-CCGTGTCGTGAAGATTGTGAAGG-3'	TsingkeBiotechnology	N/A
Ube2m ^{fl/fl} -R: 5'-ACCTCCACTGTCCTTCCTCGTCTC-3'	TsingkeBiotechnology	N/A
Ube2f ^{fl/fl} -F: 5'-CCAGGGTGGAAAATTTCAGTTT-3'	TsingkeBiotechnology	N/A
Ube2f ^{fl/fl} -R1: 5'-GCGAGCTCAGACCATAACTTCG-3'	TsingkeBiotechnology	N/A
Ube2f ^{fl/fl} -R2: 5'-CCCTGGAATTTCGGTATTATA-3'	TsingkeBiotechnology	N/A
Shp2 ^{fl/fl} -F: 5'-CAGTTGCAACTTTCTTACCTC-3'	TsingkeBiotechnology	N/A
Shp2 ^{fl/fl} -R: 5'-GCAGGAGACTGCAGCTCAGTGATG-3'	TsingkeBiotechnology	N/A
Senp8-F: 5'-CAGGAGACAGAGGCAGAAGAA-3'	TsingkeBiotechnology	N/A
Senp8-R1: 5'-GGATATTGTACTCACATGACCAAGA-3'	TsingkeBiotechnology	N/A
Senp8-R2: 5'-GGATTAAGTTTGAGGAAGGTGACA-3'	TsingkeBiotechnology	N/A
Senp8 ^{fl/fl} -F: 5'-CCAGGAACACTGATTCCTATGCAC-3'	TsingkeBiotechnology	N/A
Senp8 ^{fl/fl} -R: 5'-AATGGATGTGACAGTGGTGAGAG-3'	TsingkeBiotechnology	N/A
Primers for QPCR		
Human SENP8 F:5 '-ACTGCGGCAATCAGATGTCTC-3 '	TsingkeBiotechnology	N/A
Human SENP8 R:5 '-GGAACATGGCAATCTCTGCTG-3 '	TsingkeBiotechnology	N/A
Human UBA3 F:5 '-AAGCACTTCACTACGCTTAGC-3'	TsingkeBiotechnology	N/A
Human UBA3 R:5'-TGGAGTATGACTGTGGTCCTTT-3'	TsingkeBiotechnology	N/A
Human UBE2M F:5 '-ATGAGGGCTTCTACAAGAGTGG-3'	TsingkeBiotechnology	N/A
Human UBE2M R:5 '-ATTGTCTCACACTTCACCTTGG-3'	TsingkeBiotechnology	N/A
Human XIAP F:5 '-ACCGTGCGGTGCTTTAGTT-3 '	TsingkeBiotechnology	N/A
Human XIAP R:5 '-TGCGTGGCACTATTTTCAAGATA-3'	TsingkeBiotechnology	N/A
Human 18s rRNA F:5'-GTAACCCGTTGAACCCCATT-3'	TsingkeBiotechnology	N/A
Human 18s rRNA R:5'-CCATCCAATCGGTAGTAGCG-3'	TsingkeBiotechnology	N/A

Supplemental Table 2

Gender	IHC	Tumor location	Gross appearance	Histology
Male	MSS	Sigmoid colon	Ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Rectum	Ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Sigmoid colon	Ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Left-sided colon-	Ulcerative type	Moderately differentiated
		Rectum		adenocarcinoma
Female	MSS	Left-sided colon	protruded type	Mucinous carcinoma
Female	MSS	Left-sided colon	ulcerative-infiltrating	Moderately differentiated
			type	adenocarcinoma
Male	MSS	Sigmoid colon	protruded type	Moderately differentiated
				adenocarcinoma
Female	MSS	Sigmoid colon	ulcerative type	Moderately differentiated
				adenocarcinoma
Female	MSS	Right-sided colon	ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Right-sided colon	ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Rectum	ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Right-sided colon	ulcerative type	Moderately-Poorly differentiated
				adenocarcinoma
Female	MSS	Sigmoid colon	ulcerative type	Moderately differentiated
				adenocarcinoma
Female	MSS	Rectum	ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Rectum	ulcerative type	Moderately differentiated
				adenocarcinoma
Male	MSS	Sigmoid colon	ulcerative type	Moderately differentiated
				adenocarcinoma

TOOL

Gender	IHC	Tumor location	Gross appearance	Histology	
Female	MSS	Right-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Sigmoid colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Female	MSS	Right-sided colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Female	MSS	Sigmoid colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSS	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	ulcerative type	Signet ring cell carc	inoma
Male	MSS	Rectum	ulcerative type	Poorly	differentiated
				adenocarcinoma	
Male	MSS	Right-sided colon	infiltrating type	Moderately	differentiated
				adenocarcinoma	
Female	MSS	Right-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	protruded type	Moderately-poorly	differentiated
				adenocarcinoma	
Female	MSS	Left-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Left-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Left-sided colon	infiltrating type	Moderately-poorly	differentiated
				adenocarcinoma	
Female	MSS	Right-sided colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSS	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Left-sided colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSS	Rectum	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSS	Sigmoid colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSS	Rectum	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Female	MSS	Sigmoid colon	ulcerative type	Moderately	differentiated
		Č	51	adenocarcinoma	
Male	MSS	Rectum	ulcerative type	Mucinous carcinom	a

Male	MSS	Sigmoid colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Female	MSS	Right-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSS	Rectum	protruded type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSS	Rectum	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSS	Right-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Right-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	ulcerative type		
Male	MSS	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSS	Rectum	protruded type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Poorly	differentiated
				adenocarcinoma	
Male	MSI	Rectum	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Left-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Female	MSI	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSI	Sigmoid colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Female	MSI	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately-poorly	differentiated
				adenocarcinoma	

Female	MSI	Right-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Rectum	protruded type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Well-moderately	differentiated
				adenocarcinoma	
Female	MSI	Sigmoid colon	protruded type	Well differentiated a	denocarcinoma
Male	MSI	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Female	MSI	Right-sided colon	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Poorly	differentiated
				adenocarcinoma	
Female	MSI	Rectum	ulcerative type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSI	Transverse colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Poorly	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Well-moderately	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	protruded type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSI	Right-sided colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Male	MSI	Colon	ulcerative type	Moderately-poorly	differentiated
				adenocarcinoma	
Female	MSI	Left-sided colon	protruded type	Well-moderately	differentiated
				adenocarcinoma	

1	669	
_		

Supplemental Table 3

Gender	Patient	Histology	
Male	Patient1	Poorly differentiated sarcomatoid carcinoma	
Male	Patient2	Moderately differentiated squamous cell carcinoma	
Male	Patient3	Moderately differentiated invasive adenocarcinomas (acinar and lepidic)	
Female	Patient4	Nonmucinous adenocarcinoma in situ	
Female	Patient5	Moderately differentiated invasive adenocarcinomas (acinar, lepidic and papillary)	
Female	Patient6	Moderately differentiated invasive adenocarcinomas (acinar)	
Male	Patient7	Poorly differentiated invasive adenocarcinomas (micropapillary and solid)	

Supplemental Table 4

Supplemental Table 4								
1	89Y	CD45	22	160Gd	CD86			
2	115In	CD3e	23	161Dy	iNOS			
3	141Pr	CD103	24	162Dy	CD206			
4	142Nd	MHCII	25	163Dy	CD25			
5	143Nd	B220	26	164Dy	CD40			
6	144Nd	CX3CR1	27	165Ho	Ly6G			
7	145Nd	CD69	28	166Er	NEDD8			
8	146Nd	PD1	29	167Er	CD16/32			
9	147Sm	CD80	30	168Er	FoxP3			
10	148Nd	Ly6C	31	169Tm	SENP8			
11	149Sm	CD64	32	170Er	PDL1			
12	150Nd	CD14	33	171Yb	CD163			
13	151Eu	NK1.1	34	172Yb	CD127			
14	152Sm	CD11c	35	173Yb	CD172a			
15	153Eu	TCRgd	36	174Yb	CCR2			
16	154Sm	Ki-67	37	175Lu	Siglec F			
17	155Gd	BST2	38	176Yb	MERTK			
18	156Gd	CD68	39	197Au	CD4			
19	157Gd	FceRIa	40	198Pt	CD8a			
20	158Gd	CD19	41	209Bi	CD11b			
21	159Tb	F4/80		191/193Ir	DNA			
				194Pt	Live/dead			