

Supplemental Fig. 1. Loss of epithelial HDAC3 expression increases spontaneous intestinal inflammation. (A) Frequency of rectal prolapse in HDAC3^{FF} and HDAC3^{ΔIEC} mice. (B) Fecal concentrations of lipocalin-2. (C, D) Frequency of CD11b⁺ myeloid cells (Gated Live, CD45⁺, CD3⁻) and (E) frequency of intestinal CD4⁺ T cells (Gated Live, CD45⁺) in the large intestine of HDAC3^{FF} and prolapse (*) HDAC3^{ΔIEC} mice. (F) H&E-stained colonic sections. Data represent at least three independent experiments, 3-6 mice per group. **p<0.01, ***p<0.001, ****p<0.0001.

Supplemental Fig. 2. HDAC3 regulates commensal-specific T cells in the small intestine. (A, B) Number of cBir1+ CD4 T cells in small intestine of HDAC3^{FF} and HDAC3^{ΔIEC}. cBir1+ tetramer cells are gated on live, CD45+, lineage (CD11b, B220, Ly6G, CD11c, CD8a)⁻, CD4+. Data represent at least three independent experiments, 3-4 mice per group. **p<0.01.

Supplemental Fig. 3. Intestinal microbiota composition in HDAC3^{FF} and HDAC3^{ΔIEC} mice. (A) PCA plot, (B) Shannon diversity, and (C) bacterial composition in HDAC3^{FF} and HDAC3^{ΔIEC} mice from metagenomic analyses of stool sample. (D) cBir1 counts per million reads and (E) cBir1 by qPCR in stool of HDAC3^{FF} and HDAC3^{ΔIEC} mice.

Supplemental Fig. 4. Intestinal immune responses in HDAC3^{ΔIEC} **mice**. (**A**) Frequency of Th subsets of cBir1⁺CD4⁺ T cells from the large intestine of HDAC3^{FF} and HDAC3^{ΔIEC}. (**B**) Frequency of Th subsets of cBir1⁺ commensal-specific T cells following transfer into Rag1^{-/-} mice. cBir1⁺ tetramer cells are gated on live, CD45⁺, lineage (CD11b, B220, Ly6G, CD11c, CD8a)⁻, CD4⁺. T follicular (Tfh) cells gated cBir1⁺, FoxP3⁻, CXCR5⁺; Th1 cells gated cBir1⁺, FoxP3⁻, CXCR5⁻, RORγt⁻, Tbet⁺. (**C**, **D**) Frequency of IFNγ⁺ CD45⁺ cells and (**E**) frequency of ILC1s and ILC3s in large intestine of HDAC3^{FF} and HDAC3^{ΔIEC} mice at steady state. (**F**) Frequency of RORγt⁺ cBir1⁺ cells in intestine of HDAC3^{FF} and HDAC3^{ΔIEC} mice treated with PBS or IFNγ. Data represent at least two independent experiments, 3-5 mice per group. *p<0.05.

Supplemental Fig. 5. Histone acetylation and IFN γ induction of *H2-Ab1* are not significantly altered in IECs lacking HDAC3. (A, B) Frequency of MHCII⁺ IECs from small intestine of HDAC3^{FF} and HDAC3^{ΔIEC} mice. (C) H2-Ab1 mRNA expression in small intestinal IECs from of HDAC3^{FF} and HDAC3^{ΔIEC} mice. (D) ChIP-seq for H3K9Ac in primary IECs isolated from the large intestine. (E) H2-Ab1 mRNA expression in HDAC3^{FF} and HDAC3^{ΔIEC-IND} organoids treated with PBS or IFN γ . Data are representative of at least two independent experiments, 3-4 mice per group. ***p<0.001, ****p<0.0001.

Supplemental Fig. 6. Confirmation of IEC-specific depletion of MHCII. (**A**) H2-Ab1 mRNA expression in IECs isolated from the large intestine of MHCII^{FF} and MHCII^{ΔIEC} mice. (**B**) Surface MHCII expression in EpCAM⁺, CD45⁻ cells from MHCII^{FF} and MHCII^{ΔIEC} mice. (**C**) Surface MHCII expression in EpCAM⁻, CD45⁺ cells from MHCII^{FF} and MHCII^{ΔIEC} mice. (**D**) Number of cBir1⁺ CD4⁺ T cells in small intestine of MHCII^{FF} and MHCII^{ΔIEC} mice. (**E**) Frequency of Th subsets of cBir1⁺CD4⁺ T cells from colon of MHCII^{FF} and MHCII^{ΔIEC} mice. (**E**) Frequency of Th subsets of live, CD45⁺, lineage (CD11b, B220, Ly6G, CD11c, CD8a)⁻, CD4⁺. T follicular (Tfh) cells gated cBir1⁺, FoxP3⁻, CXCR5⁺; Th1 cells gated cBir1⁺, FoxP3⁻, CXCR5⁻, RORγt⁺, Tbet⁺. Data represent at least three independent experiments, 3-4 mice per group. **p<0.01, ****p<0.0001

Supplemental Fig. 7. Intestinal microbiota composition in MHCII^{FF} and MHCII^{ΔIEC} mice. (A) PCA plot, (**B**) Shannon diversity, and (**C**) bacterial composition in MHCII^{FF} and MHCII^{ΔIEC} mice from metagenomic analyses of stool sample. (**D**) cBir1 counts per million reads and (**E**) cBir1 by qPCR in stool of in MHCII^{FF} and MHCII^{ΔIEC} mice.

Supplemental Fig. 8. Commensal-specific CD4⁺ T cells from MHCII^{ΔIEC} mice exhibit reduced markers of apoptosis. (A) Frequency of Ki67⁺, (B, C) FR4⁺, CD73⁺, (D, E) Bim⁺ in cBir1⁺ CD4 ⁺ T cells from the large intestine of MHCII^{FF} and MHCII^{ΔIEC} mice. (F) Frequency of AnnexinV⁺ antigen experienced intestinal CD4 ⁺ T cells from the large intestine of MHCII^{FF} and MHCII^{ΔIEC} mice. Data represent at least two independent experiments, 3-4 mice per group. *p<0.05, **p<0.01, ns=not significant.

Supplemental Fig. 9. Intestinal epithelial MHC class II regulation by HDAC3 instructs microbiotaspecific CD4⁺ T cells. HDAC3 regulation of epithelial MHCII is activated early and concurrently with microbiota colonization. This pathway is necessary to control local accumulation of T cells that respond to commensal microbes later in life. Loss of intestinal epithelial HDAC3 results in reduced commensalspecific Tregs and an increase in commensal-specific Th17 cells. Thus, microbiota drive tolerance in the intestine by inducing an epithelial mechanism that directs local CD4⁺ T cell subsets that recognize commensal antigens and decrease susceptibility to microbiota-sensitive inflammation. Created with Biorender.com.