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1 Morphological analysis of epithelial lobules and organoids

Here we provide a brief summary of geometric concepts used in the analysis of epithelial lobules, and an
extended discussion on the geometric theory of epithelial surfaces.

1.1 Integral geometry of smooth surfaces

We consider the apical surface of the epithelial lobules as closed smooth surfaces. At any point on the
surface, the curvature is captured by the mean curvature

H =
1

2
(C1 + C2) (1)

and the Gaussian curvature

K =C1C2 , (2)

where C1, C2 are the principal curvatures (Fig. 1a).
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Fig. SN1: a, Principle curvatures C1 and C2 and associated radii of curvature R1 and R2 are shown for
a convex (left) and saddle (right) surface. Mean curvature H and Gaussian curvature K are indicated.
b, Signed volumes (negative or positive) are indicated for depicted tetrahedrons based on the position of
the reference point. c, Dihedral angle θi between two adjacent faces is shown, the associated edge op has
a length of li.
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Integral geometry provides a set of “global” morphological descriptors called Minkowski functionals
that characterize the geometry and topology of objects (1). In 3-dimensional space, they are

Volume: V =

∫
dV (3)

Surface Area: A =

∫
dA (4)

Integral Mean Curvature: M =

∫
HdA (5)

Euler characteristic: χ =
1

2π

∫
KdA = 2(N − g) , (6)

where dV and dA are the volume and area element, respectively. Topology is captured by the Euler
characteristic χ of the object, which relates to the Gaussian curvature via the Gauss-Bonnet theorem
2πχ =

∫
KdA. For a single object, χ = 2−2g where g is the topological genus that quantifies the number

of handles. For an epithelial organoid consisting of multiple epithelial lobules, χ = 2(N − g) where N is
the number of distinct lobules and g is total genus.

1.2 Integral geometry of discretized surfaces

Volumetric images of organoids are segmented and used to construct triangular meshes to represent the
apical surfaces of epithelial lobules. Thus, we use discrete approximations of the Minkowski functionals
Eq.(3-6) to characterize geometry and topology. The meshes are defined as polyhedron, with Nv number
of vertices connected via Ne number of edges, and encapsulate Nf number of flat faces. The surface area
A and volume V then are calculated as

A =

Nf∑
i

Ai , (7)

and

V =

Nf∑
i

V↑,i , (8)

where Ai is the face area of the ith face and V↑,i is the signed volume of a tetrahedron defined by the
three vertices of the face and an arbitrary reference point (Fig. 1b). The sign of V↑,i is determined by
asking if the face normal vector is pointing towards (negative volume) or away (positive volume) from
the reference point.

For the integral mean curvature M , we follow Steiner’s approach (2) to mollify the polyhedron, or
smoothen its edges and vertices, with a ball of radius ε > 0. In the limit of very small ε, we obtain

M =

Ne∑
i

1

2
θili , (9)

where li is the edge length and θi is the dihedral angle at the edge ( (3), Fig. 1c).
The Euler characteristic χ of the polyhedron is calculated using Euler’s formula,

χ = Nv −Ne +Nf . (10)
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1.3 Morphological analysis with shape diagrams

We use two non-dimensional metrics, reduced volume v and reduced curvature m to capture the shapes
of epithelial lobules,

Reduced volume: v ≡ 3
√

4π
V

A3/2
(11)

Reduced curvature: m ≡ M√
4πA

. (12)

v is an isoperimetric quantity that captures the compactness of a surface in three-dimensions, while m
measures the curvature-area mismatch. For a sphere, both v and m are equal to unity. In the following
section, we analyze idealized shapes of spherocylinders and wiffle balls with shape diagrams (v,m).

b
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Fig. SN2: a, Spherocylinders of increasing (left to right) aspect ratio a are shown. b, Spherocylinders
with specific values of a are represented as points in the shape diagram. The solid-line represents the
parametric curve for the spherocylinder family. c, Reduce volume v (top) and reduced curvature m
(bottom) are shown as a function of aspect ratio a.

1.3.1 Spherocylinder

During morphogenesis, neuroepithelial lobules start from spherical shapes and become increasingly elon-
gated tubular structures. The spherocylinder provides an idealised model to investigate this experimen-
tally observed shape transition. A spherocylinder consists of a cylinder of length L with spherical caps at
both ends, where the radius of the cylinder and of the spheres are both R (Fig. 2a). This shape can be
parametrized by the aspect ratio a = L/R. For aspect ratio a = 0, we recover a sphere. For higher values
of aspect ratio a, the spherocylinder represents increasingly elongated tubes. The Minkowski functionals
are then given by,
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V = πR2L+
4π

3
R3 = πR3(a+

4

3
) (13)

A = 2πRL+ 4πR2 = 2πR2(2 + a) (14)

M =
1

2R
· 2πRL+

1

R
· 4πR2 = πR(a+ 4) (15)

χ = 2 (16)

The reduced volume v and reduced curvature m can be parametrized with the aspect ratio a as,

v =
3a/4 + 1

(1 + a/2)3/2
, (17)

m =
a/4 + 1√
1 + a/2

. (18)

These equations define a characteristic curve for spherocylinder in the shape diagram (Fig. 2b,c).

1.3.2 Wiffle ball

The final geometry of the Day 4 neuroepithelial lobules resemble a wiffle ball, a familiar children’s toy in
North America (Fig. 3b). We consider two concentric spheres with radii R and R + d, connected via p
number of passages (see Fig. 3,a-b). For simplicity we consider all identical passages with central aperture
2θ (Fig. 3c). We model the passages with the inner surface of a torus with major radius r = (R+d/2) sin θ
and minor radius d/2.

We obtain θmax(p) using approximate solutions for the optimal packing of p points on a spherical
surface (4). To a good approximation θmax(p) ∼

√
π/p . The minima of the aperture angle θmin(d/R) is

set by the condition r > d/2.
Note that for a wiffle ball with p passages the genus g = p− 1. The Minkowski functionals are given

by,

V =
4π − pΩp

3

(
(R+ d)3 −R3

)
+ p Vp (19)

A = (4π − pΩp)
(
(R+ d)2 +R2

)
+ pAp (20)

M = (4π − pΩp)d+ pMp (21)

χ = 2− 2g = 2− 2(p− 1) = 4− 2p . (22)

Here Vp, Ap, Mp and Ωp are respectively the volume, surface area, integral mean curvature, and the
solid angle of one passage,

Vp =
π

2

(
d

2

)2

· 2π
(
r − 4

3π

d

2
cos θ

)
=
π2

4
d2r − π

6
d3 cos θ (23)

Ap = πd

∫ θ

θ−π
dθ′
(
r +

d

2
sin θ′

)
= π2dr − πd2 cos θ (24)

Mp = πd

∫ θ

θ−π
dθ′
(
r +

d

2
sin θ′

)(
2

d
+

sin θ′

r + d
2 sin θ′

)
= 2π2r − 4πd cos θ (25)

Ωp =

∫
dΩ =

∫ θ

0

dθ′2π sin θ′dθ′ = 2π(1− cos θ) . (26)
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We find that for d/R << 1, to a leading order v ∼ d/R. The variation in reduced curvature m arises
from dependencies on θ and p, which to a linear order can be approximated to,

m ∼
√
π3

2
θp−

√
2π

d

R
(p− 1) . (27)

As a result, the parametric curve for a wiffle ball in the shape diagram is almost a vertical line (Fig. 3d,
e).
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Fig. SN3: a, Wiffle balls with p = 6 passages are shown for varying opening angle θ. b, Image showing
a wiffle ball, a familiar children’s toy in North America. c, Left, cross-sectional diagram of a wiffle ball
depicting geometric variables; thickness d, inner radius R and opening angle θ. Right, cross-sectional
view of a passage of the wiffle ball; geometric variables are indicated. d, Parametric curve (dashed line)
for a wiffle ball with p = 6 passages is shown for d/R = 0.15. e, Parametric curve (colored dashed lines)
for a wiffle ball with varying number of passages (see legend) is shown with d/R = 0.15.
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2 Topological transitions in a system of fluid surfaces

In this section, we discuss topological transitions in a system of fluid surfaces with N closed surfaces
or lobules and g number of handles. The transition in topology of the system is thus characterized by
changes in the topological indices N and g. The mechanics of such fluid surfaces can be captured with a
bending energy

Eb =

∫ (
κH2 + κ̄K

)
dA , (28)

where H , K an dA respectively denote the local mean curvature, the Gaussian curvature of the surface,
and the area element. The bending rigidity κ and the Gaussian rigidity κ̄ are elastic moduli that capture
the resistance of the shape to bending and saddle-splay deformations, respectively. Due to the Gauss-
Bonnet theorem,

∫
KdA = 2πχ = 4π(N − g) is a topological invariant and depends only on the number

of surfaces N and total genus g. The Gaussian rigidity κ̄ hence describes the resistance to topological
changes that occur via changes in N as well as g. The bending rigidity κ dictates changes in shape, but
also changes in N .

2.1 Energetics of topological transitions

Motivated by the morphology of the organoids observed at the early time points, let us first consider
an ensemble of spherical lobules. For any sphere of radius R, the mean curvature H = 1/R, Gaussian
curvature K = 1/R2 and the bending energy Eb = 4π(κ+ κ̄). For a system of N spheres of any size

Eb = 4π(κ+ κ̄)N (29)

=⇒ ∆Eb = 4π(κ+ κ̄)∆N . (30)

In such a system, a decrease in N (∆N < 0) reduces Eb iff κ+ κ̄ > 0. The change in bending energy
for a trans fusion is ∆Eb ' −4π(κ + κ̄) (see Fig. SN4a), and hence is favored also when κ + κ̄ > 0
(Fig. SN4b, dashed line). This criteria hence determines the conditions for trans fusion and stability of a
system of spherical lobules. On the other hand, high genus shapes are favored when κ̄ > 0 and cis fusion
lowers bending energy by ∆Eb ' −4πκ̄ (Fig. 4a). Together for a system of N lobules with g handles the
change in bending energy due to topological transitions can be represented as,

∆Eb ' 4π(κ+ κ̄)∆N − 4πκ̄∆g (31)

=⇒ ∆Eb
4πκ

'
(

1 +
κ̄

κ

)
∆N − κ̄

κ
∆g . (32)

Using these energetic criteria, we propose a simple two dimensional state diagram (Fig. SN4b) for
a system whose initial state consists of multiple spheres. We predict three morphological outcomes,
depending on which mode of topological transitions are favored. We can further simplify this state
diagram for κ > 0 into a one-dimensional state diagram as a function of the reduced Gaussian rigidity
κ̄/κ (see Main text and Fig. 3b).

Resultant morphologies can then be interpreted by studying the variation of only one parameter, κ̄/κ.
High genus structures lie in region III, where κ̄/κ > 0. A system of spheres and tubes, formed via trans
fusion, lie in region II for which κ̄/κ > −1.
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Fig. SN4: a, Changes in bending energy ∆Eb is shown for examples of trans (top) and cis (bottom) fusion.
b, A state diagram representing three regions. In region I (below dashed line), fusions are disfavored,
while in region II only trans fusion is favored. Both trans and cis fusion are favored in region III giving
rise to structures with many passages. Insets show example systems with representative topology.

More generally for any system of N lobules and g handles (g − 1 passages)

Eb = 4πN(κsl + κ̄)− 4πκ̄g , (33)

where sl = (
∫
H2dA)/N is a number that captures the average shape energy of the lobules. Note that

for a system of spheres sl = 1 and it is shown by Willmore that sl ≥ 1 (5). In that case the condition
for trans fusion being favored yields a correction κ̄/κ > −sl. This modified criteria is naturally satisfied
when κ̄/κ > −1 as sl ≥ 1, hence for simplicity we limit our discussion to sl ∼ 1.

2.2 Elastic moduli of epithelial tissues and their relation to cell mechanics

Epithelial tissues are active complex materials, whose mechanical properties emerge from the multi-scale
interactions of molecules and cells. The bending rigidity of an epithelium has been estimated to be
κ ∼ 10−12J for mono-layered, spherical cysts (6) consistent with scaling predictions (7). However, how
the bending and Gaussian rigidity of an epithelium relates to cellular mechanics and geometry is an open
question. Several groups have presented mechanical models of tissue deformations in 3 dimensions that
are accessible to qualitative interpretation (8–12). For example, Rozman and colleagues (11) consider a
3d vertex model of an epithelium that consists of identically shaped cells of fixed volume Vc, characterised
by the apical, basal and lateral tensions, Ta, Tb, Tl, respectively. Through a coarse graining procedure,
the effective tissue-scale bending and Gaussian rigidities were obtained as

κ =
1

2

(
Ta + Tb
Tl

)1/3

TlV
2/3
c , κ̄ =

1

3

(
Ta + Tb
Tl

)1/3
((

Ta + Tb
Tl

)2

− 3

4

)
TlV

2/3
c . (34)

Here these expressions have been derived for equilibrium cell height h = ((Ta + Tb)/Tl)
2/3.

Using these expressions, we write the reduced Gaussian rigidity as
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κ̄

κ
=

2

3

((
Ta + Tb
Tl

)2

− 3

4

)
. (35)

This suggests that a decrease in cellular tension Ta + Tb leads to a decrease in reduced Gaussian rigidity,
which could lead to an overall reduction of epithelial fusion events. In the neuroepithelial organoids the
actomyosion cortex is predominantly located at the apical side, indicating that Ta > Tb, Tl and hence
Ta would be more affected by a change in actomyosin activity. This is supported by our experiments in
neuroepithelial organoids, where we reduce cell contractility using the ROCK kinase inhibitor Y-27632
and observe a large number of lobules with few passages (Extended Fig. 7).

2.3 Morphogenesis guided by trans fusion

In this section we discuss how successive trans fusion of almost spherical lobules can give rise to tubular
shapes and as a result drive the morphological trajectory of neuroepithelial organoids. To discuss this we
use the idealized geometric model of spherocylinder (section 1.3.1), which in the limit of vanishing aspect
ratio (a = 0) is equivalent to a sphere.

Consider the trans fusion of two spheres of equal radii R0, where the total surface area and volume
remain unchanged by the fusion event. This geometric constraint, then determines the geometry after
fusion. The area and the volume of the final shape is then given by

A = 8πR2
0 , V =

8

3
πR3

0 . (36)

The reduced volume v for this final shape is thus v = 1/
√

2 ' 0.707 whereas for a sphere v = 1. As a
result the fused lobule does not stay spherical. A perturbative analysis of fluid surfaces near the spherical
state shows that prolate structures are more stable than oblate structures (13). Such prolate shapes are
well represented by the spherocylinder family. The shape of a spherocylinder of radius R and length L
formed by coaslescence of n identical spheres of radius R0 is characterized then by its aspect ratio a,
which is a function of n. The aspect ratio a(n) can be obtained by solving the area and volume constraint
given by

4πR2 + 2πRL = n4πR2
0 ,

4

3
πR3 + πR2L = n

4

3
πR3

0 . (37)

The exact solution of a(n) can be obtained (see Fig. 5a, blue solid line). To a good numerical approxi-
mation a(n) ∼ (2/

√
π)
√
n− 1 + (13/3)(n− 1) (see Fig. 5a , yellow dashed line).

We find that the aspect ratio a to be a monotonic function of n, hence implying how progressive
trans fusion of spherical lobules can give rise to elongate tubes with increasing aspect ratio. This will
result in decreasing reduced volume v and increasing reduced curvature m (see Fig. SN5b,c), depicting a
trajectory in (v,m) space similar to observed morphogenetic trajectory of neuroepithelial organoids (see
Fig. 2a).
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Fig. SN6: a, Aspect ratio a of a spherocylinder formed by coalescence of n identical spheres is shown as
a function of n. The approximate solution (yellow dashed line, see text) lies closely to the exact solution
(blue solid line) for a(n). b,c, Reduced volume v and reduced curvature m of the said spherocylinder is
shown as a function of n. d, Parametric curve depicting morphogenetic trajectory of a spherocylinder
in (v,m) space parametrized by n.
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2. Jakob Steiner. Über parallele flächen. Monatsber. Preuss. Akad. Wiss, 2:114–118, 1840.
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Jülicher, Guillaume Salbreux, and Anne-Kathrin Classen. Interface contractility between differently
fated cells drives cell elimination and cyst formation. Current Biology, 26(5):563–574, 2016.
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