
	

	

Supplementary 

Additional file 1 — Methods and Implementations 

Population Structure Inference Methods 

Matrix Decomposition-Based Methods 

Principal Component Analysis 

In	 the	 context	 of	 genetic	 data,	 PCA	 aims	 to	 explain	 the	 variation	 in	 allele	 frequencies	 by	
finding	a	low-dimensional	linear	transformation	that	maximizes	the	projected	variance.	To	
solve	 the	PCA	problem,	we	performed	SVD	on	 the	normalized	genotype	matrix.	Given	𝑛!	
individuals	 and	𝑚 	SNPs,	 let	𝑋 ∈ ℝ"!×$ 	denote	 the	 unnormalized	 genotype	 matrix	 with	
additive	genotype	coding	(aa=−1,	Aa=0,	AA=1	and	missing=-2).	The	normalized	genotype	is	
obtained	by	 	𝑥%&"'&$ = ("#)*+#

,*+#(!)+#)
	,	where	𝑥%& 	and	𝑥%&"'&$ 	are	 the	unnormalized	genotype	and	

normalized	 genotype	 at	 SNP	𝑟 	for	 individual	 𝑖 ,	 respectively,	 and	𝑎& 	is	 the	 sample	 allele	
frequency	 for	 SNP	𝑟 .	 Then	 SVD	 takes	 as	 input	 the	 normalized	 genotype	matrix	𝑋"'&$ ∈
ℝ"!×$	and	decomposes	it	into	a	product	of	three	matrices		𝑋"'&$ = 𝑈Σ𝑉/ 	where	Σ ∈ ℝ"!×$	
is	 a	 diagonal	 matrix	 of	 size	𝑚 × 𝑛! 	containing	 the	 singular	 values	 and	 the	 orthogonal	
matrices	𝑈 ∈ ℝ"!×"! 	and	𝑉 ∈ ℝ$×$	contain	the	left	and	right	singular	vectors,	respectively.	
The	dimension	of	the	input	data	is	then	reduced	by	projecting	it	onto	a	space	spanned	by	the	
top	𝑘	singular	vectors.	Let	𝑈0 ∈ ℝ"!×0 		and		𝛴0 ∈ ℝ0×0 		denote	the	left	singular	vectors	and	
the	 singular	 values	 of	 the	 first	𝑘 	principal	 components,	 then	 the	 input	 data	 in	 its	 lower	
dimensional	 representation	 is	 given	 by	𝑈0Σ0 ,	 and	 the	 corresponding	 loading	 matrix	 is	
denoted	 by	 𝑉0 ∈ ℝ$×0 .	 The	 projected	 scores	 of	 unseen	 data	 can	 be	 obtained	 by	
multiplication	of	the	normalized	genotype	matrix	with	𝑉0 .		

Unnormalized Principal Component Analysis 

UPCA	works	similarly	to	PCA,	except	that	SVD	takes	the	unnormalized	genotype	matrix	as	
input.	Interpopulation	variation	is	captured	from	the	second	PC	onwards,	while	the	first	PC	
represents	an	average	SNP	pattern,	as	is	common	for	PCA	on	non-centered	data.	Therefore,	
the	first	PC	in	UPCA	can	be	omitted.		

Spectral Decomposition Generalized by Identity-by-State Matrix 

SUGIBS	was	 previously	 proposed	 as	 a	 robust	 alternative	 against	 laboratory	 artifacts	 and	
outliers14	by	applying	SVD	on	the	IBS	generalized	genotype	matrix,	where	IBS	information	
corrects	for	potential	artifacts	due	to	errors	and	missingness.	

Let	𝑆 ∈ ℝ"!×"! 	denotes	 the	 pairwise	 IBS	 similarity	matrix	 of	 the	 unnormalized	 genotype	
matrix	𝑋,	which	 is	calculated	 following	 the	rules	 in	 	Table	S1.	The	similarity	degree	of	an	
individual	is	defined	as	𝑑%% = ∑ 𝑠%1

"!
1 		where	𝑠%1 	is	the	IBS	similarity	between	individual	𝑖	and	
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any	other	 individual	𝑗	in	 the	reference	dataset.	The	similarity	degree	matrix	 is	a	diagonal	
matrix	defined	as	𝐷 = 𝑑𝑖𝑎𝑔9𝑑!!, … , 𝑑"!"!}.	SUGIBS	works	similarly	to	PCA,	except	that	the	

IBS	 generalized	 genotype	matrix	𝐷)
!
$𝑋 		 is	 used	 as	 input	 for	 performing	 SVD,	 i.e.,	𝐷)

!
$𝑋 =

𝑈Σ𝑉/ 		.	Likewise,	to	UPCA,	the	first	component	of	SUGIBS	aggregates	the	average	SNP	pattern	
and	 can	 therefore	 be	 omitted.	 For	 the	 projection	 of	 unseen	 samples,	 we	 use	 the	 second	
component	and	onwards	𝑉02 = {𝑣*, … , 𝑣03!}	where	𝑣0 	is	the	𝑘th	right	singular	vector.	

Given	 an	 unseen	 dataset	 with	𝑛* 	individuals	 and	 the	 same	 set	 of	 SNPs	 as	 the	 reference	
dataset,	 let	𝑌 ∈ ℝ"$×$		denote	its	unnormalized	genotype	matrix.	The	reference	similarity	
degree	is	defined	as	𝑑@%% =	∑ �̃�%1

"$
1 	where	�̃�%1 	is	the	IBS	similarity	between	the	𝑖th	individual	

in	the	unseen	dataset	and	the	𝑗th	individual	in	the	reference	dataset.	The	reference	similarity	
degree	matrix	 is	defined	as	𝐷B = 𝑑𝑖𝑎𝑔9𝑑@!!, … , 𝑑@"$"$}.	The	unseen	dataset	can	be	projected	
onto	the	reference	space	following	𝐷B)!𝑌𝑉02.	

Neural Network-Based Methods 

Autoencoder 

An	 autoencoder	 consists	 of	 two	 parts:	 an	 encoder	 network	 and	 a	 decoder	 network.	 The	
encoder	maps	input	data	to	a	latent	representation	𝑍 = 	𝑓(𝑊𝑋	 + 𝑏);	the	decoder	maps	the	
latent	representation	back	to	a	reconstruction	output	𝑋J 	= 	𝑔(𝑊′	𝑍	 + 𝑏′)	where	𝑓(∙)	and	𝑔(∙
)	are	nonlinear	functions,	𝑊	and	𝑊2	are	the	weight	matrix,	𝑏	and	𝑏2	are	the	bias	vector,	𝑋,	𝑋J		
and	𝑍	are	the	input	data,	the	reconstructed	data	and	the	latent	representation,	respectively.	
The	network	 is	 then	trained	to	minimize	 the	reconstruction	error.	The	objective	 function	
takes	the	form	

𝐽45 =	N𝐿 P𝑥, 𝑔Q𝑓(𝑥)RS
(

	

where	𝐿	is	the	reconstruction	error.	

Regularized Autoencoder 

To	 reduce	 overfitting	 of	 the	 model	 and	 improve	 its	 performance,	 regularization-based	
methods	are	often	used.	One	widely	used	 regularization	 is	weight-decay	 43,	which	 favors	
small	weights	by	optimizing	the	following	regularized	objective	function	

𝐽45)67 =	N𝐿 P𝑥, 𝑔Q𝑓(𝑥)RS + 	𝜆N𝑊*

6(

	

where	hyperparameter	𝜆	controls	the	strength	of	the	regularization.	This	encourages	sparse	
weight	matrix	and	thus	reduces	the	redundancy.	

Denoising Autoencoder 

In	a	denoising	autoencoder	25,26,	the	initial	input	is	partially	corrupted	before	training,	and	
then	sent	through	the	network.	Based	on	the	encoding	and	decoding	of	the	corrupted	input	
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data,	 it	 is	desirable	to	predict	 the	original,	uncorrupted	data	as	 its	output.	This	yields	the	
following	objective	function:		

𝐽845 =N𝔼(9~;((9|() V𝐿 P𝑥, 𝑔Q𝑓(𝑥W)RSX
(

	

where	the	corrupted	version	𝑥W	of	original	input	𝑥	is	obtained	through	the	process	𝑞(𝑥W|𝑥).	

Denoising Autoencoder with Modified Loss 

An	additional	term	favoring	robust	mapping	at	the	bottleneck/latent	space	is	included	in	the	
original	objective	function	of	DAE,	yielding	the	following	loss	function:		

𝐽845)= =N𝔼(9~;((9|() V𝐿 P𝑥, 𝑔Q𝑓(𝑥W)RSX
(

+ 	𝛽𝐿Q𝑓(𝑥), 𝑓(𝑥W)R	

where	 hyperparameter	𝛽 	controls	 the	 emphasis	 on	 noise-free	 projections.	 The	 objective	
now	is	to	learn	latent	representations	that	are	not	only	robust	for	reconstruction,	but	also	at	
the	same	time	robust	for	projection.		

Implementation Details 

The	encoder	and	decoder	networks	are	fully	connected	feed-forward	networks	with	Leaky	
ReLU	[48]	activation	functions	connecting	each	layer,	except	for	the	last	layer	of	the	decoder	
sigmoid	activation	is	used	to	ensure	the	output	values	are	bounded	between	[0	1].	We	used	
the	Adam	optimizer	[49]	with	an	initial	learning	rate	of	0.001.	To	allow	the	optimizer	to	take	
smaller	steps	when	training	gets	close	to	convergence,	we	applied	a	learning	rate	scheduler	
to	reduce	the	learning	rate	of	the	optimizer	by	0.9999	after	every	epoch.	To	fit	in	available	
GPU	memory	(11,019MiB),	we	trained	the	networks	 in	mini	batches	of	256	samples.	The	
models	are	implemented	and	trained	on	an	NVIDIA	GeForce	RTX	2080	Ti	using	PyTorch	1.7.	

To	implement	the	early	stopping	mechanism,	we	track	if	the	validation	loss	keeps	improving.	
If	the	difference	of	the	validation	loss	between	two	epochs	is	below	0.1,	it	is	quantified	as	no	
improvement.	 The	 early	 stopping	 patience	was	 set	 to	 be	 300	 epochs	 and	 the	maximum	
number	of	epochs	equaled	3000	when	training	AE	and	SAE-IBS.	For	denoising	extensions,	
every	 25	 epochs	we	 generated	 a	 different	 simulated	noisy	 dataset	 and	 fed	 to	 the	model,	
therefore	we	relaxed	the	max	epoch	(to	5000)	when	training	DAE,	DAE-L,	D-SAE-IBS,	and	D-
SAE-IBS-L.	To	speed	up	the	learning	of	SAE-IBS	(and	its	denoising	extensions)	and	to	provide	
a	well-initialized	embedding	from	the	encoder	to	apply	SVD	on,	we	pre-trained	an	AE	firstly	
with	up	to	1000	epochs	and	continued	training	SAE-IBS	afterward.		

Following	the	suggestions	by	[50],	we	experimented	with	several	parameter	configurations	
in	two	steps:	the	first	one	involves	the	number	of	layers	and	the	number	of	hidden	units;	the	
second	one	 investigates	 emphasis	 on	projection	 loss	𝛽 .	 If	 not	 explicitly	 stated	otherwise,	
recommended	 values	 by	 default	 in	 PyTorch	 1.7	 [51]	 were	 used	 for	 any	 other	
hyperparameters	(amsgrad:	False,	betas:	[0.9,	0.999],	eps:	1e-08).		
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Firstly,	the	final	hyperparameter	configuration	of	the	AE	model	with	latent	space	dimension	
of	2	was	decided.	As	shown	in	Table	S2,	the	configuration	in	bold	was	selected	as	the	final	
setting	for	the	experiments	of	robust	projection	because	it	resulted	in	the	smallest	validation	
loss	and	NRMSD	for	the	simulated	missingness	experiments,	and	relatively	small	NRMSD	for	
the	 simulated	 erroneousness	 experiments.	The	 same	procedure	was	 conducted	 for	 other	
tasks	and	their	final	settings	are	listed	in	Table	S3.		Then,	to	ensure	fair	comparison,	the	same	
settings	were	used	when	training	AE	with	higher	latent	space	dimensions,	denoising	variants	
of	AE,	and	hybrid	models.	Furthermore,	for	the	experiments	of	robust	projection	using	DAE-
L,	we	fine-tuned	the	hyperparameter	defining	the	emphasis	on	projection	loss	β	based	on	
NRMSD	(Table	S4	and	Table	S5).	Similarly,	this	parameter	was	tuned	for	D-SAEIBS-L	and	the	
final	settings	are	displayed	in	Table	S6	and	Table	S7.	

Table	S1.	Identity-by-state	similarity	

	
IBS	 AA	 Aa	 aa	
AA	 2	 1	 0	
Aa	 1	 2	 1	
aa	 0	 1	 2	
N/A	 0	 0	 0	

	

Table	 S2.	 Comparison	 of	 different	 model	 architectures	 using	 AE	 with	 latent	 space	
dimension	of	2	and	weight	decay	of	0.01	for	the	experiments	of	robust	projection.	The	
hyperparameter	configuration	in	bold	was	selected	as	the	final	setting.	

	

Model	 Architecture	 Validation	loss	 NRMSD	
missing	

NRMSD	
error	

AE	 2-layer	{128,	128}	 4673.00	 0.0640	 0.0079	
AE	 2-layer	{512,	128}	 4668.56	 0.0692	 0.0091	
AE	 3-layer	{64,	64,	64}	 4705.96	 0.0432	 0.0068	
AE	 3-layer	{128,	128,	128}	 4665.65	 0.0315	 0.0074	
AE	 3-layer	{512,	128,	64}	 4669.04	 	0.0424	 0.0053	
AE	 4-layer	{128,	128,	128,	128}	 4660.43	 0.0355	 0.0070	

	

Table	S3.	The	Final	hyperparameter	configurations	for	different	tasks.		

	
Experiment	 Architecture	 Weight	decay	

Robust	projection	 	3-layer	{128,	128,	128}		 1e-2	
Clustering	 	3-layer	{512,	128,	64}	 1e-9	

Inference	with	Relatedness	 	3-layer	{640,	240,	80}	 1e-8	
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Table	S4.	Fine-tune	the	hyperparameter	defining	the	emphasis	on	projection	loss	𝜷	for	
the	 experiment	 of	 simulated	 erroneousness	 using	 DAE-L.	 The	 hyperparameter	
configuration	in	bold	was	selected	as	the	final	setting.	

Hyperparameter	𝜷	 NRMSD	
10	 	0.0032	
50	 	0.0046	
100	 	0.0052	
200	 		0.0028	
500	 	0.0032	
1000	 	0.0040	

	
Table	S5.	Fine-tune	the	hyperparameter	defining	the	emphasis	on	projection	loss	𝜷	for	
the	experiment	of	simulated	missingness	using	DAE-L.	The	hyperparameter	configuration	
in	bold	was	selected	as	the	final	setting.	

Hyperparameter	𝜷	 NRMSD	
10	 0.0390	
50	 	0.0207	
100	 0.0276		
200	 0.0479	
500	 	0.0294									
1000	 0.0366	

	

Table	S6.	The	Final	configurations	for	the	experiment	of	simulated	erroneousness.		
Model	 Architecture	 Weight	decay	 Hyperparameter	𝜷	
AE	 	3-layer	{128,	128,	128}		 1e-2	 -	
DAE	 	3-layer	{128,	128,	128}		 1e-2	 -	
DAE-L	 	3-layer	{128,	128,	128}		 1e-2	 200	
SAE-IBS	 	3-layer	{128,	128,	128}		 1e-2	 -	
D-SAE-IBS	 	3-layer	{128,	128,	128}		 1e-2	 -	
D-SAE-IBS-L	 	3-layer	{128,	128,	128}		 1e-2	 100	

	

Table	S7.	The	Final	configurations	for	the	experiment	of	simulated	missingness.		
Model	 Architecture	 Weight	decay	 Hyperparameter	𝜷	
AE	 	3-layer	{128,	128,	128}		 1e-2	 -	
DAE	 	3-layer	{128,	128,	128}		 1e-2	 -	
DAE-L	 	3-layer	{128,	128,	128}		 1e-2	 50	
SAE-IBS	 	3-layer	{128,	128,	128}		 1e-2	 -	
D-SAE-IBS	 	3-layer	{128,	128,	128}		 1e-2	 -	
D-SAE-IBS-L	 	3-layer	{128,	128,	128}		 1e-2	 1	
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Additional file 2 — Additional Figures 
Figure	S1.	Ancestry	spaces	of	(A)	PCA,	(B)	AE	and	(C)	SAE-IBS	for	latent	space	dimensions	
equaling	4	and	12	in	the	experiments	of	clustering	and	classification.	The	first	4	latent	
axes	of	the	SAE-IBS	model	trained	with	a	latent	space	dimension	of	12	are	mostly	equal	to	the	
latent	axes	of	the	SAE-IBS	model	trained	with	a	latent	space	dimension	of	4.	On	the	other	hand,	
there	is	no	clear	pattern	of	latent	spaces	obtained	using	AE.	The	color	of	a	point	represents	the	
ancestry	of	an	 individual,	 blue	 tints	 for	European,	green	 tints	 for	African,	 red	 tints	 for	East	
Asian,	 yellow	 tints	 for	 American,	 and	 purple	 tints	 for	 South	 Asian.	 African	 Caribbean	 in	
Barbados	 (ACB);	 African	 ancestry	 in	 the	 southwestern	 United	 States	 (ASW);	 Bengali	 in	
Bangladesh	(BEB);	Chinese	Dai	in	Xishuangbanna,	China	(CDX);	Utah	residents	with	ancestry	
from	northern	and	western	Europe	(CEU);	Chinese	in	Beijing	(CHB);	Han	Chinese	South	(CHS);	
Colombian	 in	 Medellín,	 Colombia	 (CLM);	 Esan	 in	 Nigeria	 (ESN);	 Finnish	 in	 Finland	 (FIN);	
British	 from	 England	 and	 Scotland	 (GBR);	 Gujarati	 Indians	 in	 Houston	 (GIH);	 Gambian	 in	
Western	Division	–	Mandinka	(GWD);	Iberian	Populations	in	Spain	(IBS);	Indian	Telugu	in	the	
U.K.	(ITU);	Japanese	in	Tokyo	(JPT);	Kinh	in	Ho	Chi	Minh	City,	Vietnam	(KHV);	Luhya	in	Webuye,	
Kenya	(LWK);	Mende	in	Sierra	Leone	[MSL];		Mexican	ancestry	in	Los	Angeles	(MXL);	Peruvians	
in	Lima,	Peru	(PEL);	Punjabi	in	Lahore,	Pakistan(PJL);	Puerto	Rican	in	Puerto	Rico	(PUR);	Sri	
Lankan	Tamil	in	the	UK	(STU);	Nigeria;	Toscani	in	Italy	(TSI);	Yoruba	in	Ibadan	(YRI).	
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Figure	 S2.	 Ancestry	 spaces	 of	 (A)	 PCA,	 (B)	 AE	 and	 (C)	 SAE-IBS	 for	 the	 experiment	
inferencing	sub-populations	within	one	super-population.	The	color	of	a	point	represents	
the	ancestry	of	an	individual,	blue	for	Iberian	Populations	in	Spain	(IBS),	green	for	Finnish	in	
Finland	(FIN);	red	for	Toscani	in	Italy	(TSI);	orange	for	northern	and	western	Europe	(CEU),	
and	purple	for	British	from	England	and	Scotland	(GBR).	
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Figure	 S3.	 Comparison	 of	 population	 structure	 inference	 in	 the	 presence	 of	 related	
individuals.	Scatter	plots	of	the	16-dimensional	ancestry	space	determined	using	(A)	AE	and	
(B)	 SAE-IBS,	 trained	 with	 MAE	 loss.	 The	 colors	 represent	 the	 self-reported	 ancestry	 of	 an	
individual,	 green	 for	 African	 (AFR),	 orange	 for	 Asian	 (ASI),	 and	 blue	 for	 European	 (EUR).	
Related	individuals	(REL)	are	plotted	in	pink.	
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Figure	 S4.	 Comparison	 of	 population	 structure	 inference	 in	 the	 presence	 of	 related	
individuals.	Scatter	plots	of	the	8-dimensional	ancestry	space	determined	using	(A)	AE	and	(B)	
SAE-IBS,	trained	with	MSE	loss.	The	colors	represent	the	self-reported	ancestry	of	an	individual,	
green	 for	 African	 (AFR),	 orange	 for	 Asian	 (ASI),	 and	 blue	 for	 European	 (EUR).	 Related	
individuals	(REL)	are	plotted	in	pink.	

	

	
	

Figure	 S5.	 Ancestry	 spaces	 of	 (A)	 AE	 and	 (B)	 SAE-IBS	 in	 the	 experiment	 of	 robust	
projection.	
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Figure	S6.	Comparison	of	clustering	accuracy	under	different	latent	space	dimensions	
of	different	models.	Number	of	clusters	in	K-means	algorithm	was	set	to	5	(A)	and	26	(B),	
corresponding	to	the	number	of	super-populations	and	sub-populations	defined	in	the	1KGP	
dataset,	respectively.	Condition	1	and	2	corresponds	to	hyperparameter	settings	of	ancestry	
inference	and	robust	projection,	respectively.		
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Additional file 3 — Additional Tables 
Table	 S8.	 Summary	 table	 of	 the	 subset	 of	 HDGP	 dataset	 used	 in	 the	 experiment	 of	
population	structure	inference.			

	

Region	 Geographic	Origin	 Ethnicity	 Sample	Count	

Africa	

Central	African	Republic	 Biaka	Pygmy	relatives	

127	

Democratic	Republic	of	Congo	 Mbuti	Pygmy	relatives	
Senegal	 Mandenka	relatives	
Nigeria	 Yoruba	relatives	
Namibia	 San	relatives	
Kenya	 Bantu	NE	relatives	
S.	Africa	Bantu	S.E.	 Bantu	S.E.	Pedi	
S.	Africa	Bantu	S.E.	 Bantu	S.E.	Sotho	
S.	Africa	Bantu	S.E.	 Bantu	S.E.	Tswana	
S.	Africa	Bantu	S.E.	 Bantu	S.E.	Zulu	
S.	Africa	Bantu	S.W.	 Bantu	S.W.	Herero	
S.	Africa	Bantu	S.W.	 Bantu	S.W.	Ovambo	

South	Asia	

Pakistan	 Brahui	

210	

Pakistan	 Balochi	relatives	
Pakistan	 Hazara	relatives	
Pakistan	 Makrani	
Pakistan	 Sindhi	relatives	
Pakistan	 Pathan	
Pakistan	 Kalash	relatives	
Pakistan	 Burusho	
China	 Uygur	(minority)	

East	Asia	

China	 Han	

216	

China	 Tujia	(minority)	
China	 Yizu	(Yi)	(minority)	
China	 Miaozu	(Miao)	(minority)	
China	 Oroqen	(minority)	relatives	
China	 Daur	(minority)	
China	 Mongola	(minority)	
China	 Hezhen	(minority)	
China	 Xibo	(minority)	
China	 Dai	(minority)	
China	 Lahu	(minority)	relatives	
China	 She	(minority)	
China	 Naxi	(minority)	relatives	
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China	 Tu	(minority)	
Japan	 Japanese	
Cambodia	 Cambodian	relatives	

Europe	

France	 French	(various	regions)	relatives	

119	

France	 Basque	
Italy	 Sardinian	
Italy	 from	Bergamo	
Italy	 Tuscan	
Orkney	Islands	 Orcadian	relatives	

America	

Mexico	 Pima	(relatives)	

108	
Mexico	 Maya	(relatives)	
Colombia	 Piapoco	and	Curripaco	relatives	
Brazil	 Karitiana	(relatives)	
Brazil	 Surui	(relatives)	

	

Table	S9.	Pearson	correlation	coefficient	between	ancestry	axes	obtained	from	models	
trained	with	 different	 latent	 space	 dimensions	 (4	 or	 12).	For	 instance,	 the	 correlation	
between	the	first	axes	obtained	from	AE	trained	with	4	and	12	dimensions	equaled	to	0.2223.	

	

Model	
Pearson	Correlation	Coefficient	
Axis1	 Axis2	 Axis3	 Axis4	

PCA	 1	 1	 1	 1	
AE	 		0.2223				 0.9251		 	-0.8839			 -0.0031	

SAEIBS	 		1				 1				 1	 0.9995				
	
Table	S10.	The	mean	Mahalanobis	distance	(MMD)	using	eight	ancestry	axes	between	
the	groups	of	relatives	and	three	population	clusters,	i.e.,	European	(EUR),	African	
(AFR),	and	Asian	(ASI).	The	relatives	are	of	European	descent.	
	

Model	 MMD-EUR	 MMD-AFR	 MMD-ASI	
PCA	 28.0230			 151.6899			 156.0633	
AE(MAE)	 1.2370	 35.7748	 23.7082	
AE(MSE)	 21.0173	 5.0988E+03	 8.8426E+03	
SAE-IBS(MAE)	 1.8338	 33.5951	 30.9566	
SAE-IBS(MSE)	 7.5770	 71.9296	 30.5254	
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Table	S11.	Mean	and	Standard	deviation	of	the	NRMSD	scores	over	100	simulations	for	
the	experiment	of	erroneousness.		
	

	 Axis1	 Axis	2	
	 Mean		 Standard	deviation	 Mean		 Standard	deviation	

PCA	 0.0673	 0.0022	 0.0195	 0.0014	
UPCA	 0.0066	 3.9817E-04	 0.0012	 2.1174E-04	
SUGIBS	 0.0055	 3.6401E-04	 0.0031	 1.0581E-04	
AE	 0.0087	 3.7404E-04	 0.0060	 3.2220E-04	
DAE	 0.0068	 3.9920E-04	 0.0050	 2.4139E-04	
DAE-L	 0.0032	 2.4832E-04	 0.0023	 2.9995E-04	
SAE-IBS	 0.0030	 1.9897E-04	 0.0028	 1.8795E-04	
D-SAE-IBS	 0.0027	 1.9118E-04	 0.0022	 2.0186E-04	
D-SAE-IBS-L	 0.0022	 1.6171E-04	 0.0035	 2.2449E-04	

	

Table	S12.	Mean	and	Standard	deviation	of	the	NRMSD	scores	over	100	simulations	for	
the	experiment	of	missingness.		

	

	 Axis1	 Axis	2	
	 Mean		 Standard	deviation	 Mean		 Standard	deviation	

PCA	 0.1788	 0.0050	 0.0811	 0.0050	
UPCA	 0.0158	 0.0014	 0.0172	 6.7652E-04	
SUGIBS	 0.0133	 0.0013	 0.0143	 7.7523E-04	
AE	 0.0322	 0.0023	 0.0307	 0.0032	
DAE	 0.0266	 0.0035	 0.0290	 0.0035	
DAE-L	 0.0229	 0.0047	 0.0184	 0.0038	
SAE-IBS	 0.0101	 0.0019	 0.0107	 0.0022	
D-SAE-IBS	 0.0104	 0.0016	 0.0099	 0.0031	
D-SAE-IBS-L	 0.0085	 8.0456E-04	 0.0093	 0.0021	
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Table	S13.	Results	of	the	two-sample	t-tests	on	the	NRMSD	of	different	methods	over	100	
simulations	 for	 the	 experiment	 of	 erroneousness.	 Bonferroni	 correction	 method	 was	
applied	 to	compute	 the	adjusted	significance	 level,	accounting	 for	multiple	compassion.	The	
non-significant	p-values	(p>0.0014)	are	marked	in	red.	

	

	 Axis1	 Axis	2	
	 Mean	Difference	 p-value	 Mean	Difference	 p-value	

PCA	vs.	UPCA	 0.0607	 0	 0.0183	 0	
PCA	vs.	SUGIBS	 0.0618	 0	 0.0164	 0	
PCA	vs.	AE	 0.0585	 0	 0.0135	 0	
PCA	vs.	DAE	 0.0605	 0	 0.0145	 0	
PCA	vs.	DAE-L	 0.0640	 0	 0.0172	 0	
		PCA	vs.	SAE-IBS	 0.0642	 0	 0.0167	 0	
PCA	vs.	D-SAE-IBS	 0.0646	 0	 0.0173	 0	
PCA	vs.	D-SAE-IBS-L	 0.0650	 0	 0.0160	 0	
UPCA	vs.	SUGIBS	 0.0011	 1.2611E-19	 -0.0019	 4.4342E-112	
UPCA	vs.	AE	 -0.0021	 1.2661E-66	 -0.0048	 0	
UPCA	vs.	DAE	 -2.0548E-04	 1	 -0.0038	 7.7335E-273	
UPCA	vs.	DAE-L	 0.0034	 1.1542E-134	 -0.0011	 2.1016E-44	
UPCA	vs.	SAE-IBS	 0.0036	 3.1128E-146	 -0.0016	 1.8354E-83	
UPCA	vs.	D-SAE-IBS	 0.0039	 1.0473E-166	 -0.0011	 3.7461E-41	
UPCA	vs.	D-SAE-IBS-L	 0.0043	 6.2900E-191	 -0.0023	 1.8843E-142	
SUGIBS	vs.	AE	 -0.0032	 1.4808E-127	 -0.0029	 4.9692E-197	
SUGIBS	vs.	DAE	 -0.0013	 3.6642E-27	 -0.0019	 4.0913E-110	
SUGIBS	vs.	DAE-L	 0.0023	 3.7091E-73	 8.2638E-04	 4.4238E-26	
SUGIBS	vs.	SAE-IBS	 0.0025	 4.5398E-84	 3.3114E-04	 2.5712E-04	
SUGIBS	vs.	D-SAE-IBS	 0.0028	 4.2642E-104	 8.7243E-04	 7.5773E-29	
SUGIBS	vs.	D-SAE-IBS-L	 0.0033	 1.0215E-128	 -3.4381E-04	 1.1428E-04	
AE	vs.	DAE	 0.0019	 4.4563E-56	 9.9305E-4	 1.3975E-36	
AE	vs.	DAE-L	 0.0055	 5.8103E-253	 0.0037	 3.5246E-264	
AE	vs.	SAE-IBS	 0.0057	 3.6417E-263	 0.0032	 1.0222E-224	
AE	vs.	D-SAE-IBS	 0.0061	 6.7913E-281	 0.0038	 1.0051E-267	
AE	vs.	D-SAE-IBS-L	 0.0065	 1.7604E-301	 0.0026	 2.3286E-167	
DAE	vs.	DAE-L	 0.0036	 1.6086E-146	 0.0027	 9.4960E-183	
DAE	vs.	SAE-IBS	 0.0038	 4.7548E-158	 0.0022	 2.3775E-139	
DAE	vs.	D-SAE-IBS	 0.0041	 2.2379E-178	 0.0028	 1.0246E-186	
DAE	vs.	D-SAE-IBS-L	 0.0045	 2.4796E-202	 0.0016	 1.6362E-80	
DAE-L	vs.	SAE-IBS	 2.0050E-04	 1	 -4.9524E-04	 9.3120E-10	
DAE-L	vs.	D-SAE-IBS	 5.5732E-04	 3.0572E-09	 4.6053E-05	 1	
DAE-L	vs.	D-SAE-IBS-L	 9.8614	E-04	 3.1105E-16	 -0.0012	 4.5807E-49	
SAE-IBS	vs.	D-SAE-IBS	 3.5681	E-04	 0.0558	 5.4130E-4	 1.2833E-11	
SAE-IBS	vs.	D-SAE-IBS-L	 7.8564	E-04	 1.9353E-10	 -6.7495E-04	 8.5458E-18	
D-SAE-IBS	vs.	D-SAE-IBS-L	 4.2883	E-04	 0.0052	 -0.0012	 1.6841E-52	
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Table	S14.	Results	of	the	two-sample	t-test	on	the	NRMSD	of	different	methods	over	100	
simulations	for	the	experiment	of	missingness.	Bonferroni	correction	method	was	applied	
to	 compute	 the	 adjusted	 significance	 level,	 accounting	 for	 multiple	 compassion.	 The	 non-
significant	p-values	(p>0.0014)	are	marked	in	red.	

	

	 Axis1	 Axis	2	
	 Mean	Difference	 p-value	 Mean	Difference	 p-value	

PCA	vs.	UPCA	 0.1630	 0	 0.0639	 0	
PCA	vs.	SUGIBS	 0.1655	 0	 0.0668	 0	
PCA	vs.	AE	 0.1466	 0	 0.0504	 0	
PCA	vs.	DAE	 0.1522	 0	 0.0522	 0	
PCA	vs.	DAE-L	 0.1559	 0	 0.0627	 0	
PCA	vs.	SAE-IBS	 0.1687	 0	 0.0705	 0	
PCA	vs.	D-SAE-IBS	 0.1684	 0	 0.0713	 0	
PCA	vs.	D-SAE-IBS-L	 0.1703	 0	 0.0718	 0	
UPCA	vs.	SUGIBS	 0.0026	 1,9839E-08	 0.0029	 5,4746E-10	
UPCA	vs.	AE	 -0.0164	 5,7344E-200	 -0.0135	 6,2688E-146	
UPCA	vs.	DAE	 -0.0107	 1,8379E-111	 -0.0117	 1,0178E-119	
UPCA	vs.	DAE-L	 -0.0070	 9,9838E-56	 -0.0012	 0.1654	
UPCA	vs.	SAE-IBS	 0.0057	 1,7269E-38	 0.0066	 6,1781E-46	
UPCA	vs.	D-SAE-IBS	 0.0054	 8,2382E-35	 0.0074	 1,2267E-56	
UPCA	vs.	D-SAE-IBS-L	 0.0073	 1,7425E-59	 0.0079	 4,2976E-64	
SUGIBS	vs.	AE	 -0.0190	 5,2354E-238	 -0.0164	 1,1732E-189	
SUGIBS	vs.	DAE	 -0.0133	 4,3536E-152	 -0.0146	 5,9554E-164	
SUGIBS	vs.	DAE-L	 -0.0096	 1,7938E-93	 -0.0041	 1,4346E-19	
SUGIBS	vs.	SAE-IBS	 0.0031	 1,7951E-12	 0.0036	 2,0651E-15	
SUGIBS	vs.	D-SAE-IBS	 0.0028	 3,4067E-10	 0.0045	 8,2071E-23	
SUGIBS	vs.	D-SAE-IBS-L	 0.0047	 2,5271E-27	 0.0050	 2,2974E-28	
AE	vs.	DAE	 0.0056	 7,0787E-38	 0.0017	 0.0021	
AE	vs.	DAE-L	 0.0094	 4,5578E-90	 0.0122	 1,6861E-127	
AE	vs.	SAE-IBS	 0.0221	 1,2341E-281	 0.0200	 1,2119E-241	
AE	vs.	D-SAE-IBS	 0.0218	 1,6738E-277	 0.0208	 5,2147E-253	
AE	vs.	D-SAE-IBS-L	 0.0237	 1,2210E-302	 0.0214	 1,9034E-260	
DAE	vs.	DAE-L	 0.0037	 2,2176E-17	 0.0105	 1,8995E-101	
DAE	vs.	SAE-IBS	 0.0164	 9,8647E-201	 0.0183	 1,7633E-217	
DAE	vs.	D-SAE-IBS	 0.0161	 4,5940E-196	 0.0191	 2,9287E-229	
DAE	vs.	D-SAE-IBS-L	 0.0180	 1,3734E-224	 0.0197	 5,6104E-237	
DAE-L	vs.	SAE-IBS	 0.0127	 8,7022E-143	 0.0078	 1,0274E-61	
DAE-L	vs.	D-SAE-IBS	 0.0124	 6,3490E-138	 0.0086	 2,9361E-73	
DAE-L	vs.	D-SAE-IBS-L	 0.0143	 6,0461E-168	 0.0091	 3,6164E-81	
SAE-IBS	vs.	D-SAE-IBS	 -3.0677E-04	 1	 8.3238E-04	 1	
SAE-IBS	vs.	D-SAE-IBS-L	 0.0016	 0.0037	 0.0014	 0.0430	
D-SAE-IBS	vs.	D-SAE-IBS-L	 0.0019	 1.3777E-04	 5.5301E-04	 1	

	


