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Supplementary Text
Supplementary Results

1. Performance and further validation of DLM of embryonic neocortex enhancers
Here we provide benchmarking and comparison of our enhancer model with DeepSEA (71).

To directly compare our model performance with DeepSEA, we applied our model to the training and
testing H3K27ac data sets used by DeepSEA. Our model achieved a very similar (although slightly higher)
accuracy (both auROC and auPRC) compared to DeepSEA across multiple datasets (Figure S17AB).

We have shown that the human embryonic neocortex DLM can accurately estimate the enhancer activity
(independently) in macaque from its genomic sequence (Fig 2A). To further validate our model, we applied
the model trained on the human embryonic neocortex (CS23) enhancers (H3K27ac peaks) (/3) and tested
it on the macaque embryonic neocortex enhancers (H3K27ac peaks) (/3) (Figure S17CD), using 10-fold
random genomic regions (due to a lack of available multi-tissue DHS profile) that do not overlap H3K27ac
peaks as the negative testing set. The model still achieves an auROC of 0.9 at €79F (Figure S17C). We also
apply our DLM to the sequences of all enhancers in VISTA, and consistently observe that the brain
enhancers active in human (respectively, mouse) have larger DLM scores than those that are inactive in
human (respectively, mouse) brain (Figure S18).

2. DLM can accurately predict allele specific effects on histone marks H3K27ac

Our DLM is trained to distinguish enhancer region from non-enhancer regions in a specific context.
However, its application to identify de novo enhancer gains driven by single nucleotide mutations requires
the DLM score to be sensitive to single nucleotide changes. We performed additional analyses to ensure
that DLM score indeed (i) represent the enhancer activity level, and (ii) is sensitive to single nucleotide
changes.

First, we computed the direct correlation between the predicted DLM score (DL score) of the enhancers
and the log of their average H3K27ac signal intensity. We observed a significant positive correlation
between the two (correlation = 0.4, empirical p-value = 3.18e-6).

Next, DeepSEA was shown to work well in identifying variants at loci that affect histone signals (hQTLs
of H3K27ac or H3K4me3) (71). As our approach is very similar to DeepSEA (just a different neural net
architecture), and we aim to identify variants that create enhancers, we trained our model on H3K27ac
peaks in a lymphoblastoid cell line, GM 12878, and applied it to predict the same set of hQTLs of H3K27ac
in lymphoblastoid cell lines (72) as did DeepSEA. Our model shows similar accuracy as DeepSEA (Figure
S19).

To further show the ability of our DLM to accurately predict enhancer activity from sequence with single-
nucleotide sensitivity, we first trained a deep learning enhancer (H3K27a peaks) model in HepG2 cell line
and used it to predict the allele-specific effects of raQTLs (52) on enhancer activity, which has high
accuracy (Figure 4A). Next, we applied our CS23 model to evaluate the 2,578 allelically imbalanced SNPs
within the CS23 H3K27ac peaks, which were identified using the R-package BaalChIP (69). Our model
makes similarly accurate predictions on this set of SNPs as well (Figure S20). In this study, the DLM score
at FPR <= 0.1 was set as the cutoff to identify potential active enhancers. we have additionally used a more
stringent threshold (FPR <= 0.05) and obtained 1,064 potential enhancers with higher DLM scores (26%
of the original 4,066 enhancers). Very encouragingly, this more stringent set of enhancers exhibits stronger



signals in terms of increase in the expression of the target gene, enrichment of eQTLs and allelic imbalance
at essential mutation positions (Figure S21). This analysis justifies the use of stringent FPR cutoffs for the
selection of a limited set of enhancers with the most pronounced downstream effect for follow-up testing
and investigation.

3. Using Hi-C loops to link enhancers to their potential target genes

In the main result sections, we opted to use proximity as the criterion to identify the enhancer-associated
gene for several reasons. First, the available human Hi-C contacts (49) are very sparse: only 23% of human
embryonic neocortex enhancers are covered. Second, in the study of ‘Activity-by-Contact model’ (73),
based on a small number of experiments, the authors concluded that it is rare for an enhancer to skip the
nearest gene (73). Finally, for the enhancers included in Hi-C loops, around 60% of de novo gained
enhancers contact their nearest genes, and more than 50% of both lost and conserved enhancers are in
contact with their nearest genes (Figure S22), suggesting that our findings based on the nearest genes are
robust.

Nevertheless, we examined the results when the enhancers were mapped to their putative targets based on
Hi-C loops. The findings based on the Hi-C loops are consistent with the ones based on the proximity rule.
For example, the de novo gained enhancers tend to associate with an increase in the expression of their
target gene, whereas the lost enhancers show the reverse trend (Figure 2A and Figure S2). Enhancers are
more likely to regulate the tissue-specific genes of embryonic neocortex either based on proximation rule
(Figure 7B) or Hi-C contacts (Figure S14B). In addition, using either gene proximation rule (Figure 7C) or
Hi-C contact (Figure S14A), we observed that de novo gained enhancers are more likely to turn on gene
expression compared to HGEs.



Supplementary Figures

Figure S1
A
DNA —
— T
> - o —
)
>
. =% o o
5 NEENE 3| 18208 |2 ©—
=5 oE S
@) S| |
2
_J U - 180
(_W‘ neurons

One-hot Encoding

\ C] Convolution Layer [j Fully-connected Layer

/

Trainable Parameters: 3M

B
ROC curve PR curve
1.0 — 1.0+ —— CS16 (auPRC = 0.60)
7 —— (CS23 (auPRC = 0.63)
0.8 - /” —— F2F (auPRC = 0.57)
) e 0.8 1 —— F20 (auPRC = 0.56)
g .97 ] § 0.6
2 0.4 1
—— CS16 (auROC = 0.94)
0.21 —— (S23 (auROC = 0.92)
—— F2F (auROC = 0.91) 0.2 1
004 —— F20 (auROC = 0.90)
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
False positive rate Recall
D _ E
Predict
auROC CS16 CS23 F2F F20
CS16 0.896 0.890 0.890
©
8| €s23 0.912 0.900 0.886
=
F2F 0.907 | 0.914 | 0.887
S _ AnB
F20 | 0.897 0.902 0.894 | 0.904 Similarity(A, B) = in A5)

Figure S1. Deep learning model of human embryonic neocortex enhancers used to score
enhancer activity. A) Structure of the deep convolutional model. The number within each



convolutional layer indicates the number of kernels. B) ROC curve of the model. C) PR curve of
the model. D) Model performance across four stages. E) Similarity between enhancer sets across
stages.
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Figure S2. The expression level of genes with Hi-C loops to the de novo gained enhancers is
increased, and so is the previously published enhancers that increase activity in human
(HGEs) (/3). By contrast, the genes in contact with the lost enhancers show the reverse trend. “all
enhancers” refer to the genes link to all enhancers. *Wilcoxon p-value <= 0.01. ** Wilcoxon p-

value <= le-3. *** Wilcoxon p-value <= le-5.




Figure S3
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Figure S3. Enrichment of eQTLs compared to common SNPs in the three sets of enhancers.
Specifically, the enrichment = fraction of eQTLs in enhancers/fraction of SNPs in enhancers.
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Figure S4. De novo gained enhancers are associated with essential CNS-related biological
processes, using all fetal brain enhancers (57) as the background. (A) GO terms of de novo
gained enhancers. (B) GO terms of lost enhancers. We apply GREAT with the single nearest
gene association rule to do functional enrichment of genes near enhancers. The GO terms will be
considered as enriched if it has at least 10 gene hits with FDR threshold set as 0.01.



GO Biological Process of conserved enhancers
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Figure S5. GO enrichment of different sets of enhancers using whole genome as
background. A) Enriched GO Biological Processes terms of conserved enhancers. B) Enriched

GO Molecular Function terms of the three sets of enhancers.
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Figure S6. Z scores of expression of genes nearby the three sets of enhancers across 16 cell
clusters. The lack of statistical significance may partly be due to the high variability/noise in
single cell gene expression data, and also because only a subset of the genes near de novo gained
enhancers are likely to drive cluster-specific expression as revealed in our fractional analysis
(Figure 3C) but obscured in our analysis of z-scores for all genes.
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Figure S7. Number of human-macaque mutations within enhancers.
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Figure S8. Distribution of delta score of the single nucleotide mutations that are minimally
needed to create an enhancer.
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Figure S9. Fraction of polymorphic sites with allelic imbalance for DHS reads. ** indicates
Fisher’s exact test P-value <= 0.01. ** refers to Fisher’s exact test P-value <= le-3.



Figure S10

A B

w 018 o 3 0080
(a C T
z 0.16 o ©
L oo o
A 2 0.14 s e 0.060
(@] [
2 < 0.12 !
" O 2 ¢ 0,040
£ W g4 a2
E2 0o ¢ 5
‘8 = 0.08 2)05 0.020
} -
c 9 0.06 s =
S 0.04 “ £ 0.000
(@]
© 0.02 g%
- 0 5 5 -0.020
b
S S o o ¥
QS N L 2 0,040
> > o S o
S S & ) &~ NS g°
& & & o & & S
> 2 < P Py S
Q Q & RN & &
¢® & & & &
) S \ \ &
& & g R S
OQ e(‘ 00
< & &
e o,e
QO

Figure S10. Association between essential mutations and regulatory changes in genes
during human embryonic neocortex development. (A) Fraction of mutations/SNPs near TS
genes (Table S6). (B) Coefficients for regression of gene expression change (human — macaque)
against three categories, de novo gained enhancers with essential mutations, de novo gained
enhancers with non-essential mutations, and de novo gained enhancers with common SNPs.
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Figure S11. Evolutionary selection on de novo gained enhancer and essential mutations. (A)
Derived allele frequency of polymorphic sites among the three groups of detected mutations, and
four-fold degerate sites. (B) Fraction of enhancers that are specific to human, i.e., detected in
human by our model but not in orthologous locus in chimp . ** refers to Fisher’s exact p-values
<= le-3. In Figure A, the wilcox p-value between essential mutations vs. non-essential mutations
is smaller than 0.05. The wilcox p-value between essential mutations vs four-fold degenerate
mutation sites is smaller than le-3.
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Figure S12. TFBS enrichment of gained enhancers associated with TFs, as compared to the
conserved enhancers associated with TFs.
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Figure S14. De novo enhancers are more likely to turn on gene expression and regulate
tissue-specific genes based on Hi-C. (A) Fraction of enhancers in contact with genes whose
RPKM < 1 in macaque and > 1 in human. The gene expression data is from the study (26). (B)
Fraction of enhancers in 3D contact (49) with the most tissue-specific genes.
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Figure S16. Enriched biological processes of a set of enhancers, using all fetal brain enhancers
(51) as the background. (A) GO terms of conserved enhancers. (B) GO terms of HGEs. We apply
GREAT with the single nearest gene association rule to do functional enrichment of genes near
enhancers. The GO terms will be considered as enriched if it has at least 10 gene hits with FDR

threshold set as 0.01.
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Figure S17. Performance of the DLM. (A) auROC and (B) auPRC of our model in predicting H3K27ac
in 8 tissues which are tested by DeepSEA. (C) ROC curve of human CS23 model tested on macaque
embryonic neocortex enhancers corresponding to different stages of development (e55, €79F, €790). (D)
PR curve of CS23 model tested on macaque embryonic neocortex enhancers corresponding to different
stages of development (e55, ¢79F, €790). The E numbers on the x-axis are the tissue IDs defined by the
Roadmap Epigenomic Project. E003: H1 Cell Line, E123: K562 Leukemia Cell Line, E124: Monocytes-
CD14+ R0O01746 Cell Line, E125: NH-A Astrocytes Cell Line, E126: NHDF-Ad Adult Dermal Fibroblast
Primary Cells, E127: NHEK-Epidermal Keratinocyte Primary Cells, E128: NHLF Lung Fibroblast Primary
Cells, E129: Osteoblast Primary Cells.
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active in brain.



Figure S19

Our Model DeepSEA
H3K27ac
1 10
0.9 09+ [
—)
- 0.8 038 | FJ
o oy oy _P
C 07 g 07 LAY,
> = M4y S
o [&] Mf“
&) O 06 /‘”
g 0.6 < |/
0.5 0
0.4 04 -1
0.3 034 i i i i _ _ :
O 4 N N < 10D O N 0 O 000 001 002 003 004 005 006 007 0.08
0O 0 0 O 0 O 0O O O

Margin
Margin

Figure S19. Deep learning H3K27ac classifiers provided accurate prediction of allele specific effects
on histone marks H3K27ac (the allele with stronger histone mark signals). The predictions were
evaluated with histone mark QTLs identified with FDR < 0.1 in Yoruba lymphoblastoid cell lines (72).
Margin shown on the x axis is the threshold of predicted probability differences between the two alleles for
classifying high-confidence predictions. Performance is measured by accuracy (y-axis) of predicting the
allele with higher read counts based on DLM score difference above certain threshold (x-axis).



Figure S20
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Figure S20. The DLM of CS23 H3K27ac accurately predict allelic imbalanced heterozygous
variants within CS23 H3K27ac peaks.
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Figure S21. A refined set of de novo gained enhancers (FPR<=0.05) exhibit stronger signal
compared to the set of de novo gained enhancers (FPR <= 0.1). (A) The expression level of
genes near the de novo gained enhancers. (B) Average number of eQTLs per enhancer. (C)

Average number of eQTLs per enhancer.
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Figure S22. Fractions of enhancers that contact their nearest gene.



Supplementary Tables: Data S1
Supplementary Tables are provided in a single Microsoft Excel file.

Table S1. GO term enrichment of genes linked to de novo gained enhancers based on Hi-C.
Table S2. GO term enrichment of genes linked to lost enhancers based on Hi-C.

Table S3. CNS related GWAS traits overlapping conserved enhancers

Table S4. CNS related GWAS traits overlapping gained enhancers

Table S5. CNS related GWAS traits overlapping lost enhancers

Table S6. The top 2000 genes with the highest ratios of the human embryonic expression to the
mean of the GTEx expression were identified as the most specifically highly expressed genes in
human embryonic neocortex.

Table S7. GWAS traits overlapping essential mutations

Table S8. GWAS traits overlapping non-essential mutations

Table S9. TFBSs that are likely to be gained or lost due to essential mutations which overlap
CNS-related GWAS traits.

Table S10. List of TFs whose binding sites are enriched in the de novo gained enhancers
compared to the conserved ones (using both human and macaque sequences to avoid allelic
bias).

Table S11. List of TFs genes near de novo gained enhancers.

Table S12. GO enrichment of genes linked to HGEs based on Hi-C.

Table S13. List of human and macaque individuals at the approximal matching developmental
stages

Table S14. Architecture of DLM.
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