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Supplementary Note 1: The mathematical modeling of the mapping from the image 

transmission link to the PED 

We considered the physical OFC system as an end-to-end network, encoding the input 

information to a hyper-space and decoding the transmitted information from the varied hyper-

space. Different coding schemes are corresponding to miscellaneous hyper-spaces. The 

complicated signal impairment during the transmission is the transformation in the hyper-spaces. 

The designs of different coding schemes are essentially pursuing better mapping hyper-spaces. 

As a result, we formulate the PED to end-to-end learn the optimal hyper-space with the ideal 

encryption, compression and noise-resistance capabilities.  

We train the PED to extract features  from the input data that obey certain distribution or 

manifold in an optical latent space. By variation in this distribution 𝑃(𝑧), we obtain 

reconstructed data with features from training datasets. Because any distribution can be mapped 

into another arbitrary distribution in the latent domain Ψ, we are able to assume a reasonable 

𝑃(𝑧) in Ψ. The encoder calculates 𝑄(𝑍|𝑋), which is the feature distribution indicated by each 

sample. We employ Kullback-Leibler divergence (KL divergence) to constrain 𝑄(𝑍|𝑋) close 

enough to 𝑃(𝑧). According to the fact that the value that the PED outputs are all positive when 

we only measure the intensity, we employ a biased Gaussian distribution as 𝑄(𝑍|𝑋) to fit the 

optical latent space. Therefore, the KL divergence becomes:  

D(Q(𝑧|𝑥)||P(𝑧)) 
= D(N(𝑀, 𝛴2)||N(𝑀0, 𝐼) 

                                                    =
1

2
[𝑡𝑟(𝛴2) + (𝑀 − 𝑀0)𝑇(𝑀 − 𝑀0) − 𝑘 − log(det(𝑀2))] (S1) 

where 𝑘 is the dimensionality of the optical latent space.  

The encoder extracts features and embeds the input data X = {𝑥1, 𝑥2, … , 𝑥𝑛 } to an optical latent 

space Ψ with the dimensionality 𝑘. We sample in N(𝑀m, 𝛴m
2 ) in the optical latent space to 

simulated the transmission noise and use the decoder to reconstruct the latent values to the image 

domain. As the fact that sampling Z from N(𝑀m, 𝛴m
2 ) is equivalent to sampling  from  N(0, I) 

and let Z = 𝑀 + ε × 𝛴, we have a derivable training process. After joint unsupervised training, 

the appropriate optical latent space, i.e. the coding scheme, is learned automatically.  

Supplementary Note 2: Modeling of fiber transmission noise and impairment  

Here we take the image transmission in optical fiber communication systems as an example. The 

causes of the noise in OFC are related to the whole process of signal transmission and detection, 

such as the thermal noise, reflection noise and quantum noise (6). In the case of the PED, some 

of the above sources are faint and the impairment of the signal during transmission is dominant 

to the SNR when the characteristics of the fibers, emitters, detectors and transmission distances 

are certain. We model the impairment of fiber transmission based on the following three main 

sources in this case: 1) fiber attenuation, 2) amplified spontaneous emission (ASE) noise, 3) 

dispersion and nonlinearity. Compared with communications with multimode fibers reported in 

cutting-edge papers (47), single-mode fibers are prominently robust to changes in the 

environment. 

Fiber attenuation 

Fibers attenuate the amplitude of light during transmission. The attenuation is usually modeled as 

follows: 
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α = −
1

𝑃
(

𝑑𝑃

𝑑𝑧
) (14),                                                          (S2) 

where α is the attenuation ratio; 𝑃 is the power; and  𝑧 is the transmission distance. α is normally 

related to the intrinsic absorption of the fiber material, the absorption of impurity ions, scattering 

loss and bending loss. Attenuation decreases the SNR when the noise level in the fiber link is 

fixed.  

Amplified spontaneous emission (ASE) noise   

To deal with the attenuation in long-distance transmission, amplifiers are widely used to cascade 

the OFC signal in fiber links. The erbium-doped optical fiber amplifier (EDFA) is currently the 

most commonly used optical amplifier. It introduces ASE noise and adds up as cascaded and 

observably affects the signal transmission quality. ASE noise usually appears as additive white 

Gaussian noise (AWGN) whose mean value is zero, and variance is a constant depending on the 

ASE noise level (48).  

Dispersion and Nonlinearity 

Dispersion is the phenomenon that light of different frequencies has different phase velocities. It 

stretches the pulse and therefore increases the error ratio. Dispersion depicts the pulse 

broadening of the pulses transmitted in the fiber. The dispersion is subtle if the transmission 

distance is short but accumulates as the transmission distance becomes longer. We can normally 

classify the dispersion in fibers as: 1) modal dispersion, caused by the different group velocities 

in different modes in multi-mode fibers. 2) polarization mode dispersion (PMD), caused by the 

two different polarization modes transmitted in single-mode fibers. 3) chromatic dispersion, 

caused by the different group velocities at different frequencies, including the waveguide 

dispersion and material dispersion (14). As a result, the pulse broadening ∆𝑡 is composed of 

∆𝑡𝑚𝑜𝑑𝑎𝑙, ∆𝑡𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐 and ∆𝑡𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛−𝑚𝑜𝑑𝑒 (14).  

Because the PED utilizes single-mode fibers, we do not consider modal dispersion here. 

Additionally, the value of the polarization mode dispersion is usually smaller than chromatic 

dispersion and often ignorant when the modulation speed is under 2.5G/s (49). The PED uses a 

modulation speed of up to 1.6G/s and controls the polarization mode transmitted in the fiber via 

fiber polarization controllers, so we mainly consider the chromatic dispersion here. The 

chromatic dispersion is the slope of the group delay (14). The group velocity 𝑉𝑔 is the velocity of 

the pulse along the fiber and can be calculated as  

𝑉𝑔 =
𝑑𝜔

𝑑𝛽
, 

where 𝜔 is the frequency and 𝛽 is the propagation constant of the fiber. Therefore, the group 

delay ∆𝑡 is  

∆𝑡 =
1

𝑉𝑔
=

𝑑𝛽

𝑑𝜔
.  

The propagation constant 𝛽 can be calculated with: 

𝛽(𝜔)=𝛽0+𝛽1(𝜔 − 𝜔𝑜) +
1

2
𝛽2(𝜔 − 𝜔𝑜)2,  

where 𝛽𝑛 =
𝑑𝑛𝛽(𝜔)

𝑑𝜔𝑛
|𝜔=𝜔𝑜

. 𝜔𝑜 is the center frequency of the taylor expansion. In practice, people 

usually use the dispersion coefficient D(ps/nm/km) instead of 𝛽2(ps2/km). They two satisfy: 

D=
𝑑𝛽1

𝑑𝜆
=-

2𝜋𝑐

𝜆2 𝛽2. 
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For standard single-mode fiber at a central wavelength of 1550nm (
ω

2π
= 193THz), 𝛽2 =-

22 ps2/km (D=17 ps/nm/km) (50). The modulation array achieves a modulation rate up to 

1.6GHz when the bit rate of the PED is 24.6Tbit/s. Fig. S9 shows the received signal with 

dispersion after transmitting 2000km at 1550nm, modulated both by a square wave. The 

dispersion is quite subtle because the modulation frequency is relatively low compared with the 

frequency of the carrier wave. We also add the interference of the dispersion into the simulation 

of the PED and the precision remains satisfying (Table S1, the first and second rows). 

Additionally, we note that dispersion is a linear distortion so it can be compensated with linear 

PED even if the distortion is more severe (51).  

 

The nonlinear response of the material becomes observable when the input optical intensity is 

high. As a result, nonlinearity is not negligible in long-distance transmission. It will distort the 

signal when the signal power is strong enough. Nonlinearity normally includes Brillouin 

scattering, self-phase modulation, cross-phase modulation, four-wave mixing and Raman 

scattering (14). According to published analysis and experiments (52, 53), the nonlinearity can 

be modeled as Gaussian noise (GN) with high accuracy in uncompensated OFC. The 

perturbative model of nonlinear propagation in uncompensated OFC we leverage here can be 

depicted as: 

𝐺𝑁𝐿𝐼(𝑓) = ∑ 𝐺𝑁𝐿𝐼
𝑚 (𝑓)

𝑁𝑠
𝑛=1 , 

where 𝐺𝑁𝐿𝐼
𝑚 (f), indicating the power spectral density of the mth span propagated through the link, 

which can further be written as (52): 

𝐺𝑁𝐿𝐼
𝑚 (f)=

16

27
𝛾𝑛

2𝐿𝑒𝑓𝑓,𝑛
2 ∏ 𝑒6 ∫ 𝑔𝑘(𝜁)𝑑𝜁

𝐿𝑠,𝑘
0 𝑒−6𝛼𝑘𝐿𝑠,𝑘𝑛−1

𝑘=1 Г𝑘
3 ∏ 𝑒2 ∫ 𝑔𝑘(𝜁)𝑑𝜁

𝐿𝑠,𝑘
0 𝑒−2𝛼𝑘𝐿𝑠,𝑘

𝑁𝑠
𝑘=𝑛 Г𝑘 

∫ ∫ 𝐺(𝑓1)
∞

−∞

∞

−∞
𝐺(𝑓2)𝐺(𝑓1 + 𝑓2 − 𝑓)𝜌𝑛𝑠

(𝑓1, 𝑓2, 𝑓)𝑑𝑓1𝑑𝑓2, 

where n and k are the integer subscripts indicating the span; 𝛾 is the fiber nonlinearity 

coefficient; α is the fiber field loss coefficient; 𝐿𝑒𝑓𝑓 is the span effective length; 𝐿𝑠 is the span 

length; 𝑁𝑠 is the total number of the spans in the link; 𝑔(𝜁) is the fiber field gain coefficient; Г is 

the lumped power gain, for example via an EDFA; 𝜁 is the longitudinal spatial coordinate; G is 

the power spectral density of the wave-division multiplexing of the transmitted signal; 𝜌 is the 

non-degenerate four-wave mixing efficiency of the beating after normalization. It is based on the 

assumption that the nonlinearity interference is much smaller than the signal. Therefore, we can 

find the approximate analytical solution to the nonlinear Schrodinger equation or the Manakov 

equation with perturbative models. Different models converge to the same result and formula 

under the same assumptions, which additionally validates the GN modelling (52).  

The prediction of the GN model matches well with the nonlinear simulation over both QPSK and 

QAM-16 as shown in ref. 52. The normalized NLI noise variance η over various numbers of 

spans in both simulations with and without pre-dispersion (the red line and blue line) are well 

predicted by both the coherent and incoherent GN-models. As a result, we use the GN model as 

an accurate enough prediction of the nonlinearity in the PED.  

 

Therefore, in this case we employ an ASE noise dominated AWGN channel model to establish 

the transmission noise. Even though many corrections have been published (54, 55), it remains 

one of the most commonly used models in optical transmission. The mean value is zero because 

of the statistical distributions of the noise mentioned above. The variance depends on the 

intrinsic characteristics and distance of the transmission link. The noise figure (NF) of the EDFA 

is defined as follows: 



 

 

 

 

𝑁𝐹 = 10log (
𝑆𝑁𝑅𝐼

𝑆𝑁𝑅𝑂
),                                                     (S3) 

where 𝑆𝑁𝑅𝐼 and 𝑆𝑁𝑅𝑂 are the signal-to-noise ratios of the input and output signals of the EDFA. 

According to the specifications of commercial equipment, we set the attenuation of the fiber as 

0.18 dB/km@1550 nm; the distance between each EDFA as 100 km; the NF of the EDFA as 3.5 

dB@-18 dB; and the SNR of the laser signal as 65 dB. We can therefore derive some 

corresponding transmission distances based on the channel SNR. For example, 24 dB, 17dB, 14 

dB and 9 dB corresponds to about 1171km, 1371 km, 1457 km and 1600 km respectively.  

Adjusting the intervals between EDFAs makes it possible to apply the PED to a larger range of 

transmission distances.  

Because SNR is defined based on the average power and does not indicate the phase noise, we 

add additive Gaussian noise to the phase domain as phase noise, which increases as the 

transmission distance rises. For example, the standard deviations we use are 
π

20
,

π

15
  and 

π

12
, 

corresponding to SNRs of 13.5 dB, 11 dB and 9 dB respectively, according to typical phase 

noise levels in OFC links. The phase noise does not interfere with the w/o PED instances 

because the OOK and PAM detect only the intensity, while the PED detects both the intensity 

and phase.  

 

Supplementary Note 3: Calculation of transmission throughput and computation latency 

On the adrenal dataset, the PED transmits a 28-level grayscale image of 784 pixels with 3 × 3 

channels. Compared with 8-level pulse amplitude modulation (PAM-8), which transmits 23 bits 

each pulse and has comparable fidelity (~0.85) at the same noise level (24 dB), the PED 

increases the throughput by 
28×28×8/3

3×3
= 232.3 times at the same pulse frequency.  

We also compare the PED with coherent modulation QAM-512, which is one of the most high-

throughput coherent modulation methods in long-distance OFC. When applying the same level 

of noise, QAM-512 achieves comparable fidelity (~0.85) transmission fidelity but using 
28×28×8/9

3×3
= 77.4 times more throughput than the PED.  

Compared with the mainstream compression method DCT, which achieves comparable 

reconstruction fidelity (~0.85) with 7×7 float16 values, the PED improves the throughput by  
7×7×16

3×3
= 87.1 times. The PED requires no quantification because the PED decoder directly 

processes the optical signals output by the PED encoder after transmission while DCT demands 

quantification to deal with the noise in transmission and introduced by digital signal processing 

systems.  

We test the procedures of compression and reconstruction by DCT with a state-of-the-art CPU 

(Intel, CA, Intel(R) Core(TM) i7 6500U CPU @2.5GHz), the average computation latency for 

each image over 10k test dataset is 3.0703 × 10−4 s. Because the coding procedure of 

transferring the digits into bit codes and transferring back is quite quick by mainstream OFC 

digital processors, we take the latency of compression and reconstruction as a lower bound 

estimation of the whole processing latency. The computation latency of the all-optical PED is 

dependent on the diffractive distance (45 cm both in the encoder and decoder) and the velocity of 



 

 

 

 

light, which is 
0.45×2

3×108
= 3 × 10−9 s. Therefore, the PED improves the computation latency by 

five orders of magnitude. 

Additionally, we calculate the end-to-end latency of the complete system of PED, and show that 

the PED optimizes the time-consuming bottleneck that restricts the improvement of throughput, 

instead of some parts that are fast enough already. The signal flow in the end-to-end system in 

both traditional OFC system and the PED are shown in Fig. S11.  

In traditional OFC system, digital signals are compressed and encrypted by digital pre-process 

and modulated to analog optical signals by a digital-analog converter (DAC) and an electrical-

optical modulator (EOM). After the transmission in the fiber link, the analog optical signals are 

demodulated to digital electronic signals by a photodetector (i.e. optical to electronic converter, 

OEC) and an analog-digital converter (ADC) and decompressed and decrypted by digital post-

process.  

In the PED system, the original digital signals are first converted by a DAC and an EOM to 

analog optical signals and processed by the PED all-optically. After transmission in the fiber 

link, the analog signals are post-processed by the PED all-optically to decompress and decrypt. 

Finally, the analog optical signals are converted to digital electronic signals with an OEC and an 

ADC. We calculate the latency of both systems to transmit a same 28×28 8-bit grayscale image 

and achieve the same fidelity, respectively, in Table S2. To validate the advance of PED, we 

choose state-of-the-art CPU (Intel, CA, Intel(R) Core(TM) i7 6500U CPU @2.5GHz) to 

compare with. We note that the commercial OFC system can only achieves a computing speed 

much lower than it considering the cost.  

When using discrete cosine transformation (DCT) as the pre-process to compress and encrypt the 

input. The 2D-DCT can be depicted as  

𝐹(𝑢, 𝑣) = 𝑐(𝑢)𝑐(𝑣) ∑ ∑ 𝑓(𝑖, 𝑗) cos [
(𝑖 + 0.5)𝜋

𝑁
𝑢] cos [

(𝑖 + 0.5)𝜋

𝑁
𝑣]

𝑁−1

𝑗=0

𝑁−1

𝑖=0

, 

where N is the dimension of the image; 𝑢, 𝑣 are the coordinates after DCT. The cosine is 

calculated with Taylor expansion and the quantitative accuracy after DCT is binary16 and the 

number of channels is 7×7. The quantization accuracy and number of channels are designed like 

this to achieve the same reconstruction fidelity of the PED. As a result, the operation number is 

~2× 106 and the latency of digital pre-process is ~153.5 μs as measured above. If implementing 

the pre-process with a state-of-the-art GPU with a computing speed of 47 TOPS/s (43), the 

latency of digital pre-process can be reduced to ~42.6 ns. The PED does not require extra digital 

pre-processes.  

Traditional OFC uses a Mach–Zehnder modulator (MZM) as the EOM in traditional OFC. The 

latency of DAC is ~2ns including interface delay (Analog Devices, Inc, MA, USA, AD9789) and 

the modulation speed of MZM is ~14ps/bit (state-of-the-art) (56). The PED uses a spatial light 

modulator with a modulation speed of 1.6GHz/frame (state of the art) (57).   

The latency of optical pre-process of the PED depends on the light speed and diffractive distance 

because the PED is all-optical. The diffractive distance is 0.45m for two layers so the latency is 

~1.5ns. Traditional OFC does not require extra optical pre-process.  

The optical post-process and digital post-process have the same computational complexity and 

latency as the pre-processes. 

Traditional OFC uses an SOA-PIN detector with a latency of ~25ps/bit (state of the art) (58) and 

ADC with a latency of ~2.4ns (Analog Devices, Inc, MA, USA, AD9680). The PED uses the 

same OEC and ADC array in parallel, but the OEC and ADC in the traditional system are in 



 

 

 

 

serial, which would be slower. We here use parallel latency for both systems for a fair 

comparison.  

As a result, the end-to-end latency of the traditional system and the PED are ~307μs and 

~7.66ns, respectively. The main reason is that the PED leverages ultra-high speed optical 

computation to replace digital signal process, which occupies the main time cost in traditional 

OFC systems. Both the end-to-end latency (~307μs/~7.66ns) and computation-only latency 

(~307μs/~3ns) are improved by more than four orders of magnitudes.  

Additionally, for the computation latency of optoelectronic PED, because optoelectronic 

PED implements all computation with light and the electronic parts are only for image capture to 

reuse the devices, the computation latency of optoelectronic PED only depends on the diffraction 

distance (300 mm for each layer). Therefore, the computation latency of optoelectronic PED is 

about 4 ns.  

For system latency, because we use on-shelf commercial devices to implement the 

optoelectronic PED, the system latency of optoelectronic PED is mainly restricted by the frame 

rate of the amplitude-modulation spatial light modulator (SLM) (HOLOEYE Photonics AG, 

HES6001). It has a frame rate of 60Hz. While all the other processes for one frame, i.e. one layer, 

including light propagation (about 1 ns), phase change in the other SLM (about 1.4 ms) and camera 

exposure and storage (about 6.9 ms) can all be completed within this interval (about 16.7 ms). As 

a result, the system latency of each layer and each frame in optoelectronic PED is 16.7 ms and 

66.7 ms, respectively. If we use state-of-the-art devices, i.e. 1.6GHz SLM(57) and 27.1Gpixels/s 

high-speed camera (i-speed 7, iX Cameras, United Kingdom), the system latency can further be 

improved to 23.6 μs. We also note that all-optical PED can be mass-produced with nanofabrication 

and we just use optoelectronic PED to evaluate the performance. 

To better demonstrate the improvement in transmission throughput due to latency reduction 

by the PED, we also supplement a numerical demonstration of video transmission. As shown in 

Movie S2, we use a 6×6 fiber bundle to transmit 100 24-fps video with a resolution of 28×280 

8-bit pixels per frame simultaneously (one example shown in the first row in Movie S2). Discrete 

Cosine Transform (DCT) uses 16-QAM while PED does not requires digital modulation. The 

transmission latency of each frame with the PED is about 7.7 μs with the dimensionality of the 

optical latent space as 6×6. While the transmission latency of each frame with DCT, which is 

also compressed to 6×6, is about 307 ms. Computation details in Supplementary material Note 3 

and Table S2. The transmitted videos with PED and DCT with their latency respectively are 

shown in the second and third row of Movie S2. The video transmitted with the PED is as fluent 

as the original one while the video transmitted with DCT is delayed heavily due to the much 

longer latency of electronic processing. We use an example of only 100 videos for better 

demonstration effect, or the display would become too laggard. And we note that the PED is able 

to improve the computation latency by four orders of magnitude as shown in Table S2.  

 

Supplementary Note 4: Transmission bit rate of the PED 

Considering the set-up of the PED, the bit rate R of the PED can be calculated by R = 𝑛𝑑𝑓, 

where 𝑛 is the number of coding modules that a frame can include; 𝑑 is the depth each coding 

module transmits; 𝑓 is the modulation frequency. 𝑛 depends on the resolution of the modulator 

and the size of each coding module. We use an amplitude-modulation spatial light modulator 

(SLM, HOLOEYE Photonics AG, HES6001) or a digital micro mirror device (DMD, 

DLP9000X, Texas Instruments) to generate the grayscale input and a phase-only spatial light 

modulator (Meadowlark Optics, Inc. P1920-400-800-PCIE) as the diffractive layer in the optical 



 

 

 

 

neural network. Each PED coding module that transmits 9 bits requires as small as 20×20 pixels 

and a 5-pixel interval on each side to eliminate crosstalk. Fig. S14 shows that the PED achieves 

satisfying performance at such a small size. Therefore, each frame is able to contain 1705 PEDs. 

According to reported advances in the modulation techniques, the modulation frequency can 

reach up to 1.6GHz (57). As a result, the bit rate would be able to reach 1.705×9×1.6 = 

24.6TBit/s with a single wavelength. In Fig. 3, limited to the frame rate of the DMD (20kHz) we 

use, the bit rate we utilize in Fig.3 is 1.705×9×0.02 = 0.31GBit/s. The PED has the potential to 

achieve higher bit rates by further adding division methods such as wavelength division 

multiplexing (WDM). 

 

Supplementary Note 5: The compatibility of the PED with existing OFC systems.  

We demonstrate the compatibility of the PED with real-world fiber communication networks in 

two aspects: the hardware (e.g. fiber links) and the software (e.g. coding algorithms).  

In terms of hardware, fiber bundles are common carriers in existing fiber links (6, 59), which 

already perfectly satisfy the demand of the PED. The wave front modulators in the PED can also 

be integrated into chip-scale metamaterials easily in coupling systems in base stations (60). 

Additionally, we can use delay lines to switch between the parallel transmission in fiber bundles 

and serial transmission in independent fibers during different segments in a link. Therefore, the 

PED is compatible with the real-world hardware of OFC.  

In terms of software, it is correct that we use the mutual information in several fibers instead of 

letting each fiber carry independent information. By such innovation, the PED achieves high 

gain in throughput and reduction of transmission errors. The PED provides an all-optical decoder 

to post-process the information coupled from different fibers to replace the digital signal 

processors (DSPs) in conventional communication systems. Additionally, coupling improves the 

encryption security because eavesdropping requires information in all fibers and their correct 

order.  

As a result, coupled information in fiber bundles brings many advantages compared with 

independent single fibers and the PED provides a corresponding processor for the change. The 

main difference in dependent fiber bundle transmission compared to independent fibers is 

synchronization. We analyze it in three aspects:  

 

1) Polarization synchronization;  

The polarization synchronism is pre-calibrated, via the same method in coherent transmission, 

e.g. QAM, which is commonly used especially in long-distance transmission. For short links 

such as data centers, we can also use polarization-maintaining fibers to maintain polarization 

during transmission. 

 

2) Phase and amplitude synchronization;  

The phase and amplitude synchronism can also be pre-calibrated via the similar method of 

coherent transmission. However, unlike the polarization may change relatively slowly in fixed 

fiber bundles, the phase and amplitude variation are composed of systematic and random 

fluctuation. The systematic part usually varies slowly enough for pre-calibration. For the random 

fluctuation that is difficult to pre-calibrate, we take it into consideration during the training of the 

PED and the PED therefore establishes robustness to certain scale phase noise.  

 

3) Time synchronization.  



 

 

 

 

The time synchronism can be pre-calibrated with delay lines (55). When the bit rate of the PED 

achieves ~24.6Tbit/s, the modulation frame rate is ~1.6GHz (the detailed calculation of frame 

rate and bit rate is listed in SI Note 4), which corresponds to an optical path of ~187.5mm for 

each interval and satisfies the compensation scale of delay lines.  

 

In conclusion, the PED is compatible with the existing hardware in real-world OFC while 

introducing advanced architecture for coding and software.  

 

Supplementary Note 6: Compatibility of the PED with current multiplexing methods 

The PED is a novel space-division multiplexing method that has great potential to be combined 

with other current multiplexing methods to further improve the transmission throughput. The 

combination may generate further functions such as the following: 

Space division multiplexing  

Current space division multiplexing usually increases the number of fiber bundles or cores. The 

PED is able to not only be combined with it but also encrypt and compress information using the 

correlation between cores, which leads to higher throughput and security as well as lower 

transmission error.  

Wave division multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) 

WDM/DWDM employs multiple wavelengths and is compatible with the modulation of the 

PED. The appropriate employment of dispersion helps establish intelligent photonic networks 

(28) . Therefore, the PED combined with WDM/DWDM may result in more complicated and 

powerful optical intelligence besides increasing throughput with WDM/DWDM. The effective 

coding with the PED also facilitates the existing point-to-point links evolve into many-to-many 

networks.  

Time division multiplexing (TDM) 

The PED combined with TDM can markedly improve the throughput and precision of 

transmission. In addition, reconfigurable modulators such as the SLMs that we introduce in this 

work enable convenient and frequent shifts for data-specific coding. 

Phase coding 

The outstanding performance of the all-optical PED demonstrates its powerful ability to encode 

and decode phase information at almost no cost, which indicates great potential in combining the 

PED with phase coding methods such as QAM. It may not only increase the transmission 

throughput by leveraging the phase information but also provide a way to decode and process the 

phase information with ultra-low latency and high convenience.   



 

 

 

 

 

Supplementary Fig. S1. A transmission example over fashion-MNIST with the PED. The 

input image, i.e. the PED encoder input, is encoded all-optically by the PED encoder with two 

diffractive layers, i.e. 𝒆𝟏, 𝒆𝟐 into the optical latent space after being coupled into the fiber 

bundle. The collimated output of the fiber bundle is shown as the PED decoder input, which is 

decoded by a two-layer all-optical decoder to reconstruct the input information. 𝒆𝟏, 𝒆𝟐 is the first 

and the second masks of the encoder. 𝒅𝟏, 𝒅𝟐 is the first and the second masks of the decoder. The 

𝒆𝟏 output, 𝒆𝟐 output, 𝒅𝟏 output and 𝒅𝟐 output are the intensity of the output images relatively. 

The input image is an example from the ‘shirt’ class in the test dataset of Fashion-MNIST.    



 

 

 

 

 

Supplementary Fig. S2. Set-up of the experimental system. a. The sketch of the optical set-

up. We use a spatial light modulator as the input and another as a phase modulator. b-c. The 

photos of the experimental optical set-up and fiber-coupling set-up. PP: polarizing plate. PBS: 

polarizing beam splitter. BS: beam splitter. SLM: spatial light modulator. L: lens.  



 

 

 

 

 

Supplementary Fig. S3. Experimental results of data-specific mode PED with contaminated 

input. We add Gaussian noise to the input image to mimic the noisy input in multi-level optical 

communications. The optical signals transmitted in OLS endure both amplitude noise (24 dB) 

and phase noise (additive Gaussian noise). The reconstruction of PED remains the correct digits 

(the third row). The image fidelity of the reconstructed results is labeled on the corner.   



 

 

 

 

 
Supplementary Fig. S4. Other applications of the PED as a generative unsupervised 

photonic neural network. (A) An example of unsupervised style transformation with the PED 

on digits, from Times New Roman to hand-written styles. (B) Video enhancement with the PED 

(See Movie S1 for the complete video). The lost parts such as the head and trousers are 

intelligently repaired by the PED after unsupervised training. The broken input is binarized 

human action videos of handwaving action from KTH (61). 



 

 

 

 

 
Supplementary Fig. S5. Performance comparison of the all-optical and optoelectronic PED. 

a. In the general mode, the encoder encrypts the inputs (the first column) into their OLS space 

representations, where the decoder is able to correct the error induced by the transmission noise 

(the second and third columns) and reduce the bit error ratio (the fourth and fifth columns) in 

both all-optical (the first row) and optoelectronic (the second row) PED. b-c. Both the all-optical 

and optoelectronic PED achieves comparably satisfactory performance on data-specific 

transmission, and improve with the increasing of OLS dimensionality. This example is 

demonstrated over the test dataset of MNIST. All-optical: all-optical PED. Opt-ele: 

optoelectronic PED.   



 

 

 

 

 
Supplementary Fig. S6. Mask patterns of the all-optical PED for general and data-specific 

(for Fashion-MNIST as an example) modes. The PED we utilize in both modes are composed 

of a two-layer encoder and a two-layer decoder. 𝑒𝑛 (𝑛 = 1,2) is the nth layer of the encoder and 

𝑑𝑛 (𝑛 = 1,2) is the nth layer of the decoder. The neural number of each diffractive layer is 

200×200 for the general mode and  400×400 for the data-specific mode.   



 

 

 

 

 
Supplementary Fig. S7. Parameter analysis of the all-optical PED. (A) The performance of 

the PED improves significantly when the layer number of the PED decoder increases from 1 to 2 

and grows gradually when the layer number continues to increase for both general and data-

specific modes. (B) We analyze the influence of the distance between the diffractive masks to the 

PED. 15cm achieves the best performance for both general and data-specific modes in all-optical 

PED. We use MNIST as an example dataset for data-specific mode here. (C) The performance of 

the PED increases as the diffractive distance after the last layer of the encoder/decoder increases 

in the range of 10cm to 50 cm.  (D) The PED shows better performance with smaller pixel size in 

the range of 10 to 25 μm. We use 18.4 μm in the manuscript due to the restrictions of the 

devices.   



 

 

 

 

 

Supplementary Fig. S8. Fiber Coupling in the all-optical PED. a. An example of the light 

field on the front focal plane of the lens array in the general mode. The Encoder embeds the 

input light field to this and the lens array couples the light field into fiber bundles with 

corresponding complex coupling coefficients. b. The amplitude of the signal in the single-mode 

fiber bundle after coupling the light field into a.  c. The amplitude of the complex coupling 

coefficient in our fiber simulated by FDTD. The incident angle refers to the angle between the 

incident direction and the perpendicular direction. Because it decays sharply, we only display a 

narrow range of incident angles.  

  



 

 

 

 

 

Supplementary Fig. S9. Dispersion analysis in the PED transmission. a-b. An example of 

input signal with square modulation wave. The modulation frequency is 1.6GHz. The frequency 

of the carrier wave is 193THz. The sampling frequency is 1 PHz. According to Nyquist's 

sampling law, the zoomed in waveform appears to be the waveform in a. c. The signal in 

frequency domain after Fourier transformation. The dispersion constant of the fiber is 17 

ps/nm/km. d. The output signal with dispersion.  

  



 

 

 

 

 
Supplementary Fig. S10. Examples of signals at 11dB. The input is random binary signal and 

output is the signal distorted by Gaussian noise. We limit the output in the range of [0, 1] for 

display. The judgement threshold is 0.5. 100 example points are shown here.  

 

 

  



 

 

 

 

 

Supplementary Fig. S11. The signal flow in the end-to-end system in both traditional OFC 

system and the PED. a. In traditional flow, the signals are processed in digital electronic domain 

and transmitted in optical domain after digital-analog conversions and electronic-optical 

modulators. DAC: digital to analog converter. ADC: analog to digital converter. EOM: 

electronic to optical modulator. OEC: optical to electronic converter.   



 

 

 

 

  

Supplementary Fig. S12. Comparison of the PED and existing methods.  a. The PED 

reconstructs all 10 classes of hand-written digits successfully while the existing methods fails to 

reconstruct correct digits. b. For single class of hand-written digits, the PED maintains the style 

and details while existing methods is almost unrecognizable. c. Bit error ratio of the PED and 

existing discriminative optical network. PED: all-optical PED with a two-layer encoder and a 

two-layer decoder. Existing methods: discriminative optical neural network with the same 

number of trainable parameters. 

 

  



 

 

 

 

 

Supplementary Fig. S13. Reconstruction with the PED when the fidelity is 1.00.  We use all-

optical PED with a fifteen-layer encoder and fifteen-layer decoder while the dimensionality of 

the optical latent space is 64. F: reconstruction fidelity. The images are from the testing dataset 

of MedMNIST.   



 

 

 

 

 

Supplementary Fig. S14. The PED achieves satisfying error ratio with mask of 20×20 

pixels. We use all-optical PED with a two-layer encoder and two-layer decoder. 𝒆𝒊 is the ith 

mask of the encoder; 𝒅𝒊 is the ith mask of the decoder. The PED achieves satisfying performance 

with modulation pixels as few as 20×20.  

  



 

 

 

 

 

Supplementary Fig. S15. Experimental results of equivalent all-optical PED on medical 

data. a-b, The encoder output of intensity and phase.  c-d, the decoder input of intensity and 

phase. e, the output of all-optical PED. The reconstruction fidelity is labeled on the corner. The 

experiment is implemented with fiber (Daheng Optics, DH-FSM450-FC) transmission and the 

phase is measured with coherent reference light. Both classed of images (healthy and 

pathological) are transmitted successfully with high fidelity. Scale bar: 1mm.  

  



 

 

 

 

SNR(dB) 17 16.5 16 15.5 15 14.5 14 

PED w/ 

dispersion 

0 0 0 0 4.8×
10−7 

4.3×
10−6 

6.7×
10−6 

PED w/o 

dispersion 

0 0 0 0 4.8×
10−7 

4.3×
10−6 

6.7×
10−6 

OOK 4.8×
10−7 

1.4×
10−6 

6.2×
10−6 

2.0×
10−5 

5.4×
10−5 

1.3×
10−4 

3.0×
10−4 

FEC 0 0 0 4.8×
10−7 

2.4×
10−6 

1.5×
10−5 

5.2×
10−5 

Supplementary Table S1. Bit error ratio of on-off keying (OOK), forward error correction 

(FEC), the PED w/ and w/o dispersion modelling. Because the modulation frequency is 

relatively low compared to the frequency of the carrier wave, dispersion show little influence in 

error ratio. The PED w/ dispersion modelling remains to show exceeding performance compared 

with OOK. We use all-optical PED with a ten-layer encoder and ten-layer decoder. We use 

Hamming code with 1% overhead as the forward error correction code based on OOK in FEC. 

The test signal is a sequence of 221 random bits.  

  



 

 

 

 

 Digital 

pre- 

process 

DAC 

and 

EOM 

Optical 

pre-

process 

Optical 

post-

process 

OEC 

and 

ADC 

Digital 

post- 

process 

Total 

Traditional  153.5μs 2.03ns 0 0 2.43ns 153.5μs ~307μs 

PED 0 2.23ns 1.5ns 1.5ns 2.43ns 0 ~7.66ns 

Supplementary Table S2. The end-to-end latency of the PED and traditional transmission 

methods. DAC: digital to analog conversion. ADC: analog to digital conversion. EOM: 

electronic to optical modulation. OEC: optical to electronic converter.  

  



 

 

 

 

SNR(dB) 17 16.5 16 15.5 15 14.5 14 

PED 0 0 0 0 4.8×
10−7 

4.3×
10−6 

6.7× 10−6 

OOK 4.8×
10−7 

1.4×
10−6 

6.2×
10−6 

2.0×
10−5 

5.4×
10−5 

1.3×
10−4 

3.0× 10−4 

QAM-16 5.7×
10−3 
 

7.4×
10−3 
 

9.5×
10−3 
 

1.3×
10−2 
 

1.6×
10−2 
 

1.9×
10−2 
 

2.4× 10−2 

 

Supplementary Table S3. Bit error ratio of the PED, OOK and QAM-16. See detailed 

modelling of transmission noise and impairment in SI Note2. Because QAM-16 encodes more 

bits than OOK with both amplitude and phase information, QAM-16 has higher bit error ratio 

than OOK. The test signal is a sequence of 221 random bits. 

  



 

 

 

 

Supplementary Movie S1. Video enhancement with PED. The lost parts such as head and 

trousers are intelligently repaired by the PED after unsupervised training. The broken input is 

binarized human action videos of handwaving action from KTH. 

 

Supplementary Movie S2. Numerical video transmission with all-optical PED. We use a 

6×6 fiber bundle to transmit 100 24-fps video with a resolution of 28×280 8-bit pixels per frame 

simultaneously (one example shown in the first row here). The video transmitted with the PED is 

as fluent as the original one while the video transmitted with DCT is delayed heavily due to the 

much longer latency of electronic processing. 
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