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S1 Text

The Campus COVID Dataset

Collecting URLs of COVID-19 dashboards

We used the Python library googlesearch [1] to automate Google search queries, and we
used the gspread Python library [2] to aggregate the output into a single Reference Google
Sheet. For each of over 4,000 IHEs in the IPEDS 2018 data, we generated the following
Google search queries: “university_name COVID dashboard”, “university_name COVID
cases”, “university_name COVID testing”, with and without quotation marks to increase
specificity or broaden the search yields (if the IHE’s name does not include the state it is

∗Correspondence: b.klein@northeastern.edu, a.vespignani@northeastern.edu; †Equal contribution

1

mailto:b.klein@northeastern.edu
mailto:a.vespignani@northeastern.edu


located in, we append the state name to the search queries to avoid duplicate or similarly-
named institutions in different states). This process produced several candidate URLs, and
we select the most common URL to include in the Reference Google Sheet; this was usually
effective at creating one single URL for each IHE, since “COVID cases” and “COVID testing”
are semantically similar terms that are likely to co-occur on the COVID-19 information pages
for universities. We repeated this process for thousands of IHEs, and we were left with URLs
for the COVID-19 dashboards (or analogous website) of 2,739 IHEs.

Standardized data collection

In order to create a more streamlined data collection process, we created separate pre-
formatted Google Sheets for every IHE using the gspread Python library. Each of these
Google Sheets was indexed by the ipeds_id of the IHE and was formatted like Table B.
The “total_tests” and “positive_tests” columns were left blank and eventually filled in by
research assistants, who would visit the COVID-19 dashboard urls of each IHE and record
the data. Many IHEs elected to report data using interactive visualization software, such as
Microsoft Power BI or Tableau dashboards; others used a simple data table to report their
numbers; others wrote weekly email updates to the campus community that included the
testing and case counts for the previous week.

Many IHEs reported none of this information, for a variety of potential reasons. For one,
many IHEs were closed for the Fall 2020 semester (or entirely, due to financial hardship), not
allowing students on campus at all and therefore not actively recording case counts among
the campus population. Some schools were at least partially in-person for the Fall 2020
semester but did not appear to collect data about cases on campus. We categorized these
schools as “cannot find data”. Other IHEs had passages of text on their websites that suggest
they had knowledge of the number of cases on campus (e.g. “case counts on campus are low”)
but did not publicly report raw numbers. These schools were categorized as “not publishing
data”. These categorizations can be found in Table A.

Matching counties with broadly similar demographics

Because COVID-19 outcomes correlate with demographic variables (e.g. age [3], among
others), extra care must be taken when comparing averages between groups of counties to
ensure that any observed differences are not due to differences in population structure of
the underlying populations. Here, we try to create counties with as similar as possible
distributions of age, race, income, urban-rural code, and population size. (Note: “urban-
rural code” is an ordinal variable ranging from 1 (“large central metro”) to 6 (“non-core”) and
is assigned by the National Center for Health Statistics [4].)

In order to compare differences in average case counts and deaths (as in Fig. 2) among
counties with IHEs that returned to in-person education compared to those with IHEs that
remained online, we rely on data collected by the College Crisis Initiative [6]. This dataset
assigns a category for over 1,800 IHEs based on the reopening strategy for the Fall 2020
semester. From these IHEs, we sum together the total full-time enrollment in each reopening
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complete time series 971
cumulative data only 477

cannot find data 1,271
total IHEs in data 1,448

total IHEs searched 2,719

Table A: Current status of the Campus COVID Dataset. In total, the Campus
COVID Dataset includes data about more than 1,400 IHEs. To collect these data, we
searched among over 2,719 IHEs; approximately 40% of these are IHEs with data that we
could not find (because the IHE does not collect self-reported positive tests and/or does not
conduct campus testing, etc.) or with data that we believe exists but was not being shared
publicly by the IHE. There are over 971 IHEs with time series of testing and/or case counts
for the Fall 2020 semester. If an IHE reported only cumulative testing or case counts, we
classify it as “cumulative only”.

date total_tests positive_tests college URL ipeds_id notes
2020-08-01 university_name dashboard_url ipeds_id
2020-08-02 university_name dashboard_url ipeds_id
2020-08-03 university_name dashboard_url ipeds_id

... ... ... ... ... ...
2020-12-16 university_name dashboard_url ipeds_id

Table B: Example template for inputting data. Each IHEs in the Campus COVID
Dataset has a unique URL that leads to a dataframe with this structure. For each date
that the IHE reports a number of new cases (“positive_tests” above) or new tests admin-
istered (“total_tests” above), we input that value in its corresponding row. For IHEs that
report testing and case counts weekly, we insert the data at the first collection date, which
makes for more accurate smoothing when performing 7-day averages. If the IHE only re-
ports cumulative cases or tests for the Fall 2020 semester, we leave the “total_tests” and
“positive_tests” columns blank and report the “cumulative_tests” and “cumulative_cases”
in the “notes” column, which we extract later in the analyses.

category (e.g. a county may have three universities—with 250, 800, and 15,000 students
enrolled full-time; if the school with 15,000 students is categorized as “primarily online” and
the other two are “primarily in-person” we say that specific county has 15,000 primarily
online students and 1,050 primarily in-person students). As discussed in the main text, the
final piece for constructing groups of counties with similar demographics is the percent of
the county population affiliated with the IHE. That is, we define a “college county” based
on the what percent of the total population is made up of students enrolled full-time at an
IHE in the county.

We create two groups of counties from the 1,238 unique counties in the College Crisis
Initiative [6]; we iteratively vary the threshold of inclusion into these two groups, finding the
threshold that minimizes the total Jensen-Shannon Divergence (JSD; the JSD between two
distributions, P and Q, is JSD(P ||Q) = 1

2
D(P ||M) + 1

2
D(Q||M), where M = 1

2
(P + Q)
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Figure A: Jensen-Shannon Divergence between distributions of demographic
variables. As we vary the threshold for inclusion into the two groups—counties with IHEs
that returned primarily in-person for Fall 2020 and counties with IHEs that remained pri-
marily online—the Jensen-Shannon Divergence also changes. We want to select the value
for this threshold based on whatever minimizes the Jensen-Shannon divergence, on average.

and D(P ||Q) =
∑

x∈X P (x) log(P (x)
Q(x)

), the Kullback-Leibler Divergence) between the aver-
age demographic distributions of the counties that comprise the groups. In our case, this
threshold corresponds to the percent of the total county population enrolled in IHEs within
that county full-time. Intuitively, a “college county” is one with a relatively large percentage
of its population being affiliated to an IHE, but the precise value of this percentage is not
commonly defined. Here, we test a range of thresholds and select the one that minimizes the
JSD between the resulting groups’ distributions of the five demographic variables of interest
(see Fig. A).

By selecting the threshold that minimizes the average JSD between the demographic
distributions of the two groups, we get closer to making sound comparisons along the true
axis of interest. Following this procedure, the resulting groups of counties are similar in
demographics (Fig. B), spatially spread out across the country, and minimally clustered
based on region (Fig. C).
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Figure B: Comparison of county-level demographics between groups. Here, we
compare the two groups—counties with IHEs that returned primarily in-person for Fall 2020
and counties with IHEs that remained primarily online—based on distributions of (a) age,
(b) race, (c) income, and (d) urban-rural designation. Error bars: 95% confidence intervals.

Statistical controls for counties with active mitigation policies

To control for potential biases in our construction of county groups—possibly arising due to
political affiliations [7], population structure [8], or arise from differences in local mitigation
policies—we assigned each county to an “active mitigation policies” score based on policy
tracking data from the Oxford COVID-19 Government Response Tracker [9]. These are daily
time series data indicating whether or not a number of different policies were active on each
day for a given state. Not only does this dataset list the presence or absence of a given
policy, it also includes information about the severity (e.g. restrictions on gatherings of 10
people vs. restrictions on gatherings of 100 people, or closing all non-essential workplaces vs.
closing specific industries, etc.). From these indicator variables, Hale et al. (2021) define a
summary “stringency index” that characterizes the daily intensity of the mitigation policies
that a given region is undergoing over time. We include this “stringency index” variable in
an Generalized Linear Model regression to quantify the extent to which this time series of
policy measures—along with data about IHE testing and enrollment policy, demographic
data about the county itself, and average temperature—predicts COVID-19-related deaths
(Table 1). The descriptions of the variables used in the regression can be found in Table C
and are visualized in Fig. D.

This model predicts deaths per 100,000 county population at a 38-day lead time (i.e.,
using data from today to predict the number of COVID-19 deaths reported 38 days from
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"primarily online" college counties (n=220)
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https://www.census.gov/geographies/mapping-files.html

Figure C: Map of counties included in matched analysis. With the exception of
California, which includes many primarily online IHEs, there are very few regions where
the counties are clustered based on campus reopening strategy. County and state boundary
maps downloaded from the United States Census TIGER/Line Shapefiles [5].

now), which was selected because it is the lag that maximizes the Pearson χ2 of the model.
Note: this specific value, 38 days, is in line with the CDC’s median window of the time
between the onset of infection and death [15], and by varying the lead time we do not
see any substantial differences in the sign, value, and significance of the coefficients for the
different variables. To test for possible multicollinearity, we assigned a Variance Inflation
Factor (V IF ) to each of the variables in regression. The V IF is defined as V IF = 1/(1−R2

i );
a V IF = 1 indicates that a variable is uncorrelated, and V IF between 5-10 suggests that a
given variable is highly correlated in the regression. For the regression from Table 1, the V IF
values are: “average temperature” = 1.226, “urban/rural code” = 1.951, “population density”
= 2.244, “median income” = 1.422, “population over 60” = 1.408, “2020 voting behavior” =
1.753, “IHE fulltime enrollment” = 1.492, “IHE fulltime enrollment (online)” = 4.554, “IHE
fulltime enrollment (in person)” = 4.042, “stringency index” = 1.094, “county new tests” =
1.408, “IHE new tests” = 1.498.

There are limitations to the regression used here. For one, the policy data we use is
at the state level, while the analyses are at the county level. Part of the reason for this is
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variable transformation description source

County demographic variables

population density log-scale number of people per mile2 [10]

median income log-scale median income of residents in the county [10]

population over 60 per 100,000 county
population; log-scale

sum of population in the following age brack-
ets: 60-64, 65-69, 70-74, 75-79, 80-84, 85+

[10]

urban/rural code code = 4, 5, 6 → 1;
code = 1, 2, 3 → 0

Urban-Rural Classification (1: large central
metro; 2: large fringe metro; 3: medium
metro; 4: small metro; 5: micropolitan; 6:
non-core).

[4]

County COVID-19 response

stringency index (OxCGRT) none aggregate indicator of active mitigation poli-
cies, see Hale et al., (2021)

[9]

new COVID-19 tests 7-day rolling avg.;
per 100,000 county
population; log-scale

daily number of COVID-19 diagnostic tests re-
ported in the county

[11]

IHE variables

fulltime enrollment per 100,000 county
population; log-scale

number of fulltime students enrolled at col-
leges in our dataset

[12]

fulltime enrollment (online) per 100,000 county
population; log-scale

number of fulltime students enrolled at col-
leges classified as “primarily online”

[6, 12]

fulltime enrollment (in person) per 100,000 county
population; log-scale

number of fulltime students enrolled at col-
leges classified as “primarily in-person”

[6, 12]

new COVID-19 tests 7-day rolling avg.;
per 100,000 county
population; log-scale

sum of daily number of COVID-19 diagnostic
tests reported by IHEs within the county

this
work

Other

2020 voting behavior (% Rep.)
votesRep.

votestotal
× 100 percent of total votes cast for the Republican

candidate in the 2020 presidential election
[13]

average temperature (◦Celsius) none daily average temperature, from the National
Oceanic and Atmospheric Administration

[14]

Dependent variable

new deaths from COVID-19 7-day rolling avg.;
per 100,000 county
population

daily number of reported deaths from COVID-
19 at the county level

[11]

Table C: Description of variables in Table 1. Where appropriate, we use the “per
100k” designation—the variable’s value divided by county population, multiplied by 100,000.
Here “log” refers to the natural log, which we apply to variables that follow heavy-tailed
distributions (e.g. income and population density).

that there remains inconsistent data about county-level policies and more reliable data at
the state level. Also, among datasets that do include finer-scale policy data (e.g. [16]), it is
often about specific cities, as opposed to counties. Another limitation of using these kinds
of policy data in our analysis is that we still do not have information about adherence to

7



Sep Oct Nov Dec
0

10

20

average temperature ( Celsius)

0 1
0

100

200

300

urban/rural code (1 if {4, 5, 6} else 0)

0.0 2.5 5.0 7.5 10.0
0

25

50

75

100

log(population density)

10.0 10.5 11.0 11.5
0

25

50

75

100

log(median income)

20 40 60 80
0

25

50

75

100

2020 voting behavior (% Rep.)

9.5 10.0 10.5
0

25

50

75

100

log(population over 60 per 100k)

9 10 11
0

25

50

75

100

log(IHE fulltime enrollment per 100k)

0.0 2.5 5.0 7.5 10.0
0

25

50

75

100

log(IHE fulltime enrollment per 100k)
(online)

0.0 2.5 5.0 7.5 10.0
0

25

50

75

100

log(IHE fulltime enrollment per 100k)
(in person)

Sep Oct Nov Dec

54

56

58

60

stringency index (OxCGRT)

Sep Oct Nov Dec
5.00

5.25

5.50

5.75

6.00

log(county new tests per 100k)

Sep Oct Nov Dec

0.5

1.0

1.5

log(IHE new tests per 100k)

Figure D: Distributions of the variables used in the regression in Table 1.

policies once they are in place. For instance, even in zip codes in states with mask mandates,
we do not see full—or consistent—compliance from county to county [17]; similarly, we see
differences in social distancing and mobility patterns among counties in the same state [18].
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Campus COVID Dataset: Examples of IHE data

The Campus COVID Dataset includes detailed time series data about the number of tests
and cases reported by the almost 1,000 IHEs. In Figures E, F, and G, we show three
examples of IHEs that report daily case counts and tests conducted on campus. The shape
of these three IHEs’ testing curves exemplifies three broad trends seen in the testing cadence
across IHEs during the Fall 2020 semester: For example, Northeastern University (Fig. E)
conducts a large number of tests throughout the semester, a rate that remains relatively
high throughout September, October, and November. North Carolina State University at
Raleigh (Fig. F) reported thousands of “entry tests” early in the semester, followed by a
relatively lower volume for the rest of the semester. University of California, Los Angeles
(Fig. G) dramatically increased its testing volume during late November, which followed a
gradually increasing amount of tests reported throughout the semester. In each of the bar
plots in this section, darker color bars indicate accelerating cases/tests.
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Figure E: Example data: Northeastern University.

Another common trend among the IHEs that conduct and report testing is an increase in
testing volume prior to the Thanksgiving holidays (late November), which is when students
often return to their homes for several days. For Purdue University, University of Miami,
and Georgia Institute of Technology (Figures H, I, and J), we see examples of these this
mid-November spike in testing, followed by a sharp decline. This pattern is common across
many IHEs, which often requested that students not return following this holiday, as the
semester was already almost over and infection rates were beginning to surge in many parts
of the United States.

Many IHEs only report cases and test counts in weekly intervals (e.g. Duke University
and Ohio State University, Figures K and L), and for hundreds of IHEs, we were only
able to collect a summary of the cumulative number of tests conducted and cases reported
throughout the semester.

9



Aug Sep Oct Nov Dec
0

20

40

60

80

100

120

140

160

(https://www.ncsu.edu/coronavirus/testing-and-tracking/)
Approximate full-time population (2019): students: 28,791; employees: 9,299

New positive tests (reported daily)

Aug Sep Oct Nov Dec
0

500

1,000

1,500

2,000

2,500
New tests administered (reported daily)

   North Carolina State University at Raleigh COVID-19 Testing Data: Aug 1, 2020  Dec 16, 2020

Figure F: Example data: North Carolina State University at Raleigh.

These examples are not meant to be exhaustive—indeed many IHEs in the Campus
COVID Dataset do not have time series data for their testing volume or case counts. It is
our hope that by releasing these data and analyses that they will motivate other large scale
data collection/standardization efforts moving forward. To view examples of time series from
other IHEs or to download the entire Campus COVID Dataset, see [19].
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Figure G: Example data: University of California-Los Angeles.
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Figure H: Example data: Purdue University-Main Campus.
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Figure I: Example data: University of Miami.
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Figure J: Example data: Georgia Institute of Technology-Main Campus.
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Figure K: Example data: Duke University.

Aug Sep Oct Nov Dec
0

200

400

600

800

1,000

1,200

(https://safeandhealthy.osu.edu/dashboard)
Approximate full-time population (2019): students: 53,025; employees: 32,639

New positive tests (reported weekly)

Aug Sep Oct Nov Dec
0

5,000

10,000

15,000

20,000

25,000
New tests administered (reported weekly)

   Ohio State University-Main Campus COVID-19 Testing Data: Aug 1, 2020  Dec 16, 2020

Figure L: Example data: Ohio State University.
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