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1 Collecting and processing data 

 

1.1 TCGA data 

 

We downloaded the level-2 and level-3 data from the original TCGA data portal website 

(https://tcga-data.nci.nih.gov/tcga/, now moved to https://portal.gdc.cancer.gov/).  The 

following 8 types of data are included: (1) mRNA expression data generated by RNA HiSeq 

sequencing, Affymetrix or Agilent microarrays, (2) probe-level CNV data generated by 

Affymetrix Human SNP 6.0 arrays, (3) somatic mutation data derived from exome 

sequencing and reported in mutation annotation format (MAF), (4) microRNA expressions 

generated by Illumina RNA HiSeq or GA sequencing, (5) DNA methylation data generated 

by Illumina 450K array, (6) SNP data generated by Affymetrix Human SNP 6.0 arrays, (7) 

expression and phosphorylation data of about 200 proteins/amino acid residues generated by 

reverse phase protein arrays (RPPA), (8) clinical and phenotypical data of patients such as 

their ages, genders, dates of diagnosis and death, histological and molecular subtypes, and 
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received treatments.  Over the span of 14 years (2005-2018) the TCGA Consortium 

generated the data of 33 cancer types covering 23359 samples and summarized in 

Supplementary Table S1A.  The data of those cancer types were downloaded at several time 

points following the release of the data belonging to certain types of cancers.  The files in the 

TCGA data portal are hierarchically organized by first cancer types, second data types 

(platforms), and third sample IDs.  We concatenated the files of a unique cancer type and 

data type combination into one big table, where each row indicates a gene or probe and each 

column indicates a sample. 

 

1.2 A unified network of molecular interactions 

 

We generated a large network database regarding human molecular interactions by 

incorporating multiple sources of biological pathways and networks: (1) Pathway Commons 

(Cerami et al., 2011) is a meta-database containing multiple commonly used databases of 

molecular interactions such as Reactome, KEGG, BioCyc, DIP, miRTarBase, and others.  

We downloaded an early version (version 4) in 2012, (2) TRANSFAC (Matys et al., 2006) is 

a manually curated database of eukaryotic transcription factors, their genomic binding sites 

and DNA binding profiles.  We downloaded a proprietary version 2009.1 of human 

transcription factors and their target genes, (3) miRBase (Kozomara and Griffiths-Jones, 

2011, version 19) is a searchable database of published miRNA sequences and annotation.  

MiRTarBase (Hsu et al., 2012, version 4.5) is a database of target genes of microRNAs.  We 

collected the published targets of the microRNAs in 2012, (4) ENCODE (The Encyclopedia 

of DNA Elements, The ENCOCE Project Consortium, 2012) builds a comprehensive parts 

list of functional elements of human cells and generates many datasets of functional genomic 

assays.  We collected the ENCODE data of ChIP-Seq experiments in human cell lines in 
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2012 (version 2) and converted them into the list of protein-DNA interactions.  For each type 

of data, we mapped the entries to gene names according to the NCBI database, collapsed the 

synonyms of the same genes and redundant entries, and pruned the entries without 

corresponding gene names.   

 

The unified network compiled from the aforementioned sources is a hyper-graph consisting 

of molecules (nodes) and interactions (hyper-edges).  Beyond the non-trivial data from these 

sources, we also augmented several types of dummy molecules and interactions in order to 

facilitate enumerating valid paths.  Each protein coding gene comprises three molecules of 

DNA, mRNA and protein, and an microRNA comprises two molecules of DNA and 

microRNA.  Hence dummy molecules (DNAs, mRNAs, microRNAs, proteins) of genes are 

added if they are absent in the unified network.  Furthermore, the dummy interactions 

(DNA,mRNA), (mRNA,protein), (DNA,microRNA) of the same genes/microRNAs indicate 

information flows of transcription and translation, thus are added to the unified network.  The 

augmented network was further consolidated according to two criteria: (1) molecules with the 

same identities but different names (e.g., synonyms of the same gene, or upper and lower 

case expressions of the same name) were collapsed, (2) molecules not involved in regulatory 

relations (e.g., an isolated protein complex connected to only its component proteins, or a 

gene not traversed by any paths of protein-DNA and protein-protein interactions) were 

discarded.  The resulting unified network consists of 90122 molecules and 1068050 

interactions.  There are 13 types of molecules – DNA regions, RNA regions, Proteins, RNAs, 

Complexes, Gene classes, Mir classes, Dummy DNAs, Dummy mRNAs, Dummy proteins, 

Dummy mirs, Small molecules, and Physical entities.  Complexes refer to large molecules 

consisting of smaller subunits of proteins or RNAs.  Gene (mir) classes refer to a collection 

of genes (mirs) that may carry similar functions and do not physically bind together.  Small 
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molecules refer to mostly metabolites such as glucoses and phosphates.  Dummy DNAs, 

mRNAs, proteins and mirs were created by us to build the central dogma links of the same 

genes (mirs) such as DNA-mRNA-protein and DNA-mir.  Interactions are hyper-edges 

constituting one or multiple molecules.  There are 20 types of interactions – Biochemical 

reactions, Catalysis, Complex assembly, Control, Conversion, Degradation, Modulation, 

Molecular interactions, Template reactions, Transport, Transport with biochemical reaction, 

Dummy2member, Genemirclass2dummy, DNARNA, RNAprotein, Complex2member, 

ProteinDNA, MirRNA.  Most of those molecule and interaction types are self-explanatory 

and reported in the Pathway Commons database.  For instance, Biochemical reactions consist 

of small molecules as substrates and products and proteins or protein complexes as enzymes.  

Complex assembly interactions consist of subunits (proteins or protein subcomplexes) as 

inputs and one protein complex as an output.  In contrast, Complex2Member interactions 

consist of one complex as an input and multiple member proteins or subcomplexes as 

outputs.  Molecular interactions are bipartite, symmetric relations specifying the bindings of 

two molecules.  DNARNA and RNAProtein interactions specify the central dogma 

information flows of the same genes.  ProteinDNA and MirRNA interactions specify the 

regulatory relations of transcription factors or microRNAs to their targets.   

 

1.3 External datasets for validation 

 

1.3.1 MSigDB gene sets 

 

We downloaded 14545 gene sets from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb).  They comprise members of functional categories from several 
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large-scale databases including GO, KEGG, REACTOME, PID pathways, BIOCARTA, 

HALLMARK, and differentially expressed genes in many datasets. 

 

1.3.2 METABRIC data 

 

We acquired an approval from the METABRIC data access committee and downloaded the 

METABRIC data of 1981 breast cancer patients from (Curtis et al., 2012).  They include the 

mRNA expression data of 49576 probes, CNV data of 17013 loci, and clinical data of 

patients such as survival times, PAM50 subtypes, tumor histology, and many others. 

 

1.3.3 REMBRANDT data 

 

We downloaded the REMBRANDT data of 176 brain tumor patients from (Madhavan et al., 

2009).  They include the mRNA expression data of 21029 genes, CNV data of 8066 loci, and 

clinical data of patients such as survival times, tumor histology, and mRNA subtypes. 

 

1.3.4 GEO transcriptome datasets 

 

We collected 388 transcriptomic datasets pertaining to the 33 cancer types from the GEO 

database during 2015-2016.  To find out those datasets, we searched the GEO database with 

the keywords of each cancer type and manually picked the ones which contained ≥ 10 cancer 

samples according to the data descriptions.  Those datasets are filtered out if they satisfy at 

least one of the following conditions. 

1. They contain too few (≤ 30) samples. 

2. They have too few intersected genes with all Super Module targets. 



 9 

3. Their expressions have small variations across samples. 

4. They are subsets of larger datasets that appear on the list. 

5. They contain only cell lines or normal tissues but no tumors. 

294 datasets pass those filtering criteria.  Among them 54 have survival information.  

Supplementary Table S9 reports the characteristics of the 294 selected datasets. 

 

 

1.3.5 CCLE and Achilles data 

 

The Cancer Cell Line Encyclopedia (CCLE) is a comprehensive, integrative database of 

multi-omic data over 1046 cancer cell lines (Barretina et al., 2012).  It consists of the data of 

mRNA expressions, CNV, SNP, mutations, DNA methylations, microRNA expressions, 

protein expressions and phosphorylations, and growth responses to 26 drugs.  Another large-

scale project, the Achilles project (Tsherniak et al., 2017), generated the gene dependency 

data of selected CCLE cancer cell lines.  Selected genes were knocked down by RNAi or 

CRISPR-Cas9 on those cancer cell lines, and their growth responses were reported.  We 

downloaded the CCLE data in 2017 and 2018 and found the two versions of data were 

generally compatible but not identical.  We selected or joined different types of data with 

distinct criteria. 

 

The old version of mRNA expression data was measured by microarrays and provided as gct 

and res file formats.  The new version of mRNA expression data was probed by RNA-Seq 

and provided as the RPKM format.  We calculated the distribution of correlation coefficients 

between the old and new mRNA expression data of the same genes and found they were 
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highly or moderately correlated (Figure X1).  We chose the old microarray data since they 

covered more cancer cell lines than the new RNA-Seq data. 

 

 

Figure X1: The sorted correlation coefficients between old and new CCLE mRNA expression 

data of the same genes. 

 

 

 

The CNV data appeared in the old version only.  The data at probe, gene and segment levels 

are all provided in CCLE.  Therefore, we downloaded the segment-level CNV data without 

undergoing the process of partitioning probe-level data into segment-level data.  DNA 

methylation, microRNA expression and protein expression/phosphorylation data are provided 

only in the new version.  Thus we used the new version of data without having to make a 

choice. 
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The old version of mutation data is measured by three DNA sequencing methods: whole 

exome sequencing (WES), oncomap, and hybrid capture sequencing.  The new version of 

mutation data is merged mutation calls in the protein coding regions with germline mutations 

removed.  The oncomap sequencing covers only a small number of genes.  Thus we 

compared the WES data of the old version and the mutation calls of the new version (Figure 

X2).  Unlike mRNA expression data, the old and new mutation data are poorly consistent.  

We decided to include the new mutation data for they covered more genes.  This choice is 

justified since the recurrent mutations in TCGA are verified in CCLE mutation data 

(Supplementary Figure S8A). 

 

The pharmacological profile data consists of the drug response information by treating CCLE 

cell lines with 26 chemical compounds.  Various types of information are reported, such as 

doses, mean and standard deviation of activities, EC50 and IC50.  We extracted only the IC50 

values and generated a table where rows were compounds, columns were cell lines, and 

entries were IC50 values.  We filtered out 5 compounds with very sparse data and considered 

the data of 21 drugs.  Table X1 lists those 21 compounds and their characteristics.  

 

The Achilles project reports the growth responses of selected CCLE cell lines by perturbing 

many genes with RNAi and CRISPR technologies.  15366 genes are perturbed with both 

technologies.  We calculated the correlation coefficients between the RNAi and CRISPR 

dependency data of those genes (Figure X3, left panel) and found a slight tendency of 

positive correlation: mean and median values were 0.0463 and 0.0264 respectively.  

However, the genes with strongly correlated dependency data are highly enriched with 

cancer-related driver genes.  We extracted 459 cancer driver genes from the Intogen database 

(Martinez-Jimenez et al., 2020) and found they were highly concentrated among the top-
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ranking genes in terms of RNAi-CRISPR correlations (Figure X3, right panel).  Therefore, 

we selected the top 2000 genes whose dependency data were robust against the perturbation 

technologies. 

 

 

 

Figure X2: The sorted consistency between old and new CCLE mutation data of the same 

genes.  Consistency of a gene is defined as the ratio between the number of samples carrying 

mutations in both datasets and the number of samples carrying mutations in at least one 

dataset. 
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Table X1: Summary of 21 compounds in CCLE drug response data 

 

compound Targets mechanism of action class 

erlotnib EGFR EGFR inhibitor kinase inhibitor 

lapatinib EGFR, HER2 EGFR & HER2 inhibitor kinase inhibitor 

PHA-665752 c-MET c-MET inhibitor kinase inhibitor 

TAE684 ALK ALK inhibitor kinase inhibitor 

Nilotinib Abl/Bcr-Abl Abl inhibitor kinase inhibitor 

AZD0530 Src, Abl/Bcr-Abl, EGFR Src and Abl inhibitor kinase inhibitor 

sorafenib Flt3, C-KIT, PDGFR𝛽, 

RET, Raf kinase B, Raf 

kinase C, VEGFR-1, 

KDR, FLT4 

multi-kinase inhibitor kinase inhibitor 

TKI258 EGFR, FGFR1, 

PDGFR𝛽, VEGFR-1, 

KDR 

multi-kinase inhibitor kinase inhibitor 

PD-0332991 CDK4/6 CDK4/6 inhibitor kinase inhibitor 

AEW541 IGF-1R IGF-1R inhibitor kinase inhibitor 

RAF265 Raf kinase B, KDR Raf kinase B and KDR 

inhibitor 

kinase inhibitor 

PLX4720 RAF Raf kinase B inhibitor kinase inhibitor 

PD-0325901 MEK MEK1 and MEK2 

inhibitor 

kinase inhibitor 

AZD6244 MEK MEK1 and MEK2 

inhibitor 

kinase inhibitor 

nutlin-3 MDM2 inhibitor of Apoptosis 

Proteins (IAP) inhibitor 

other targeted therapies 
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LBW242 IAP inhibitor of apoptosis 

proteins (IAP) inhibitor 

other targeted therapies 

17-AAG HSP90 heat shock protein 90 

(HSP90) inhibitor 

other targeted therapies 

L-685458 𝛾-secretase 𝛾-secretase inhibitor other targeted therapies 

paclitaxel 𝛽-tubulin microtubule-stablizing 

agents 

cytotoxic 

irinotecan topoisomerase I DNA topoisomerase I 

inhibitor 

cytotoxic 

topotecan topoisomerase I DNA topoisomerase I 

inhibitor 

cytotoxic 

 

 

Figure X3: Left – Distribution of correlation coefficients between RNAi and CRISPR data of 

the same genes in Achilles.  Right – Numbers of reported driver genes among top-ranking 

genes sorted by correlation coefficients. 
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1.3.6 Illumina Bodymap data 

 

The Illumina BodyMap (ArrayExpress ID: E-MTAB-513) provides transcriptomic (RNA-

Seq) data of normal tissues.  It has a relatively small size with 27496 genes and 16 samples.  

The following normal tissues are covered: adipose tissue, adrenal gland, brain, breast, colon, 

heart, kidney, leukocyte, liver, lung, lymph node, ovary, prostate gland, skeletal muscle, 

testis, thyroid gland. 

 

1.3.7 Roadmap Epigenomic data 

 

The Roadmap Epigenomic data provides measurements of dozens of epigenomic markers 

over many normal human tissues (Roadmap Epigenomics Consortium, 2015).  The probed 

epigenomic markers include nucleosome positions, histone methylations, histone 

acetylations, and mRNA expressions.  The covered samples include various human cell lines 

derived from stem or iPS cells, stem cells, blood and immune cells, skin cells, neuron cells, 

cells from various organs, and cells from fetal tissues.  The original Roadmap data has a 

complicated structure which is difficult to directly compare with the integrated hierarchical 

association structures inferred from TCGA.  Each type of epigenomic marker is probed by a 

genome-wide assay and reported by genome-wide peak callings from the measurements.  For 

instance, a histone methylation mark (such as H3K4me3) is typically measured by genome-

wide ChIP-Seq assays, and the peak calls from the ChIP-Seq measurements all over the 

genomic regions are reported.  Different combinations of those epigenomic markers imply 

distinct epigenomic/regulatory states.  The Roadmap team deciphered the measured 

epigenomic markers into 25 distinct epigenomic states, partitioned the genome of a sample 



 16 

into small segments, and reported the predicted epigenomic states of the segments.  Table X2 

lists the 25 predicted epigenomic states of the Roadmap project.  We downloaded the 

predicted epigenomic states of chromosomal segments of the Roadmap data. 

 

Table X2: 25 predicted epigenomic states of the Roadmap data 

 

index name annotation 

1 TssA transcription start site 

2 PromU upstream promoter 

3 PromD1 downstream promoter 1 

4 PromD2 downstream promoter 2 

5 Tx5’ 5’ site of transcription 

6 Tx strong transcription 

7 Tx3’ 3’ site of transcription 

8 TxWk weak transcription 

9 TxReg transcribed & regulatory 

10 TxEnh5’ transcribed 5’ preferential & enhancer 

11 TxEnh3’ transcribed 3’ preferential & enhancer 

12 TxEnhW transcribed and weak enhancer 

13 EnhA1 active enhancer 1 

14 EnhA2 active enhancer 2 

15 EnhAF active enhancer flank 

16 EnhW1 weak enhancer 1 

17 EnhW2 weak enhancer 2 

18 EnhAc primary H3K27ac possible enhancer 

19 DNase primary DNase 

20 ZNF/Rpts ZNF genes & repeats 

21 Het heterochromatin 
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22 PromP poised promoter 

23 PromBiv bivalent promoter 

24 ReprPC repressed PolyComb 

25 Quies quiescent 

 

 

1.4 Data normalization 

 

The TCGA data are from heterogeneous sources with distinct properties, value ranges and 

interpretations.  Some possess categorical values (such as SNP genotypes and somatic 

mutation states), while others possess numerical values (such as mRNA or microRNA 

expressions).  Some possess a wide range of numerical values (such as FPKM values for 

RNA-Seq data), while others possess a narrow range of numerical values (such as the 𝛽 

values for DNA methylation data).  To incorporate them in the same modeling and analysis 

framework, we converted those diverse types of data into the same format with compatible 

scales.  We treated the true value of a feature in each sample as a random variable with 

discrete hidden states, and its observed value in a dataset as a noisy measurement outcome.  

The proper representation of a feature value is a posterior probability vector over the hidden 

states conditioned on the observed data.  Consequently, a data matrix (features × samples) is 

converted into a data probability tensor (features × samples × hidden states) with values in 

[0,1]. 

 

The hidden states of categorical data types (mutations and SNPs) are automatically defined.  

For mutation data, a gene possesses three states, indicating whether it undergoes no mutation 

or silent mutation (state 0), missense point mutations or in-frame insertions/deletions that do 

not necessarily block mRNA synthesis (state 1), and nonsense point mutations or frame-
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shifting insertions/deletions that disrupt mRNA synthesis (state 2).  The MAF file consists of 

multiple rows indicating the mutation records of nucleotides or segments.  One gene may 

possess multiple records if it undergoes mutations at multiple positions.  We collapsed those 

multiple records into a single state by choosing the records of the strongest transcriptional 

impacts.  If nonsense mutations occur in the gene, then assign it to state 2.  If nonsense 

mutations do not occur but missense mutations occur in the gene, then assign it to state 1.  If 

only silent mutation or no mutation records are reported, then assign it state 0.  The inferred 

mutation state is converted into the probability vector without uncertainty: state 0 – 1,0,0 , 

state 1 – 0,1,0 , state 2 – 0,0,1 .  An entry with a missing value is converted to 

0.5,0.25,0.25  indicating equal probabilities of no mutations and mutations and equal 

probabilities of missense and nonsense mutations. 

 

An entry of SNP arrays possesses trinary values 0,1,2  indicating the number of minor 

alleles (or homozygote major alleles, heterozygote alleles, and homozygote minor alleles) at 

the corresponding locus.  For instance, if A and G are the major and minor alleles of the 

locus, then the haplotypes AA, AG, GA and GG correspond to the values 0, 1, 1 and 2.  It is 

already a discrete state and can be converted into the probability vectors 

1,0,0 , 0,1,0 , (0,0,1) respectively.  A missing entry was converted into the vector (1
2
,	1
2
,	1
2
) 

of equal probabilities over hidden states. 

 

All the remaining data types (mRNA expressions, CNV, microRNA expressions, DNA 

methylations, protein expressions and phosphorylations) possess numerical values.  We 

postulated that each entry had three hidden states.  For expressions, the three states 

correspond to up (+1), down (-1) regulation and no change (0).  For CNV, the three states 

correspond to amplification (+1), deletion (-1) and normal karyotypes (0).  For DNA 
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methylation, the three states correspond to hyper (+1), hypo (-1) methylation and normal 

levels (0).  For protein phosphorylation, the three states correspond to high (+1), moderate (0) 

and low (-1) levels of phosphorylation.  We converted measurements of continuous random 

variables (mRNA and microRNA expressions, CNV values, etc) into discrete random 

variables of three states for the following reasons.  First, since the multi-omics data include 

both discrete (mutations, SNPs) and continuous (other data types) measurements, it is easier 

to formulate models of discrete random variables than hybrid models of both discrete and 

continuous random variables.  Second, models of discrete random variables can better 

accommodate the combinatorial functions of gene regulation than models of continuous or 

hybrid random variables.  A rare but possible example is the XOR function of binary 

variables.  Suppose either of two transcription factors can activate a target gene, but the 

presence of both has an antagonistic effect, then the target gene expression 𝑌 is the XOR 

function of the activities of two transcription factors 𝑋1 and 𝑋6: 𝑌 = 𝑋1 ∙ 𝑋6 + 𝑋1 ∙ 𝑋6.  This 

combinatorial function does not have an obvious extension in continuous variables.  Third, 

tristate discretization is a reasonable choice in this work since it is compatible with the nature 

of most data types: mutations (0: no mutation or synonymous mutation, 1: missense mutation, 

2: nonsense mutation), SNPs (0 and 2: homozygote major and minor alleles, 1: heterozygote 

allele), and CNVs (0: no change, 1: amplification, 2: deletion) all have three states.  Other 

types of data (such as expressions and protein/DNA modifications) do not have strong 

preference for a particular number of discrete states, yet trinary states are compatible with 

other variables, yield better resolution than binary states, and still have a manageable number 

of combinatorial functions to exhaust.  Fourth, information about continuous variable 

measurements will be incorporated in a quantization procedure introduced below.  

Continuous measurement levels are converted into probabilities of hidden states, hence the 

arbitrary discretization thresholds are not needed.    
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We proposed a probabilistic quantization procedure to convert an entry value into a trinary 

probability vector.  For each dataset, denote 𝑧;< the observed value of probe 𝑖 in sample 𝑗, and 

𝑥;< its discrete hidden state.  The following procedures convert 𝑧;< into a probability vector 

(𝑃 𝑥;< = −1 , 𝑃 𝑥;< = 0 , 𝑃 𝑥;< = 1 ). 

 

 

Figure X4: Probabilistic quantization algorithm 

 

Input: A continuous omic data matrix 𝒁 with rows and columns as probes and samples. 

 

Output: Trinary probability vectors of the hidden states 𝑥;< for each entry 𝑧;< in 𝒁. 

 

Procedures: 

 

1. If 𝑧;< has a missing value, then assign an equal probability to each state 

𝑃 𝑥;< = −1 , 𝑃 𝑥;< = 0 , 𝑃 𝑥;< = 1 = (1
2
, 1
2
, 1
2
). 

2. Rank-transform 𝑧;< into a cumulative distribution function (CDF) value 𝑦;< ∈ 0,1 .  

For the datasets reporting relative values (e.g., Agilent microarrays), rank 

transformation is applied to the entire matrix.  For the datasets reporting absolute 

values (e.g., Affymetrix microarrays or RNA-Seq data), each feature (probe or gene) 

is rank-transformed separately.  This is because we want to capture the relative 

variation of feature values across different samples instead of comparing the values of 

distinct features that might have quite different intrinsic levels.  DNA methylation 

data are scaled in 0,1  thus need not to be rank-transformed. 
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3. Convert 𝑦;< into a probability vector 𝑃 𝑥;< = −1 , 𝑃 𝑥;< = 0 , 𝑃 𝑥;< = 1  with a 

parametric quantization function.  Intuitively, 𝑃 𝑥;< = 1 	is positively and 

monotonically related to 𝑦;<, and 𝑃 𝑥;< = −1  is negatively and monotonically 

related to 𝑦;<.  We chose polynomial functions 𝑓F and 𝑓F as the quantization functions. 

𝑃 𝑥;< = +1 𝑦;<, 𝛾 = 𝑓F 𝑦;< ≡ 𝑦;<F 

                                              𝑃 𝑥;< = −1 𝑦;<, 𝛾 = 𝑓F 𝑦;< ≡ (1 − 𝑦;<)F                  (1) 

𝑃 𝑥;< = 0 𝑦;<, 𝛾 = 1 − 𝑃 𝑥;< = +1 𝑦;<, 𝛾 − 	𝑃 𝑥;< = −1 𝑦;<, 𝛾  

Parameter 𝛾 controls the soft threshold of assigning 𝑥;< to +1 or −1.  A higher 𝛾 lifts 

the threshold on 𝑦;< (and 1 − 𝑦;<) of calling the hidden state 𝑥;< to be +1 (or −1).  

Thus a higher 𝛾 raises 𝑃(𝑥;< = 0) and reduces 𝑃(𝑥;< = ±1). 

4. Quantization results are sensitive to 𝛾 values.  To reduce the bias induced by a 

specific quantization function we assigned weights (prior) on 𝑓F and 𝑓F functions and 

integrated the transformed values over a family of quantization functions.  In this 

work we chose an exponential prior 𝑒J(FJ1) and restricted 𝛾 ∈ [1,∞).  The averaged 

quantization outputs are: 

𝑃 𝑥;< = +1 𝑦;< = 𝑒J(FJ1)
L

1
𝑓F 𝑦;< 	𝑑𝛾 =

𝑦;<
(1 − log 𝑦;<)

 

																									𝑃 𝑥;< = −1 𝑦;< = 𝑒J(FJ1)L
1 𝑓F 𝑦;< 	𝑑𝛾 =

1JQRS
(1JTUV(1JQRS))

      (2)   

𝑃 𝑥;< = 0 𝑦;< = 1 − 𝑃 𝑥;< = +1 𝑦;< − 𝑃 𝑥;< = −1 𝑦;<  

The exponential prior 𝑒J(FJ1) was chosen for the following reasons.  First, large 

𝛾	values are penalized because they assign the probability mass to 𝑥;< = 0 for most 

𝑦;<	values.  An exponential prior naturally penalizes large 𝛾 values.  Second, it 

ensures the existence of the integrals in equation 1.  Third, the requirements that 

𝑃 𝑥;< = +1 𝑦;< = +1 = 1 and 𝑃 𝑥;< = −1 𝑦;< = 0 = 1		are satisfied.  Fourth, the 
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most justified single value of 𝛾 is 𝛾 = TUV 2
TUV 6

 because it assigns an equal probability (1
2
) 

for each state when the input CDF 𝑦;< = 0.5.  The marginal quantization curves 

indeed resemble the quantization curves generated by 𝛾. 

 

 

 

These procedures convert a data matrix into a data probability tensor.  For visualization 

convenience, we also reported the rank-transformed CDF matrix.  Figure X5 illustrates the 

probabilistic quantization procedures. 

 

 

Figure X5: Illustration of probabilistic quantization. 

 

 

 

 

Genes are the elementary units in our analysis.  For each data type, we aggregated all the 

relevant datasets and generated a gene-based matrix (tensor) reporting the CDF value (or 
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probability vector) of each gene in each sample.  Multiple measurements of the same genes 

take place at two levels.  First, there are multiple datasets generated by multiple institutions 

with different platforms.  For instance, in GBM there are 4 mRNA expression datasets using 

Illumina HiSeq (1), Agilent G4502A microarrays (2), Affymetrix U133A microarrays (1).  

Second, a gene is often measured by multiple probes within a dataset.  For instance, in an 

Affymetrix microarray the expression of a gene is measured by multiple probes.  We 

aggregated multiple measurements of the same genes with two-step procedures.  Within each 

dataset, we generated gene-level data by merging the probe data corresponding to the same 

gene.  The CDF value of each gene in each sample is the average over all probe values of the 

corresponding gene and sample.  The gene-based datasets from multiple sources are further 

merged into one dataset.  Likewise, entries of the same gene and sample from multiple 

sources are merged by taking an average.  The CDF values of the merged datasets are then 

converted into probability vectors with the aforementioned procedures.  CNV and SNP data 

are not converted into gene-based matrices.  CNV probes are partitioned into chromosomal 

segments (see the description below), whereas SNP loci are the basic units in the Association 

Models. 

 

1.5 CNV data processing 

 

The CNV data need to be processed separately as there are two unique problems when 

incorporating them in the Association Models.  First, the aforementioned probabilistic 

quantization procedures overestimate amplification and deletion events.  Second, TCGA 

CNV data are generated by dense CGH microarrays covering 941662 probes.  The large 

number of probes both defy efficient construction of Association Models and are highly 

redundant.  To resolve those problems, we modified probabilistic quantization to correct the 
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biases and further partitioned chromosomes into segments according to probe-level CNV 

data. 

 

1.5.1 CNV data normalization 

 

The underlying assumption of the probabilistic quantization procedure mismatches the 

empirical characteristics of CNV measurements.   Equation 2 gives the probability of each 

trinary state 𝑥 given the CDF value of its measurement outcome 𝑦.  For each probe, 𝑦 is 

uniformly distributed in [0,1].  Thus the probability of amplification events in the data (𝑥 =

+1) is  

𝑃 𝑥 = +1 = 𝑃 𝑦 𝑃 𝑥 = +1 𝑦 	𝑑𝑦 = Q
1JTUVQ

	𝑑𝑦 ≈ 0.3663.1
Y 	1

Y       (3) 

Similarly, 𝑃(𝑥 = −1) ≈ 0.3663 and 𝑃(𝑥 = 0) ≈ 0.2674.  These probabilities indicate that 

more than two thirds of the probe-level CNV data encounter amplifications or deletions.  In 

reality, only a small fraction of CNV data entries deviate from normal values: about 1% of 

the data points have log6	ratios ≥ 1 or ≤ −1.  Therefore, the quantization function in 

equation 2 severely distorts the global characteristic of the CGH array data. 

 

To reduce this distortion we introduced an extra parameter 𝛽 to the marginal quantization 

functions in equation 2: 

𝑃 𝑥;< = +1 𝑦;< =
𝑦;<\

1 − log 𝑦;<\
 

                                               𝑃 𝑥;< = −1 𝑦;< = (1JQRS)]

1JTUV (1JQRS)]
            (4) 

𝑃 𝑥;< = 0 𝑦;< = 1 − 𝑃 𝑥;< = +1 𝑦;< − 𝑃 𝑥;< = −1 𝑦;<  
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The new 𝑃 𝑥;< = +1 𝑦;<  and 𝑃 𝑥;< = −1 𝑦;<  shrink with increasing 𝛽 values.  We 

adjusted 𝛽 to make the global distribution (𝑃 𝑥 = −1 , 𝑃 𝑥 = 0 , 𝑃 𝑥 = +1 ) obtained 

from equation 4 close to the empirical distribution.  For each CGH dataset, we counted the 

fractions of entries exceeding log6
2
6
= 0.585 (𝑓1) and below log6

1
6
= −1 (𝑓6).  For 

simplicity we set the global empirical probability of amplification and deletion to be equal 

𝑃 𝑥 = +1 = 𝑃 𝑥 = −1 = 1
6
𝑓1 + 𝑓6 .  We then determine the parameter value 𝛽 that fit 

the following equality: 

 

Q]

1JTUV Q]
	𝑑𝑦1

Y ≈ 𝑃 𝑥 = +1   

(1JQ)]

1JTUV (1JQ)]
	𝑑𝑦1

Y ≈ 𝑃 𝑥 = −1       (5) 

 

The estimated parameter 𝛽 is substituted in equation 4 in adjusted probabilistic quantization.  

The adjusted probability vector is substituted back in equation 2 and converts into an adjusted 

CDF value.  Figure X6 demonstrates the quantization outcomes of BLCA chromosome 1 

CNV data.  The CNV data (top rows) have sparse entries undergoing amplifications or 

deletions, and the log6 ratios are sharply concentrated in 0.  After ordinary probabilistic 

quantization (equation 2, middle rows), many more entries undergo copy number alterations, 

and the CDF values are uniformly distributed in [0,1], which contradicts with the 

observations from the raw data.  In contrast, after adjusted probabilistic quantization 

(equation 4, bottom rows), amplification and deletion entries become sparse again, and the 

adjusted CDF values are sharply concentrated in 0.5. 
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Figure X6: Adjusted quantization outcomes of BLCA chromosome 1 CNV data.  The top row 

displays the distribution of the log2 probe values and their heat map.  The middle row 

displays the distribution of the CDF values and their heat map.  The bottom row displays the 

distribution of the adjusted CDF values and their heat map. 

 

 

 

 

1.5.2 Generating segment CNV data 

 

It is neither necessary nor sufficient to construct Association Models with the high-

dimensional probe-level CNV data.  Most CNV events cover long stretches of DNAs or even 

the entire chromosome arms.  Moreover, many CNV events recur in multiple patients of the 

same cancer type.  These properties of copy number variations enable us to partition 

chromosomes into a small number of segments and reduce the near one million dimensional 
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probe-level CNV data into an about one hundred dimensional segment-level CNV data.  We 

proposed an algorithm to perform this dimension reduction task.  In brief, it comprises three 

major parts: (1) partition the chromosomes of each sample into segments, (2) merge the 

segment boundaries from multiple samples to form global segment boundaries of the entire 

dataset, (3) generate segment-level CNV data. 

 

Partitioning the chromosomes of each sample into segments 

 

The input data of this part are the adjusted probability vectors of all CNV probes in a sample.  

We sorted probes by their coordinates and considered the probe data of one chromosome 

each time.  A segment is a collection of consecutive probes on the same chromosome.  We 

assumed that the CNV data of all probes on the same segment were independently drawn 

from a multinomial distribution over the hidden states (−1,0,1).  The CNV measurement of a 

probe gives a fractional count of each hidden state rather than a unit count to the most likely 

hidden state.  The log likelihood of a segment can be thus evaluated.  Formally, suppose a 

segment consists of 𝑚 probes 1,⋯ ,𝑚, and 𝒑; ≡ (𝑝;J1, 𝑝;Y, 𝑝;1) denotes the adjusted 

probability vector of probe 𝑖.  Define 𝑵1Jd = (𝑁1JdJ1 , 𝑁1JdY , 𝑁1Jd1 ) ≡ 𝒑;d
;f1  the total 

counts of the hidden states over probes 1 −𝑚, and 𝑷1Jd = (𝑃1JdJ1 , 𝑃1JdY , 𝑃1Jd1 ) ≡

𝑵hij
khijlh

lmih
 its normalized probability vector.  𝑷1Jd gives the multinomial distribution of the 

fractional counts in probes 1 −𝑚.  The log likelihood of the probe data becomes 𝐿1Jd ≡

𝑁1Jdo1
ofJ1 log 𝑃1Jdo .  A partition (1,⋯ , 𝑖)(𝑖 + 1,⋯ ,𝑚) splits the 𝑚 probes into two 

segments.  It adds two degrees of freedom to the model (one more multinomial distribution 

with three components).  Thus the BIC score of the partition becomes 𝐿1J; + 𝐿 ;p1 Jd −

𝐿1Jd − 0.5 ∙ 2 ∙ log𝑚.  Based on the BIC scores, we initially included all probes on a 
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chromosome in a segment 𝑆 and incurred a function partition(𝑆) to recursively partition 𝑆 

into smaller segments: 

 

Figure X7:	partition(𝑆) algorithm to partition a chromosomal segment 

 

Input: Adjusted probability vectors 𝒑; for probes 𝑖 = 1 − |𝑆|. 

 

Output: A partition of 𝑆 into smaller segments. 

 

Procedures: 

 

1. Evaluate 𝐿y. 

2. Find the binary partition (𝑆1, 𝑆6) of 𝑆 that maximizes 𝐿yh + 𝐿yz. 

3. Stop if the BIC score 𝐿yh + 𝐿yz − 𝐿y − 0.5 ∙ 2 ∙ log𝑚 ≥ 0. 

4. Otherwise incur partition(𝑆1) and partition(𝑆6). 

 

 

Merging the segment boundaries from multiple samples to form global segment boundaries 

 

There are three types of CNV events in cancers.  Recurrent aneuploidies include frequent 

amplifications/deletions of a long stretch of DNA (often the entire chromosome arm) that 

occur in many tumors.  Recurrent focal CNV events include frequent amplifications/deletions 

of a narrow chromosomal segment which typically harbors oncogenes or tumor suppressors.  

Sporadic CNV events occur randomly and infrequently on chromosomes.  The segments 

generated by the first two types of CNV events are representative for all (or most) tumors of a 
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cancer type.  Those global segments can thus reduce the high-dimensional probe-level CNV 

data into a low-dimensional segment-level CNV data. 

 

The segment boundaries of all samples manifest all those three types of CNV events.  While 

the boundary positions of sporadic CNV segments are randomly distributed, the boundary 

positions of recurrent CNV segments are often concentrated in narrow ranges.  Therefore, 

finding boundaries of global CNV segments amounts to detecting narrow bands 

encompassing dense sample segment boundaries.  We proposed an algorithm to merge the 

segments from multiple samples according to this intuition.  Conceptually, we subdivided a 

chromosome into windows and counted the number of boundaries within each window.  A 

band of consecutive windows with high boundary counts contains a candidate location for a 

global segment boundary.  This assertion depends on both the window size and the threshold 

of boundary counts.  We chose the persistent bands whose boundary counts (1) far surpass 

the expected boundary counts according to a randomized null model and (2) remain 

significant over a wide range of window sizes and threshold values.  The detailed procedures 

are described below. 

 

Figure X8: mergebds algorithm to merge boundaries of all samples on the same 

chromosome 

 

Input: Segment boundaries from all samples, ranges of window sizes (in terms of the 

numbers of probes), and boundary counts thresholds. 

 

Output: Global segment boundaries. 
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Procedures: 

 

1. Vary the window size and subdivide a chromosome into windows accordingly. 

2. Count the number of boundaries in each window for each window size. 

3. For each window size and threshold value, identify the bands of consecutive windows 

whose boundary counts surpass the threshold. 

4. For each window size, identify the threshold value intervals which give rise to the 

same numbers of bands with dense segment boundaries.  Identify the unique bands 

that appear in one or multiple threshold value intervals.  For each unique band, 

document the threshold interval where it is valid. 

5. Apply two filtering criteria to select the unique bands. 

5.1 The null model assumes that the boundaries are uniformly distributed among all 

the windows.  The maximal boundary count of a unique band should be 5 standard 

deviations more than the mean according to the null model. 

5.2 Under the same null model approximate the count of boundaries in a window by a 

binomial distribution.  The threshold interval of a unique band should exceed the 

mean difference of boundary counts between two randomly selected windows. 

6. For each window size, combine the selected unique bands which are overlapped. 

7. Find the selected unique bands which persistently appear in the highest number of 

window sizes.  Merge the persistent bands which are overlapped. 

8. Return the centers of the merged persistent bands as the global segment boundaries. 

 

Figure X9 illustrates the procedures of the segment boundary merging algorithm using the 

LIHC chr1 CNV data.  The segment boundaries from all samples are marked by yellow dots 

on the top left panel.  They are concentrated in the centromere, middle of the p arm and 
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several other locations.  The boundary densities are peaked in those locations and relatively 

robust against window sizes (middle and bottom left panels).  We inferred the global segment 

boundaries and marked them in the probe-level CNV data (blue vertical lines in top right 

panel) as well as the boundary densities (black bars in middle and bottom right panels).  The 

visualization of probe-level CNV data and global segment boundaries of all chromosomes in 

all cancer types are reported in Supplementary Data. 

 

 

Figure X9: Illustration of CNV segmentation on LIHC chromosome 1 CNV data.  The top 

row displays the adjusted CNV probe CDF values with sample-specific boundaries (yellow 

marks on left) and global segment boundaries (cyan lines on right).  The middle and bottom 

rows display the densities of boundaries within windows of 300 and 400 probes (left) and the 

marks of global boundaries (right). 
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Generating segment-level CNV data 

 

Given the global segment boundaries, it is straightforward to form global segments and infer 

their CNV data.  Only one issue needs to take into account when generating global segments 

from their boundaries.  A focal CNV segment is embedded within a long-range CNV 

segment.  Thus the two sides of the long-range segment can have highly correlated CNV data 

but are separated by the focal segment boundaries.  To fix this problem, we first partitioned a 

chromosome into segments according to the global segment boundaries, and then merged the 

non-adjacent segments with correlated CNV data.  The adjusted CDF value of a segment 

CNV is simply the average over the CDF values of its constituent probes.  Consequently, we 

generated segment-level CNV data directly from the probe-level CNV data.   

 

The local and global segment boundaries of all chromosomes and all cancer types are 

reported in Supplementary Data. 

 

1.6 Dimension reduction of molecular alteration data 

 

The dimension of probe-level CNV data is greatly reduced by the aforementioned 

segmentation algorithm.  Yet other types of molecular alteration data still possess hundreds 

or thousands of features, which are candidate effectors of the Association Models.  

Dimension reduction of candidate effectors is essential for association inference since (1) 

existence of multiple collinear features prevents identification of the true explanatory factors, 

(2) overfitting will likely occur when the data dimension far exceeds the sample size, (3) 

computational complexity of association inference also scales with the number of candidate 



 33 

effectors.  We adopted two dimension reduction approaches to the molecular alteration data.  

For DNA methylation and microRNA expression data, we clustered genes/mirs and used the 

average profiles over cluster members as candidate effectors.  For all types of molecular 

alteration data, we also excluded the features which had either many missing entries or very 

little variation across samples. 

 

1.6.1 Clustering DNA methylation and microRNA expression data 

 

The TCGA DNA methylation data was generated by the Illumina HumanMethylation450 

BeadChips.  Methylation levels of cytosines on gene promoters were reported.  We converted 

the probe-level DNA methylation data into gene-level data by taking the mean of the beta 

values over the probes on each gene promoter.  The TCGA microRNA expression data was 

generated by RNAseq data and already summarized at gene levels. 

 

We clustered the DNA methylation or microRNA expression data by combining clique 

finding and hierarchical clustering algorithms.  Members within a clique are tightly correlated 

but relatively small.  Thus we treated cliques as basic subunits and then applied hierarchical 

clustering to those subunits.  The procedures are described below. 

 

 

Figure X10: Clustering algorithm for DNA methylation and microRNA expression data. 

 

Input: A DNA methylation or microRNA expression data matrix. 

 

Output: Clusters genes or microRNAs of the data matrix. 
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Procedures: 

 

1. Find cliques in terms of correlation coefficients between genes (or microRNAs). 

1.1 Sort correlation coefficients of gene pairs in a descending order. 

1.2 Subdivide the sorted correlation coefficient values into intervals with increment 

0.001. 

1.3 Start with the top interval [0.999,1] and construct a disconnected graph 𝐺 with all 

genes/mirs as singleton nodes.  Perform the following steps and decrement the 

interval.  Stop when the interval becomes 0.499,0.5 . 

1.3.1 Add node pairs within the correlation coefficient interval as edges of 𝐺. 

1.3.2 Merge cliques obtained from the previous steps with the newly added 

edges in 𝐺. 

1.3.3 Generate new cliques from the newly added edges. 

1.3.4 Merge the two types of cliques generated from 1.3.2 and 1.3.3. 

2. Apply hierarchical clustering to cliques in terms of Euclidean distances. 

2.1 Treat each clique as a cluster.  Obtain the average DNA methylation/microRNA 

expression profile of each cluster.  Calculate the Euclidean distances between the 

average profiles of cluster pairs. 

2.2 Continue merging clusters until the maximum correlation coefficient between 

cluster pairs < 0.3. 

2.2.1 Choose the cluster pair with the smallest Euclidean distance. 

2.2.2 Merge the selected cluster pair into one cluster.  Update the average profile 

of the merged cluster and its Euclidean distances to other clusters. 
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1.6.2 Trimming molecular alteration data 

 

We trimmed the features in the molecular alteration data that had either many missing entries 

or very little variation across valid samples.  The feature selection criteria for each type of 

data are described below. 

 

1. Mutation: A gene should have valid entries in ≥ 10% and 10 of valid samples, and 

should have mutations in ≥ 1% and 5 of valid samples. 

2. DNA methylation: A gene should have valid entries in ≥ 20% or 50 of valid samples, 

and should have hyper-methylated entries (𝛽 ≥ 0.7) and hypo-methylated entries 

(𝛽 ≤ 0.3) in ≥ 10% or 10 of valid samples. 

3. MRNA and microRNA expressions: a gene/mir should have valid entries in ≥ 25% 

of valid samples, the number of nonzero entries ≥ 25% of the number of zero entries, 

and the number of missing and zero entries < 75% of samples. 

4. Keep all the protein expression and phosphorylation features. 

 

1.7 Calculating shortest path distances between candidate effectors and 

targets in the unified network 

 

To prioritize candidate effectors for target genes when building Association Models, we need 

to calculate the shortest distances between candidate effectors and targets in the unified 

network of molecular interactions.  Effectors and targets are connected by valid paths which 

satisfy the following criteria: (1) the source (the first molecule in the path) is an effector in 

the TCGA data, (2) the destination (the last molecule in the path) is a target in the TCGA 

data, (3) the information flow direction along the path is consistent with the information flow 
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direction in each interaction, (4) the last portion of a valid path constitutes a regulatory link 

from a regulator to the target, such as ProteinDNA – DNARNA and ProteinDNA – MirRNA, 

(5) the path length ≤ 10, (6) the path does not self-intersect.  Two challenges have to be 

addressed when calculating shortest path distances.  First, it is intractable to enumerate the 

astronomical number of valid paths.  Thus we need to calculate distances without listing valid 

paths.  Second, some types of edges in the unified network have zero distances since they do 

not represent distinct steps in gene regulation.  Instances of zero-distance edges include the 

edges of the central dogma information flow of the same genes (DNA,mRNA) 

(mRNA,protein), the edges from protein complex subunits to protein complexes and vice 

versa, and the edges from gene class members to gene classes and vice versa, all have zero 

distances.  We proposed the following algorithm to calculate the shortest path distances 

between candidate effectors and targets. 

 

 

Figure X11: Algorithm of calculating the shortest path distances. 

 

Input: The unified network 𝐺, the maximum path length 𝑙d��. 

 

Output: A sparse distance matrix 𝐷 between molecule pairs.  𝐷;< = −1 if the shortest path 

distance between 𝑖 and 𝑗 is 0, and  𝐷;< = 0 if the distance between 𝑖 and 𝑗 is not considered. 

 

Procedures: 

 

1. Start with a sparse matrix 𝐷� with all entries are 0s. 
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2. Find the molecule pairs connected by paths of zero distance.  They include the paths 

consisting of the following types of interactions: DNA→mRNA→protein of the same 

genes, DNA→microRNA of the same microRNAs, gene class↔members, microRNA 

class↔members, protein complex↔members.  Set their distances in 𝐷� to -1. 

3. Find the molecule pairs connected by edges of unit distance.  They include edges in 

all other types of interactions.  Set their distances in 𝐷� to 1. 

4. Identify the set of regulators 𝑅 consisting of transcription factors and microRNAs.  

Set 𝑑 = 2. 

5. While 𝑑 ≤ 𝑙d��, repeat the following subroutines. 

5.1 Construct a sparse graph adjacency matrix 𝐺1.  𝐺1 𝑖, 𝑗 = 1	if	𝐷� 𝑖, 𝑗 = 1 

according step 3. 

5.2 Construct a sparse graph adjacency matrix 𝐺6.  𝐺6 𝑗, 𝑘 = 1	if	𝐷� 𝑗, 𝑘 = 𝑙d�� −

1	and	𝑘	is	a	regulator. 

5.3 Compute 𝐺2 = 𝐺1 ∙ 𝐺6.  If 𝐺2 𝑖, 𝑘 > 0	and	𝐷� 𝑖, 𝑘 = 0, then	set	𝐷� 𝑖, 𝑘 =

𝑙d��. 

5.4 𝑑 ← 𝑑 + 1. 

6. Construct a sparse distance matrix 𝐷 from 𝐷�.  For each pair of molecules (𝑖, 𝑗), find 

the set of all regulators 𝑅;<, such that for each 𝑟 ∈ 𝑅;<, 𝐷� 𝑖, 𝑟 > 0, 𝐷� 𝑟, 𝑗 = 1.  

𝐷 𝑖, 𝑗 = min
�∈�RS

𝐷� 𝑖, 𝑟 + 1. 

 

1.8 Processing external data 

 

The mRNA expression data of all external datasets (METABRIC, REMBRANDT, GEO 

data, CCLE, Illumina Bodymap) undergo rank transform and probabilistic quantization 
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analogous to the normalization procedures for TCGA mRNA expression data.  The CNV data 

of all external datasets (METABRIC, REMBRANDT, CCLE) also undergo rank transform 

and adjusted probabilistic quantization analogous to the normalization procedures of TCGA 

CNV data.  We did not apply the chromosome partitioning algorithm to the CNV data of 

external datasets.  Instead, the CNV segments of TCGA BRCA and GBM data are used in 

validating METABRIC and REMBRANDT data.  CCLE CNV data provides the 

chromosomal segments.  We thus used the CCLE CNV segment data for validation.  Other 

types of CCLE omic data that appeared in TCGA (mutations, DNA methylations, microRNA 

expressions, protein expressions and phosphorylations) underwent the same processing 

analogous to TCGA data.  CCLE IC50 drug response data and Achilles gene dependency data, 

underwent rank transform. 

 

The Illumina Bodymap data comprises 16 samples from distinct tissue types.  We defined a 

gene specifically expressed in a tissue if its CDF value was at least two folds as those of the 

remaining tissues.  The 16 tissue types and the number of tissue-specific genes for each tissue 

are listed in Table X3. 

 

 

Table X3: Numbers of tissue-specific genes in Illumina Bodymap 

 

index tissue # genes 

1 adipose tissue 98 

2 adrenal gland 994 

3 brain 1362 

4 breast 214 

5 colon 62 
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6 heart 105 

7 kidney 232 

8 leukocyte 865 

9 liver 385 

10 lung 367 

11 lymph node 369 

12 ovary 518 

13 prostate gland 297 

14 skeletal muscle tissue 214 

15 testis 1870 

16 thyroid gland 542 

 

 

The Roadmap Epigenomic data input comprises the chromosomal segments labeled with the 

25 predicted epigenomic states listed on Table X2 for all samples.  To further simplify the 

data we converted these labeled segments into the binary states of active transcription for all 

genes over all samples (tissue types).  The algorithm below describes the conversion into 

binary active transcription states.  Generally, we required that the epigenomic structure of a 

gene comprised transcription start sites, strongly or weakly transcribed elements, and 

consistent directions of promoters, 5’ and 3’ sites.  

 

Figure X12: Algorithm of converting the segments labeled with epigenomic states into the 

active transcription states of individual genes. 

 

Input: Labeled segments from a tissue type overlapped with the span of a gene. 

 

Output: The binary active transcription state of the gene. 
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Procedures: 

 

If the gene satisfies the following conditions, then assign its active transcription state to 1.  

Otherwise assign its active transcription state to 0. 

 

1. It has a TssA segment near the start site of the gene.  Its distance to the start site ≤ 1
2
 

of the gene length. 

2. It has a Tx or TxWk segment downstream of the TssA segment. 

3. If it has a PromU and (PromD1 or PromD2) sites, then some PromU is in the 

upstream of some (PromD1 or PromD2) sites.  Some PromU is in the upstream of 

TssA, some (PromD1 or PromD2) is in the downstream of TssA. 

4. If it has Tx5' and Tx3' sites, then some Tx5' is in the upstream of some Tx3'.  Some of 

both Tx5' and Tx3' sites are downstream of the TssA segment. 

 

 

2 Inferring IHAS from TCGA data 

 

2.1 Association Models 

 

2.1.1 An exponential family model 

 

We specified the association between effectors and a target gene expression by an 

exponential family model.  The model resembles logistic regression but allows associations 
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with discrete and continuous independent random variables.  Denote 𝑦 a target gene 

expression vector over samples, and 𝒙 = (𝑥1,⋯ , 𝑥�) its effector vectors.  The conditional 

probability 𝑃(𝑦|𝒙) is expressed as 

 

𝑃 𝑦 𝒙 = 1
�(𝒙)

𝑒 �R�R(�R)Q�
Rmh , 𝜆; ≥ 0	∀𝑖.        (6) 

 

𝑓;(𝑥;) is the feature function relating the effector value to the target value.  If the effector 

input is a numerical variable (segment CNV, DNA methylation, microRNA expression, 

protein phosphorylation), then only two functions are allowed: 𝑓; 𝑥; = 𝑥; and 𝑓; 𝑥; = −𝑥; 

denote that the effector (𝑥) activates or represses the target gene expression (𝑦) respectively.  

If the effector input is a categorical variable (mutation and SNP), then the following twelve 

functions in Table X4 are allowed: 

 

Table X4: The possible feature functions of categorical variables. 

 

index 𝑥 = 0 𝑥 = 1 𝑥 = 2 index 𝑥 = 0 𝑥 = 1 𝑥 = 2 

𝑓Y 1 0 −1 𝑓� 1 −1 −1 

𝑓1 1 −1 0 𝑓� −1 1 1 

𝑓6 −1 0 1 𝑓� −1 1 −1 

𝑓2 −1 1 0 𝑓� 1 −1 1 

𝑓  0 1 −1 𝑓1Y −1 −1 1 

𝑓¡ 0 −1 1 𝑓11 1 1 −1 

 

If 𝑥 stands for a mutation variable, then roughly 𝑓6, 𝑓2, 𝑓�, 𝑓1Y are activator functions, and 

𝑓Y, 𝑓1, 𝑓�, 𝑓11 are inhibitor functions, while the directions of other functions are ambiguous. 

𝑍 𝒙 = 𝑒 �R�R(�R)Q�
Rmh1

QfJ1  is the partition that normalizes the conditional probabilities. 
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We chose this exponential family model instead of other common models (such as linear or 

nonlinear regressions, Bayesian networks, conditional random fields and neural networks) to 

build Association Models for several reasons.  It contains combinatorial feature functions 

(such as those in Table X4) directly in its formula (equation 6).  Other models may 

accommodate similar feature functions but require more complicated formulations.  An 

exponential family model can incorporate additional covariates by multiplying exponential 

feature functions.  Parameter estimation is achieved by a straightforward gradient descent 

algorithm (see the description below), which can be efficiently implemented and amenable 

for parallelization.   

 

Although an Association Model is based on logistic regression, it differs from regular logistic 

regression models in several aspects.  In standard logistic regression, the dependent variable 

(𝑦) is a discrete random variable specifying the category of an event.  In an Association 

Model, 𝑦 is essentially a continuous random variable (gene expression level) but converted 

into a trinary random variable through probabilistic quantization.  In standard logistic 

regression, parameters (𝜆;’s in equation 6) are estimated by applying an optimization 

algorithm directly to the data.  In building associations from the multi-omics data, a large 

number of candidate effectors are correlated.  To find the effector molecular alterations 

which likely modulate target gene expressions, we incurred a series of filtering and model 

selection processes (see the descriptions below).  

 

Recall that we converted the effector and target feature values into tristate probability 

vectors.  The converted probability vector of a feature value is viewed as fractional counts of 

possible states for an observed data point.  For instance, if the CDF value 𝑦 of an mRNA 
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expression value is 0.8, then according to equation 2 

𝑃 𝑥 = −1 𝑦 = 0.8 , 𝑃 𝑥 = 0 𝑦 = 0.8 , 𝑃 𝑥 = −1 𝑦 = 0.8 = 0.0766,0.2693,0.6541 .  

Thus this observed value assigns the fractional counts 0.0766, 0.2693, 0.6541 to the trinary 

states 𝑥 = −1, 0, 1 respectively. 

 

We introduce the following notations to represent the observed data and the log likelihood 

function in terms of fractional counts.  Suppose there are 𝑚 samples, and effectors 𝒙< =

(𝑥1<,⋯ , 𝑥�<) and target 𝑦< are the observed CDF (or categorical) values on sample 𝑗.  Each 

𝑥;< (𝑖 = 1,⋯ , 𝐹) is converted into fractional counts 𝑞;<o, 𝑘 = −1, 0, 1, and each 𝑦< is 

converted into fractional count 𝜌<o according to non-adjusted or adjusted probabilistic 

quantization (equation 2 or 4).  There are 3� configurations of effector feature values where 

each component effector takes values in {−1,0,1}.  Likewise there are 3�p1 configurations of 

effector and target feature values.  Denote 𝐶𝒙 = 𝑐1,⋯ 𝑐�  a configuration of effector feature 

values, and 𝐶𝒙,Q = (𝑐1,⋯ 𝑐�, 𝑐�p1) a configuration of effector and target feature values, with 

each 𝑐; ∈ {−1,0,1}.  The fractional counts of configurations 𝐶𝒙, 𝐶Q and 𝐶𝒙,Q over all samples 

are 

𝑁 𝐶𝒙 = 𝑞;<ªR.
�

;f1

d

<f1
 

𝑁 𝐶Q = 𝜌<ª�«h.
d

<f1
 

                                                   𝑁 𝐶𝒙,Q = 𝑞;<ªR
�
;f1

d
<f1 ∙ 	𝜌<ª�«h.       (7)          

 

The log likelihood function of the observed data 𝐷 is summed over possible configurations: 
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ℒ 𝐷 = log𝑃(𝒙<) − log 𝑍 𝒙< + 𝜆;𝑓; 𝑥;< 𝑦<
�

;f1

d

<f1
 

																	= {	𝑁 𝐶𝒙­𝒙,® ∙ log 𝑃(𝐶𝒙) + 𝑁 𝐶𝒙,Q ∙ [− log 𝑍( 𝐶𝒙) + 𝜆;�
;f1 𝑓;(𝑐;)𝑐�p1]	}.    (8)  

 

where the prior log 𝑃(𝐶𝒙) is uniform over the effector configurations 𝐶𝒙.  𝑓;(. ) is the feature 

function of effector 𝑖 on the target gene expression, as described in equation 6 and Table X4. 

 

The parameters Λ = (𝜆1,⋯ , 𝜆�) are estimated by maximizing the log likelihood function 

ℒ 𝐷|Λ .  We first derive the gradient ∇ℒ 𝐷|Λ  and Hessian ℋ(𝐷|Λ) of ℒ 𝐷|Λ . 

 

∇ℒ 𝐷|Λ ≡
𝜕ℒ 𝐷|Λ
𝜕𝜆1

,⋯ ,
𝜕ℒ 𝐷|Λ
𝜕𝜆�

, 

³ℒ ´|µ
³�R

= 𝑁 𝐶𝒙,Q ∙ {𝐶Q­𝒙,® 𝑓; 𝑐; −
�R ª¶R ∙ ·

¸S¹S º¶R
�
Smh J·i ¸S¹S º¶R

�
Smh

1p· ¸S¹S º¶R
�
Smh p·i ¸S¹S º¶R

�
Smh

}.         (9) 

 

 

ℋ;< 𝐷 Λ ≡
𝜕6ℒ 𝐷|Λ
𝜕𝜆;𝜕𝜆<

 

                   = −𝑁 𝐶𝒙,Q ∙
�R ª¶R �S ª¶S (· ¸S¹S º¶R

�
Smh p·i ¸S¹S º¶R

�
Smh p )

(1p· ¸S¹S º¶R
�
Smh p·i ¸S¹S º¶R

�
Smh )z

­𝒙,® .        (10) 

 

The maximum likelihood parameter Λ was numerically estimated using Newton Raphson’s 

method.  Set an initial value ΛY = (1,⋯ ,1).  Iteratively execute the following updates until 

convergence. 

 

Γ¼ = Λ¼ − ∇ℒ 𝐷|Λ¼ ∙ ℋJ1 𝐷|Λ¼ . 
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                                               𝜆;¼p1 = max 𝛾;¼, 0 .                              (11) 

 

The maximum log likelihood value can be evaluated by substituting Λ back to equation 8. 

 

When building an Association Model, we incrementally added candidate effectors that 

provided the best extra explanatory power to the data given the current list of effectors.  This 

procedure requires comparison of the log likelihood values between the current model and a 

new model by adding one candidate effector to the current model.  We quantified the model 

comparison results with two statistical approaches.  Given the observed data 𝐷 and two 

nested models 𝑀Y,𝑀1 ⊇ 𝑀Y, we incurred a standard hypothesis testing procedure to calculate 

the log likelihood ratio and 𝜒6 p-value: 

 

ℒ 𝐷;𝑀Y,𝑀1 = ℒ 𝐷|𝑀1 − ℒ 𝐷|𝑀Y . 

                                            𝑝 = 1 − 𝜒Â6 2ℒ 𝐷;𝑀Y,𝑀1 .                   (12) 

where 𝜒Â6 is the 𝜒6 CDF function with 𝑑 degrees of freedom, and 𝑑 is the number of extra 

free parameters in 𝑀1 relative to 𝑀Y.  Here 𝑑 = 1 as 𝑀1 has one more effector (thus free 

parameter) than 𝑀Y. 

 

The 𝜒6 p-values tend to over-estimate the significance of the testing results as they are 

asymptotic approximations when sample size approaches infinite.  Thus we also evaluated 

the p-values of permutation tests and reported the supremum of 𝜒6 and permutation p-values.  

To assess the statistical significance of the extra explanatory power of the additional effector 

in 𝑀1, we fixed the data of all variables in 𝑀Y (including effectors and the target) and 

permuted only the data of the additional effector in 𝑀1.  Also, albeit the log likelihood ratio 

captures the quantitative difference of two models to fit the data, it may fail to distinguish the 
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qualitative difference under some circumstances.  For instance, in scenario 1, the two models 

may predict the probability of up-regulation of a target gene to be 0 and 0.3; in scenario 2 the 

predicted probabilities of up-regulation are 0.3 and 0.6 respectively.  While the differences of 

predicted probabilities are identical, the two scenarios have distinct qualitative implications.  

Scenario 1 suggests that the target gene is unlikely up-regulated according to the predictions 

of both models, yet scenario 2 indicates that one model predicts the target gene to be up-

regulated with a moderate probability but another model predicts the opposite direction.  To 

accommodate both quantitative and qualitative differences, we proposed two test statistics in 

calculating permutation p-values: the log likelihood ratio and the difference between 

consistent and inconsistent samples according to model prediction.  The latter used hard 

thresholds to convert the CDF data into trinary states and applied the feature functions to 

determine whether the trinary configuration of a sample was consistent or not.  This counting 

is less precise than the log likelihood ratio but can capture the aforementioned qualitative 

difference.  The permutation p-value of each type is the fraction of permutations where the 

test statistic values exceed the empirical values.  The reported permutation p-value is the 

supremum of the two p-values.  Permutation p-values were calculated by the following 

procedures: 

 

 

Figure X13: Algorithm of calculating permutation p-values. 

 

Input: Effector and target variable CDF values over the samples, the association models 𝑀Y 

and 𝑀1 of the data. 

 

Output: The permutation p-value. 
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Procedures: 

 

1. Quantize the numerical 𝒙 (effector CDF) and 𝑦 (target CDF) values into trinary states, 

with 0.4 and 0.6 as thresholds for −1 and +1 states.  Leave the categorical effector 

values intact. 

2. In the quantized data, check each sample whether 𝑦 value is consistent with the 

predicted values according to 𝒙 values and the feature functions of the model 𝑀1.  

Report the difference of the counts of consistent and inconsistent samples.  Denote 

this number as 𝑛­ . 

3. Identify the newly added effector 𝑥Ä that appears in 𝑀1 but not in 𝑀Y. 

4. Repeat the following steps 10000 times. 

4.1 Randomly permute the data in 𝑥Ä. 

4.2 Report the difference of the counts of consistent and inconsistent samples in the 

permuted data and denote this number as 𝑛Å. 

4.3 Report the log likelihood ratio of the permuted data. 

5. The p-value 𝑝1 is the fraction of the random permutations whose 𝑛Å’s exceed 𝑛­ . 

6. The p-value 𝑝6 is the fraction of the random permutations whose log likelihood ratios 

exceed the log likelihood ratio of the empirical data. 

7. The p-value is the supremum of 𝑝1 and 𝑝6. 
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2.1.2 Selecting candidate effectors according to pairwise associations 

 

Building Association Models of the entire TCGA data is computationally intensive as all 

combinations of candidate effectors and target mRNA expressions in all cancer types have to 

be considered.  Most of those candidate effectors have quite weak pairwise associations with 

the target mRNA expressions and will unlikely appear in the Association Models.  To avoid 

wasting computing resources on unlikely associations, we filtered candidate effector-target 

associations according to pairwise association outcomes.  In each cancer type we calculated 

pairwise associations between all candidate effectors (CNVs of all chromosomal segments, 

mutation profiles of all genes, DNA methylation profiles of all genes, microRNA expression 

profiles of all microRNAs, phosphorylation profiles of selected proteins, SNPs of all probes) 

and all target gene expressions.  Three statistical quantities for each pairwise association are 

reported: log likelihood ratios of logistic regression model hypothesis testing, supremum of  

𝜒6 and permutation p-values, and correlation coefficients between candidate effectors and 

target gene expressions.  For each target gene expression, we kept the candidate effectors 

whose scores of all three types (log likelihood ratios, p-values, correlation coefficients) 

surpassed predetermined threshold values.  Only selected candidate effectors are considered 

when constructing the joint Association Models.  Computation of all pairwise associations is 

executed in parallel in a Dell Precision 7920 Tower Workstation with 28 cores and 100 

nodes.  The total computing time is about one week (16800 CPU-hours). 

 

The threshold values of the three statistical scores are not fixed for all cancer types since they 

are sensitive to sample sizes and different cancer types have a wide range of sample sizes.  

Instead we determined those threshold values by controlling the numbers and rates of false 

discoveries.  False discovery rates (FDRs) are calculated by a general form below: 
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FDR 𝜃 =
#	ËÌÍÎÏÐ	ÌÑÑÏÒÓÌÔÓÏÍÑ	ÕÓÔÖ	ÑÒÏË×Ñ	ØÙ

#	ËÌÍÎÏÐ	ÌÑÑÏÒÓÌÔÓÏÍÑ
#	ÌÑÑÏÒÓÌÔÓÏÍÑ	ÕÓÔÖ	ÑÒÏË×Ñ	ØÙ

#	ÌÑÑÏÒÓÌÔÓÏÍÑ

.              (13) 

 

The denominator counts the fraction of pairwise associations from the real data whose scores 

surpass a threshold 𝜃, and the numerator counts the fraction of pairwise associations from the 

randomized data whose scores surpass 𝜃.  We generated randomized data by randomly 

permuting the effector and target mRNA expression data 10000 times.  Since the number of 

random permutations is rather limited, the extreme values of the statistical scores generated 

from the randomized data (the highest log likelihood ratios and correlation coefficients and 

the lowest p-values) are likely much less significant than those generated from the empirical 

data.  This property will force FDR 𝜃 = 0 when 𝜃 surpasses the extreme value of the 

randomized associations.  To overcome this limitation, we obtained the statistical score 

distribution of the randomized data from both the empirical distribution from 10000 random 

trials and a parametric distribution that fit the empirical distribution.  The latter may have 

nonzero tail probabilities beyond the extreme value from the empirical distribution.  We fit 

the distributions of log likelihood ratios, negative log p-values, and absolute values of 

correlation coefficients as mixtures of a constant random variable at value 0 and generalized 

Pareto, Weibull, and Nakagami distributions respectively.  Denote the FDRs evaluated by the 

empirical and estimated score distributions from randomized data FDRÚÛÜ and FDRÚÝÞ 

respectively.  The modified FDR reports the minimum of the two FDRs if both have positive 

values and the nonzero entry if only one has a positive value: 

 

 

FDR 𝜃 = min 𝐹𝐷𝑅·dß, 𝐹𝐷𝑅·à¼ if	𝐹𝐷𝑅·dß > 0	and	𝐹𝐷𝑅·à¼ > 0. 
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																																								= max 𝐹𝐷𝑅·dß, 𝐹𝐷𝑅·à¼ if	𝐹𝐷𝑅·dß > 0	xor	𝐹𝐷𝑅·à¼ > 0.	         (14) 

                                    = 0	if	𝐹𝐷𝑅·dß = 0	and	𝐹𝐷𝑅·à¼ = 0. 

 

The estimated number of false discoveries (nFD) is the product of FDR and the number of 

pairwise associations whose scores surpass the threshold 𝜃. 

 

Given the FDR’s and nFD’s with varying threshold values, we determined the threshold 

values of log likelihood ratios, p-values and absolute correlation coefficients according to the 

following procedures. 

 

 

Figure X14: Criteria for determining the threshold values for log likelihood ratios, p-values 

and absolute correlation coefficients. 

 

log likelihood ratios: Find a threshold value that satisfies the following properties. 

 

• DNA methylation, microRNA expression, protein phosphorylation, and SNP: 

1. Find the log likelihood ratios that suddenly raise FDR’s and nFD’s respectively 

(the rates of change are maximized).  Choose the minimum of those two values. 

2. If the number of association pairs (from the empirical data) corresponding to this 

threshold ≥ 10000 (≥ 1000 for SNP associations), then choose the maximum 

threshold whose number of association pairs ≥ 10000 (≥ 1000 for SNP 

associations). 

3. If no such threshold exists, then choose the maximal log likelihood ratio from the 

empirical data as the threshold. 
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4. If this threshold exceeds the upper limit of the threshold, then set the threshold to 

the upper limit.  The upper limit depends on the types and levels of associations. 

• Trans-acting CNV and mutation: 

1. Find the threshold values whose FDR’s ≤ 10J2 and the number of pairwise 

associations ≥ 50000. 

2. If those threshold values do not exist, then find the threshold values whose FDR’s 

≤ 10J2 and the number of pairwise associations ≥ 10000. 

3. If those threshold values exist and the smallest threshold value is below an upper 

limit, then report the minimum of the candidate threshold values.  The upper limit 

depends on the type and level of associations. 

4. If those threshold values exist but the smallest threshold value exceeds an upper 

limit, then report upper limit as the threshold value. 

5. If those threshold values do not exist, then check whether the FDR’s jump at a 

threshold value below an upper limit.  If yes, then report the smallest threshold 

value of the jumps. 

6. If there are no FDR jumps or the jumps are above the upper limit, then find the 

local minimum of FDR’s whose threshold values are below the upper limit and the 

number of pairwise associations ≥ 10000.  Report the corresponding threshold 

value. 

7. If this range of threshold values still does not exist, then find the threshold values 

below the upper limit and identify the one which minimizes the FDR.  Report this 

threshold value. 

 

Minus log p-values: Find a threshold value that satisfies the following properties. 
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• DNA methylation, microRNA expression, protein phosphorylation, and SNP: 

1. Find the threshold values whose FDR’s and nFD’s are the minimum respectively, 

find the minimum of those two threshold values. 

2. If the number of association pairs (from the empirical data) corresponding to this 

threshold ≥ 10000 (≥ 1000 for SNP associations), then choose the maximum 

threshold whose number of association pairs ≥ 10000 (≥ 1000 for SNP 

associations). 

3. If this threshold exceeds the upper limit of the threshold, then set the threshold to 

the upper limit. 

• Trans-acting CNV and mutation: 

1. Find the threshold values whose FDR’s ≤ 10J2 and the number of pairwise 

associations ≥ 50000. 

2. If those threshold values do not exist, then find the threshold values whose FDR’s 

≤ 10J2 and the number of pairwise associations ≥ 10000. 

3. If those threshold values exist and the smallest threshold value is below an upper 

limit, then report the minimum of the candidate threshold values. 

4. If those threshold values exist but the smallest threshold value exceeds an upper 

limit, then report upper limit as the threshold value. 

5. If those threshold values not exist, then find the threshold values below an upper 

limit and the corresponding number of pairwise associations ≥ 50000. 

6. If those threshold values not exist, then find the threshold values below an upper 

limit and the corresponding number of pairwise associations ≥ 10000. 

7. If those threshold values exist, then find the threshold value that gives the smallest 

FDR. 
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8. If this threshold exceeds the upper limit of the threshold, then set the threshold to 

the upper limit. 

 

Absolute values of correlation coefficients: Find a threshold value that satisfies the following 

properties. 

 

• DNA methylation, microRNA expression, protein phosphorylation: 

1. Find the threshold values whose FDR’s and 𝑛𝐹𝐷’s are the minimum respectively, 

find the minimum of those two threshold values. 

2. If the number of association pairs (from the empirical data) corresponding to this 

threshold ≥ 10000 (≥ 1000 for SNP associations), then choose the maximum 

threshold whose number of association pairs ≥ 10000 (≥ 1000 for SNP 

associations). 

3. If this threshold exceeds the upper limit of the threshold, then set the threshold to 

the upper limit. 

• Trans-acting CNV: 

1. Find the threshold values whose FDR’s ≤ 10J2 and the number of pairwise 

associations ≥ 50000. 

2. If those threshold values do not exist, then find the threshold values whose FDR’      

≤ 10J2 and the number of pairwise associations ≥ 10000. 

3. If those threshold values exist and the smallest threshold value is below an upper 

limit, then report the minimum of the candidate threshold values. 

4. If those threshold values exist but the smallest threshold value exceeds an upper 

limit, then report upper limit as the threshold value. 
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5. If those threshold values not exist, then find the threshold values below an upper 

limit and the corresponding number of pairwise associations ≥ 50000. 

6. If those threshold values not exist, then find the threshold values below an upper 

limit and the corresponding number of pairwise associations ≥ 10000. 

7. If those threshold values exist, then find the threshold value that gives the smallest 

FDR. 

8. If those threshold values do not exist, then find the threshold values below an 

upper bound and the corresponding FDR’s ≤ 10J2.  Find the minimum threshold 

value among them. 

9. If those threshold values do not exist, then find the threshold values below an 

upper bound.  Find the threshold with the minimum FDR. 

10. If this threshold exceeds the upper limit of the threshold, then set the threshold to 

the upper limit. 

• Mutation and SNP: do not apply filter on correlation coefficients. 

 

Two examples of threshold determination are illustrated in Figures X15 and X16 for trans-

acting CNV and DNA methylation associations in BRCA.  They display the numbers of 

pairwise associations that surpass the threshold (nemppass), 𝐹𝐷𝑅’s and 𝑛𝐹𝐷’s with varying 

thresholds for log likelihood ratios, minus log p-values, and absolute values of correlation 

coefficients respectively.  nemppass, 𝐹𝐷𝑅′𝑠 and 𝑛𝐹𝐷′𝑠 generally decline with more stringent 

threshold values.  Yet 𝐹𝐷𝑅′𝑠 and 𝑛𝐹𝐷′𝑠 may jump upward at very stringent threshold values, 

probably due to the very small numbers of empirical and randomized association pairs.  The 

chosen threshold values depend on the limits of the threshold values, nemppass, 𝐹𝐷𝑅′𝑠, as 

well as the shapes of the 𝐹𝐷𝑅/𝑛𝐹𝐷 curves.  Those limits are reported in Table X5.  The 

nemppass, 𝐹𝐷𝑅′𝑠 and 𝑛𝐹𝐷′𝑠 of all types of pairwise associations in all cancer types are 
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reported in Supplementary Data.  Notice that the limits of 𝐹𝐷𝑅 and nemppass are common 

for all types of associations, hence they exert the same level of control on the false discovery 

rates and the numbers of candidate pairwise associations.  In principle, the threshold values in 

each cancer type can be completely determined by these limits and the procedures in Figure 

X14.  To prevent the pathological situations where the derived threshold values are 

excessively loose (low threshold values on log likelihood ratios and correlation coefficients 

and high threshold values on p-values), we also explicitly set different limits of the threshold 

values on distinct types of associations in Table X5.  The types of effectors that induce a 

large number of pairwise associations (such as SNPs and DNA methylations) typically have 

more stringent limits, while the types of effectors that induce relatively fewer pairwise 

associations (such as trans-acting CNVs) have less stringent limits.  Although there are no 

strong justifications for these heuristically varying limits, they are likely inactive in most 

cancer types as the threshold values determined by Figure X14 are typically within the limits. 

 

Figure X15: Dependency of nemppass, 𝐹𝐷𝑅’s and 𝑛𝐹𝐷′𝑠 with respect to log likelihood 

ratios, log p-values, and correlation coefficients.  BRCA trans-acting CNV segment 

associations.  Red dots mark the chosen threshold values. 



 56 

 

 

Figure X16: Dependency of nemppass, 𝐹𝐷𝑅’s and 𝑛𝐹𝐷′𝑠 with respect to log likelihood 

ratios, log p-values, and correlation coefficients.  BRCA DNA methylation associations. 

 

 

 

Table X5: Limits for determining threshold values. 
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type of limit type of threshold value type of limit type of threshold value 

upper FDR All 10J2 lower methylation 

assocs. 

log likelihood ratio 10.0 

lower nemppass 1 All 50000 upper methylation 

assocs. 

p-value 10J¡ 

lower nemppass 2 All 10000 lower methylation 

assocs. 

abs. corr. 0.3 

lower nemppass, 

SNP 

All 1000 lower mir assocs. log likelihood ratio 10.0 

lower cis-acting 

assocs. 

log likelihood ratio 2.0 upper mir assocs. p-value 10J¡ 

upper cis-acting 

assocs. 

p-value 10J6 lower mir assocs. abs. corr. 0.3 

lower cis-acting 

assocs. 

abs. corr. 0.3 lower phos. assocs. log likelihood ratio 5.0 

lower cis-acting 

SNP assocs. 

log likelihood ratio 4.0 upper phos. assocs. p-value 10J  

upper cis-acting 

SNP assocs. 

p-value 10J¡ lower phos. assocs. abs. corr. 0.3 

lower cis-acting 

SNP assocs. 

abs. corr. NA lower SNP assocs. log likelihood ratio 4.0 

lower trans-acting 

CNV assocs. 

log likelihood ratio 4.0 upper SNP assocs. p-value 10J¡ 

upper trans-acting 

CNV assocs. 

p-value 10J6 lower SNP assocs. abs. corr. NA 

lower trans-acting 

CNV assocs. 

abs. corr. 0.3    

lower mutation 

assocs. 

log likelihood ratio 2.0    

upper mutation 

assocs. 

p-value 10J1    

lower mutation 

assocs. 

abs. corr. NA    
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Once the threshold values for log likelihood ratios, p-values and absolute values of 

correlation coefficients were determined, we applied a joint filter to the pairwise associations 

from empirical and randomized data using those threshold values.  The resulting nemppass,  

FDR’s and nFD’s of the joint filter were estimated in the same fashion as those filtered by 

each type of score.  If the estimated FDR is larger than the estimated FDR’s from single types 

of scores, then report the minimum FDR from single types of scores. 

 

2.1.3 Statistical model selection 

 

An Association Model uses the molecular alteration profiles of (zero, one or multiple) 

effectors to explain the mRNA expression profile of one target gene.  The joint model is 

represented by an exponential family model 𝑃(𝑦|𝒙).  Building an Association Model can be 

viewed as a model selection problem with prior knowledge and assumptions about the causal 

relations of variables: finding the candidate effectors which likely affect the target gene 

expressions.  Different from standard model selection problems, the candidate effectors have 

ordinal but not cardinal priorities.  For instance, a candidate effector which connects to the 

target gene with path length 1 in the cascade of transcriptional regulation has a higher priority 

than another candidate regulator which connects to the target gene with path length 2.  Also, 

a CNV candidate effector has a higher priority than a microRNA expression candidate 

effector.  However, the relative weights of these candidate effectors in explaining the target 

gene expressions cannot be intuitively determined.  We employed a stepwise regression-like 

algorithm to sequentially add covariates that provide the best explanatory power to the data 

conditioned on the existing model.  The additional explanatory power is quantified by the log 

likelihood ratio and p-value of the augmented model relative to the existing model.  The 

order of incorporating the covariates is consistent with their ordinal priorities according to 
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prior knowledge.  In the context of IHAS inference, the sequential model selection algorithm 

is superior to batch model selection algorithms (such as regressions with sparsity constraints 

like lasso or elastic net) because the former can best incorporate ordinal priorities of 

candidate effectors.  In contrast, batch algorithms require cardinal priorities of candidate 

effectors which are not directly available.  Besides permutation p-values, it is also possible to 

execute cross validation like procedures to select the model: iteratively leaving out one 

effector from the model and check how good the model fits the data in each reduced model.  

A model has a robust prediction power if removing each single effector from the model does 

not considerably deteriorate performance.  Yet these procedures are top-down and require the 

presence of a model.  They are hence more apt for assessing the prediction power of a model 

than building a model. 

 

Since computation time of parameter estimation and log likelihood and p-value evaluation 

scales with the dimension of the model, we adopted a series of filters to reduce the number of 

candidate effectors.   

 

The ordinal priorities of candidate effectors were determined in a hierarchical fashion.  They 

were first stratified by their shortest path distances to the target genes in the network of 

molecular interactions.  Within each stratum, candidate effectors are ordered by the types of 

molecular alterations.  Within each stratum and molecular alteration type, there can be still 

many candidate effectors.  To further narrow down the candidate effectors, we incurred 

filtering processes for each type of molecular alteration effectors and their union.  The precise 

procedures of statistical model selection are described below.  Here we consider the model 

selection procedures in one iteration, as more involved iteration procedures will be discussed 

later. 
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Figure X17: select_effector(.), algorithm of selecting one effector that provides the highest 

additional explanatory power given an existing model. 

 

Input: The mRNA expression profile 𝑦 of the target gene.  All candidate effector profiles 𝑿.  

An existing model 𝑀Y that fits 𝑦 with effectors 𝒙 and represents 𝑃(𝑦|𝒙) with an exponential 

family model.  

 

Output: One effector 𝑥 ∈ 𝑿 ∕ 𝒙 that provides the best additional explanatory power to fit the 

data. 

 

Procedures: 

 

1. Narrow down 𝑿 to the effectors whose pairwise associations with 𝑦 surpass the 

thresholds of log likelihood ratios, p-values and absolute correlation coefficients. 

2. For trans-acting CNV segment associations in the candidate effectors, require the 

presence of at least one regulator.  A regulator is a transcription factor or signaling 

protein which satisfies three conditions: (1) the regulator is located on the same CNV 

segment or chromosome arm, (2) there is a significant pairwise association between 

the segment CNV and the regulator mRNA expression profile, (3) there is a 

significant pairwise association between the regulator and target gene expression 

profiles.  Keep the trans-acting CNV segment associations that have regulators. 
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3. For trans-acting SNP associations in the candidate effectors, require the presence of at 

least one regulator.  A regulator requires the same conditions as above except in (1) it 

is located within 10Mb from the effector SNP.  

4. Among the candidate segment CNVs on the same chromosome, pick the one with the 

strongest log likelihood ratio as the representative and discard the remaining 

candidate segment CNVs on the chromosome. 

5. Among the candidate DNA methylation profiles in the same cluster, pick the one with 

the strongest log likelihood ratio as the representative and discard the remaining 

candidate DNA methylation profiles in the same cluster. 

6. Pick the representative microRNA expression from each cluster in the same fashion 

as DNA methylation profile selection. 

7. If there are ≥ 20 candidate effectors after the aforementioned filters, then calculate 

the gap score of each candidate effector.  Subdivide samples into two groups 

according to effector states.  For mutations, separate samples with or without the 

mutations.  For SNPs, separate samples with the two homozygous genotypes.  For 

other effectors, separate samples with high (≥ 0.6) and low (≤ 0.4) effector values.  

The gap score is the difference of mean target gene expressions between the two 

groups.  Sort candidate effectors by their gap scores in a descending order and keep 

the top 20 effectors. 

8. If there are still ≥ 20 candidate effectors after the filters, then filter them by 

conditional mutual information.  For each pair of candidate effectors 𝑥1 and 𝑥6, 

calculate MI(𝑦; 𝑥1|𝑥6) and MI(𝑦; 𝑥6|𝑥1).  If MI(𝑦; 𝑥1|𝑥6) is low but MI(𝑦; 𝑥6|𝑥1) is 

high, then 𝑦 and 𝑥1 are conditionally independent given 𝑥6, and the explanatory 

power of 𝑥1 is absorbed by 𝑥6.  Thus remove 𝑥1.  Repeat this procedure for all pairs 

of effectors. 
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9. Among the remaining candidate effectors, calculate the log likelihood ratios and p-

values by adding each effector to the existing model.  Filter out the candidate 

effectors whose log likelihood ratios and p-values do not surpass the pre-determined 

threshold values. 

10. Among the remaining candidate effectors, remove the ones whose explanatory powers 

are overwhelmed by others.  For each pair of candidate effectors 𝑥1 and 𝑥6, incur 

nested hypothesis tests to compare the bi-covariates model 𝑥1 ∪ 𝑥6 against the uni-

covariate models 𝑥1 and 𝑥6.  Build a graph 𝐺ê of overwhelm relations between 

effectors from those hypothesis tests.  𝐺ê 𝑥1, 𝑥6 = 1 and 𝐺ê 𝑥6, 𝑥1 = 0 if 𝑥1 

overwhelms 𝑥6: the joint model 𝑥1 ∪ 𝑥6 is superior than 𝑥6 but not superior than 𝑥1.  

If 𝑥1 ∪ 𝑥6 is superior to neither 𝑥1 nor 𝑥6, then 𝐺ê 𝑥1, 𝑥6 = 1 and 𝐺ê 𝑥6, 𝑥1 = 1.  

From 𝐺ê construct another directed graph 𝐺: 𝐺 𝑥1, 𝑥6 = 1 if 𝐺ê 𝑥1, 𝑥6 = 1 and 

𝐺ê 𝑥6, 𝑥1 = 0.  The sinks of 𝐺 are the nodes which have incoming but no outgoing 

edges in 𝐺.  Those effectors are overwhelmed by other effectors but do not 

overwhelm others.  Remove the sink effectors. 

11. Add the remaining candidate effectors to the model. 

 

A principled but much more time-consuming approach to select the effectors is to identify the 

Markov blanket of the target expression 𝑦.  Suppose the current model comprises effectors 

𝑍 ≡ {𝑧1,⋯ , 𝑧o}.  The conditional probability 𝑝(𝑦|𝑧1,⋯ , 𝑧o) can be represented as a star-

graph with edges pointing from each 𝑧; to 𝑦.  The selected candidate effectors 𝑋 ≡

{𝑥1,⋯ , 𝑥d} at the current iteration include the covariates where the dependency of each 

effector 𝑥; to 𝑦 is not mediated by any subset of 𝑍 ∪ (𝑋\𝑥;).  Mediation of a variable subset 

𝑆 between 𝑦 and 𝑥; can be detected by testing the nested model 𝑝(𝑦|𝑆 ∪ 𝑥;) against 𝑝(𝑦|𝑆).  

It is expensive and often intractable to incur hypothesis tests to all possible subsets of existing 
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and candidate effectors.  Therefore, the bulk of the select_effector(.) algorithm is to exert 

various filtering processes to limit the candidate effectors and subsets of covariates for 

mediation analysis.  Step 1 selects the candidate effectors whose pairwise scores exceed the 

threshold values.  Steps 2-6 filter the candidate effectors of trans-acting CNVs, trans-acting 

SNPs, cis-acting CNVs, DNA methylations, and microRNA expressions respectively.  If 

there are more than 20 candidate effectors after step 6, then step 7 selects 20 of them with the 

largest variations of effector values across samples.  Step 8 uses conditional mutual 

information as a surrogate for mediation analysis for each pair of candidate effectors.  Step 9 

conducts mediation analysis of 𝑝(𝑦|𝑍 ∪ 𝑥;) against 𝑝(𝑦|𝑍) for each candidate effector 𝑥;.  

Step 10 conducts mediation analyses of 𝑝(𝑦|𝑥;, 𝑥<) against 𝑝(𝑦|𝑥;) and 𝑝(𝑦|𝑥<) for each 

candidate effector pair 𝑥;, 𝑥<.  After step 10 a small number of candidate effectors pass all 

filtering criteria and are added to the Association Model. 

 

2.1.4 Prioritizing candidate effectors using biological knowledge 

 

The integrated TCGA data have a large number of highly dependent features.  These 

properties make selection of true effectors of target genes challenging since there are many 

highly correlated candidates.  The statistical model selection together with a series of filtering 

criteria can substantially reduce the number of candidate effectors, but cannot tell which of 

the remaining candidate effectors are biologically meaningful.  To mitigate this problem, we 

prioritized candidate effectors in terms of the relevance and directness of their influences on 

the target genes.  This prioritization subdivides candidate effectors into several categories, 

and candidate effectors from top to bottom categories are sequentially considered.  Within 

each category, the aforementioned statistical model selection procedures are employed to 

incrementally build Association Models. 
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We prioritized candidate effectors in a hierarchical fashion.  At the top tier, candidate 

effectors are ordered by whether there are direct, indirect or no evidence regarding regulatory 

relations with the target genes.  At the middle tier, effectors with indirect regulatory relations 

are ordered by their shortest path lengths to the target gene in a unified network of gene 

regulation, metabolic reactions and molecular interactions.  At the bottom tier, candidate 

effectors are ordered by the types of molecular alterations.  Detailed criteria for prioritization 

are described below. 

 

Top tier: 

1.  Level 1: Effectors are local to the target genes.  They include cis-acting CNV 

segment associations (CNV segments encompass the target gene or on the same 

chromosome arm of the target gene), mutations and DNA methylations (mutated and 

methylated genes are the same as the target genes), and SNPs (SNPs are on the target 

genes or within 10Mb from them). 

2.  Level 2: Effectors are nonlocal to the target genes but connected to them by paths in 

the united network of gene regulation, metabolic reactions and molecular interactions.  

For CNV segments, consider the paths from their regulators to the target genes. 

3.  Level 3: Nonlocal effectors of CNV segments with positive associations, mutations, 

DNA methylations with negative associations, and SNPs, and are not connected to the 

target genes by paths in the united network. 

4.  Level 4: Nonlocal effectors of CNV segments with negative associations, and do not 

appear in lower-level associations. 

5.  Level 5: Nonlocal effectors of microRNA expressions with negative associations and 

phosphorylations, and do not appear in lower-level associations. 
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Middle tier:  

Among the level 2 effectors, sort them by the shortest path lengths to the target genes in the 

unified network.  Effectors with shorter path lengths have higher priorities. 

 

Bottom tier: 

Among the effectors in a category of top and middle tiers, sort them according to the 

following order. 

1. CNV segments. 

2. Mutations. 

3. DNA methylations with negative associations. 

4. MircoRNA expressions with negative associations. 

5. Protein phosphorylations. 

6. SNPs. 

 

2.1.5 Summary of constructing Association Models 

 

We synthesize the previously described methods and summarize the procedures of 

Association Model construction below. 

 

Figure X18: Schematic description of constructing Association Models. 

 

Input: Multimodal data of molecular alterations and gene expressions. 

 

Output: Association Models for all the genes. 
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Procedures: 

1. Pairwise associations: 

1.1 Incur pairwise associations between all candidate effectors of all data types and 

mRNA expressions. 

1.2 For each type of association pairs, randomly select 10000 pairs, permute the data, 

and compute pairwise association scores. 

1.3 Based on the pairwise association scores of both empirical and permuted data, 

evaluate nemppass, FDR′𝑠 and nFD’s with varying threshold values.  Determine 

threshold values of pairwise associations accordingly. 

2. Integrated associations: 

2.1 For each gene, find candidate effectors whose pairwise association scores surpass 

the threshold values. 

2.2 Sort and subdivide candidate effectors into categories according to the hierarchy 

of prioritization. 

2.3 In each category incur statistical model selection to identify the effectors for each 

gene. 

2.4 Build an exponential family model for each gene. 

 

 

2.2 Association Modules 

 

An Association Module constitutes three parts: a common effector, a collection of target 

genes sharing the common effector, and (for trans-acting CNV segment and trans-acting SNP 

associations) regulators mediating the influence from effectors to targets.  All Association 
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Modules are immediately determined once the Association Models of all target genes are 

constructed.  For each candidate effector, identify all the target genes whose Association 

Models contains it.  Those target genes are members of the corresponding module. 

 

There are modules of cis-acting CNV and trans-acting CNV associations with correlated 

target gene expressions and physically close segments.  We adopted the following procedures 

to consolidate Association Modules of cis-acting and trans-acting segment CNV associations. 

 

 

Figure X19: Algorithm of consolidating segment CNV Association Modules. 

 

1. Identify the CNV segments on the same chromosome. 

2. Cluster their segment CNV data with varying thresholds. 

3. Extract all unique clusters and mark the threshold value combinations where they 

appear. 

4. Find the clusters that harbor consecutive segments. 

5. Group together the consecutive segments with subsumption relations.  Report the 

threshold value combinations for each consecutive segment group. 

6. Choose the threshold value combination that accommodates many stable consecutive 

clusters. 

7. Report the consecutive segment groups under this threshold value combination. 

 

 

2.3 Super Modules and Sample Groups 
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The modules derived from one TCGA dataset can be further simplified as there are many 

modules with highly correlated target expression profiles.  We grouped similar clusters 

together by recursively incurring a variation of spectral clustering and reported Super 

Modules for each TCGA cancer type.  Likewise, samples in the data were combined to 

Sample Groups with the same fashion.  We briefly introduced the algorithm of generating 

Super Modules and Sample Groups in Methods and Supplementary Figure S11.  Below we 

will give detailed descriptions of the algorithm. 

 

Spectral clustering is a well-known algorithm of clustering data in Euclidean space or graphs.  

We treated each module as a data point and computed the mean expression profile in the 

samples over its member target genes.  Denote the 𝐿6 distance matrix of the mean expression 

profiles of modules as 𝑼.  𝑼 is converted into a weight matrix by 𝑾 = 𝑒J\î𝑼.  We can view 

𝑾 as the weight matrix of a graph.  Define 𝑫 a diagonal matrix where each diagonal entry is 

the sum of the corresponding row entries in 𝑾.  The graph Laplacian of 𝑾 is defined as 

 

𝑳 = 𝑫Jhz ∙ (𝑫 −𝑾) ∙ 𝑫Jhz.             (15) 

 

The smallest eigenvalue of 𝑳 is 0 and the corresponding eigenvector is 𝑫
h
z.  Instead we 

considered the second smallest eigenvalue and the corresponding eigenvector. 

 

𝑳 ∙ 𝒛1 = 𝜆1 ∙ 𝒛1.        (16) 

 

The spectral clustering algorithm procedures are briefly described below. 
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Figure X20: The spectral clustering algorithm. 

 

Input: The distance matrix 𝑼 of data points in a Euclidean space or a graph. 

 

Output: Partition of data points into clusters. 

 

Procedures:  

 

1. Calculate the weight matrix 𝑾 and its graph Laplacian 𝑳 (equation 15). 

2. Find the eigenvector 𝒛1 with the second smallest eigenvalue. 

3. Binary partition the vertices in the graph according to the signs of entries in 𝒛1. 

4. Recursively partition each of the two components. 

 

 

To determine the free parameter 𝛽ò, we varied 𝛽ò over a range of possible values and chose 

the value which gave rise to the most even binary partition at the top level. 

 

Spectral clustering outcomes give an intuitive interpretation in a graph as they are closely 

linked to the normalized cuts.  However, like most other clustering algorithms spectral 

clustering does not explicitly specify the number of clusters.  We augmented spectral 

clustering with criteria to determine the number of clusters.  Here spectral clustering is used 

as an algorithm to sort modules.  We recursively proceeded binary partitions all the way to 

single modules.  Each partition places some modules at the left side of the dividing line and 

the remaining modules at the right side of the dividing line.  We further considered possible 

sorting orders of three consecutive partitions and picked the one that minimized the distances 



 70 

between adjacent clusters.  After three consecutive partitions, there are four subclusters 

𝑝1, 𝑝6, 𝑝2, 𝑝 , where 𝑝1 and 𝑝6 are grouped together and 𝑝2 and 𝑝  are grouped together after 

the first partition.  We swapped the orders of 𝑝1 and 𝑝6 as well as 𝑝2 and 𝑝  such as the 

distances of adjacent subclusters were smaller than those of non-adjacent subclusters. 

 

We proposed an algorithm to jointly cluster modules and samples according to the recursive 

spectral clustering outcomes.  The inputs are the sorted modules and samples generated by 

running spectral clustering recursively.  The outputs are the boundaries of the module and 

sample clusters in the sorted lists.  The mean module expression data are sorted by the input 

orders of modules and samples.  Conceptually, the module and sample clusters can be 

directly demarcated on the sorted expression data.  We borrowed an algorithm in computer 

vision (Marr, 1982) to detect boundaries in the sorted expression data and mapped them to 

the sorted lists.  Intuitively, we treated the mRNA expressions of sorted Modules and samples 

as a two-dimensional image.  Boundaries of patterns in this 2D image correspond to the 

boundaries of Super Modules (groups of modules) and Sample Groups (groups of samples).  

To mitigate the interference of noise to affect boundary detection, we smoothened the image 

boundaries by convolving the image with Gaussian kernels.  Denote 𝑰(𝑥, 𝑦) a 2D image (the 

sorted expression data) and 𝑮õ(𝑥, 𝑦) = ( 1
6öõz

)6exp	(J�
z

6õz
+ JQz

6õz
) a Gaussian kernel with 

standard deviation 𝜎.  The convolution is 𝑱(𝑥, 𝑦) ≡ 𝑰 ∗ 𝑮õ 𝑥, 𝑦 = 𝑰(𝑥 − 𝑥ú, 𝑦 −

𝑦′)𝑮õ(𝑥′, 𝑦′)𝑑𝑥′𝑑𝑦′.  Laplacian operator ∇6 of the smoothen image evaluates the second 

derivatives along each direction.  ∇6𝑱 𝑥, 𝑦 = ³z𝑱(�,Q)
³�z

+ ³z𝑱(�,Q)
³Qz

.  Thus the zero-cross points 

correspond to the boundaries.  Furthermore, we looked for boundaries which were robust 

against a range of smoothening scales (kernel widths).  The algorithm procedures are 

described below. 
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Figure X21: The algorithm of clustering Association Modules and samples. 

 

Input: Sorted binary partition trees of modules and samples, sorted mean module expression 

data. 

 

Output: Super Module and sample cluster boundaries. 

 

Procedures: 

 

1. A node in the binary partition tree specifies a number of sorted modules or samples 

and is called a segment.   

2. Identify all segments above a given length and find their candidate boundaries. 

3. Sort the expression data and generate a 2D image 𝑰(𝑥, 𝑦). 

4. Generate Gaussian kernels 𝑮õ with varying widths (standard deviations 𝜎’s). 

5. Convolve each Gaussian kernel to the sorted expression data to smoothen it.  

𝑱(𝑥, 𝑦) ≡ 𝑰 ∗ 𝑮õ 𝑥, 𝑦 . 

6. Compute Laplacian of the smoothen data.  ∇6𝑱 𝑥, 𝑦 = ³z𝑱(�,Q)
³�z

+ ³z𝑱(�,Q)
³Qz

.   

7. Find the zero-crossing points in ∇6𝑱 𝑥, 𝑦  as the boundaries of the data. 

8. Find the closest candidate boundaries relative to ∇6𝑱 𝑥, 𝑦  boundaries. 

9. Find the boundaries which are pronounced in a wide range of 𝜎’s. 

 

We applied the algorithm to the modules of each cancer type and identified totally 217 Super 

Modules and 228 Sample Groups.  To demonstrate that Super Modules capture important 
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driver alterations and functional processes of cancer, we solicit four Super Modules and 

illustrate their selected effectors and target genes in Supplementary Figure S4 and the 

paragraphs below. 

 

Breast cancer (BRCA) Super Module 5 (Figure 4A) consists of the following prominent 

effectors.  MYC (regulator of chr8q CNV positive association +), TP53 (+ mutation), 

PIK3CA and CDH1 (- mutation) are well-known driver genes (Weinberg, 2007).  MNDA 

and MAGEB4 (- methylation) are myeloid cell differentiation antigen involved in chronic 

lymphocytic leukemia and other cancers (Joshi et al., 2007) and cancer-testis antigens 

associated with immunotherapy treatment responses and undergoing aberrant methylation 

(Almeida et al., 2009, Saghafinia et al., 2018).  Mir-10a and let-7 are closely involved in 

various cancer-related processes (e.g., Ke and Liu, 2017, Chirshev et al., 2019).  The target 

genes are highly enriched with cell cycle process. 

 

Colon cancer (COAD) Super Module 7 (Figure 4B) consists of the following prominent 

effectors.  SMAD2/4 (regulator of + chr18p CNV) and SFRP2 (- methylation) are members 

of TGF-𝛽 (Weinberg, 2007, Luo et al., 2019) and Wnt (Yang et al., 2016) pathways critical 

for colon cancer genesis.  WT1 (- methylation) encodes a transcription factor frequently 

mutated in Wilms tumor and is also involved in colorectal cancers (e.g., Oji et al., 2003).  

Mir-17 (- mir) is a member of the oncomir and implicated in various malignancies 

(Mogilyansky and Rigoutsos, 2013).  Mir-96 (- mir) promotes cell proliferation, migration 

and invasion in breast cancer (Hong et al., 2016).  Phosphorylations of AKT1, ACACA and 

ACACB regulate growth factor responses and acetyl-CoA metabolism respectively.  

Furthermore, some colon cancer samples undergo hyper-mutations in a large number of 
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genes (Yuza et al., 2017).  The target genes are highly enriched with immune responses, cell 

adhesion, and epithelial-mesenchymal transition. 

 

Low grade glioma (LGG) Super Module 7 (Figure 4C) consists of the following prominent 

effectors.  The positive association with chr19 43.5-43.7Mb is putatively mediated by 

deletions of candidate regulators such as CEBPA, NFKBIB, TGFB1, GSK3A, BCL3, RELB, 

AKT2, AXL.  EGFR (+ mutation) and IDH1 (- mutation) are frequently mutated driver genes 

in lower-grade gliomas (TCGA, 2015b).  GSTM1 (- methylation) detoxifies carcinogens and 

drugs involved in gliomas (Kilburn et el., 2010).  Mir-9 (- mir) and mir-181 (- mir) are 

involved in cancers (Ma et al., 2010, Shi et al., 2008).  MTOR (+ phosphorylation) is a key 

gene in the PI3K/AKT/mTOR pathway critical for tumorigenesis (Weinberg, 2007).   The 

target genes are highly enriched with immune and inflammatory responses. 

 

Liver hepatocellular carcinoma (LIHC) Super Module 2 (Figure 4D) consists of the following 

prominent effectors.  The positive association with chr13 is putatively mediated by deletions 

of candidate regulators such as CDK8, FLT3, FOXO1, ELF1, RB1.  CTNNB1 (+ mutation) 

is a key gene in the Wnt pathway and frequently mutated in gastrointestinal cancers 

(Weinberg, 2007).  Mir-429 (- mir) suppresses tumor migration and invasion in liver cancers 

(Guo et al., 2018).  Mir-15 (- mir) down-regulates BCL2 expression and thus suppresses 

tumor growth (Cimmino et al., 2005).  The target genes are highly enriched with oxidation-

reduction, lipid metabolism, and amino acid metabolism. 

 

2.4 Super Module Groups and Gene Groups 
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Each Super Module constitutes multiple modules, and each module comprises multiple target 

genes.  We combined the membership matrices of Super Modules to modules and modules to 

genes and microRNAs and generated a large but sparse membership matrix 𝑴 of Super 

Modules to genes and microRNAs.  It has 217 rows (Super Modules) and 29250 columns 

(genes and microRNAs).  Each entry (𝑖, 𝑗) denotes the number of modules that belong to 

Super Module 𝑖 and contain target gene 𝑗.  The Super Module membership matrix reveals 

two types of structures.  First, certain groups of Super Modules may share many common 

target genes.  Second, certain groups of genes may co-appear in a combination of Super 

Module Groups.  These structures are illustrated in the heat map of the sorted Super Module 

membership matrix in Figure 5A, and can be viewed as factorization of the Super Module 

membership matrix. 

 

We proposed an algorithm to decompose the Super Module membership matrix 𝑴 into Super 

Module Groups and Gene Groups.  In brief, we applied hierarchical clustering to the Super 

Modules according to their Jaccard similarities and generated a binary tree with the Super 

Modules on the leaves.  Each node in the binary tree is the most recent common ancestor of a 

group of the leaves, thus can represent a group of Super Modules.  We selected the nodes 

such that the member genes of their two children have similar enrichment patterns in six 

functional categories: cell cycle, immune response, cell adhesion, ribosome, respiration, and 

neurogenesis and projection.  Those nodes are the seeds of Super Module Groups.  

Furthermore, we generated a binary membership matrix to report whether each gene was a 

consensus member among the Super Modules belonging to a Super Module Group.  Unique 

combinatorial patterns genes are inferred from the binary membership matrix. 
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Figure X22: Algorithm of inferring Super Module Groups. 

 

Input: The Super Module membership matrix 𝑴 of genes and microRNAs. 

 

Output: The Super Module Groups. 

 

Procedures: 

 

1. For each Super Module, identify the consensus member genes or microRNAs that 

appear in at least 3 member modules. 

2. Extend the consensus member genes by including other genes with correlated 

expression profiles in the corresponding cancer types. 

3. For each pair of Super Modules, count the Jaccard similarity between their extended 

consensus members (intersection size/union size). 

4. Apply hierarchical clustering to Super Modules according to their Jaccard similarities. 

5. Calculate the enrichment p-values of each Super Module in each of six key functional 

categories: cell cycle, immune response, cell adhesion, ribosome, respiration, and 

synapse. 

6. Each node in the tree of hierarchical clustering represents a group of Super Modules. 

7. Find the highest level nodes in the tree such that the two children have similar 

enrichment patterns in the key functional categories. 

8. Find the highest level nodes in the tree such that the descendants of the node are not 

enriched with a key process, but have very similar children in term of the Jaccard 

similarity of Super Modules. 
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9. Treat the nodes retrieved from steps 7 and 8 as seeds of Super Module Groups.  

Attach each unlabeled Super Module to the closest Super Module Groups. 

 

 

Figure X23: Algorithm of inferring Gene Groups. 

 

Input: The Super Module membership matrix 𝑴 of genes and microRNAs, Super Module 

Groups. 

 

Output: The Gene Groups. 

 

Procedures: 

 

1. Determine whether each gene or microRNA is a consensus member of a Super 

Module Group by assessing the probability of its occurrence by chance. 

1.1 Suppose the Super Module Group contains Super Modules 1,⋯ , 𝑘, and each 

Super Module contains 𝑛1,⋯ , 𝑛o genes or microRNAs. 

1.2 Construct a null model that each Super Module 𝑖 randomly selects 𝑛; genes or 

microRNAs from 𝑁 genes and microRNAs.  The probability that the target 

gene/microRNA is selected by the Super Module is 𝑝; =
üR
k

. 

1.3 Calculate the probability that the target gene appears in ≥ 𝑚 Super Modules 

according to the null model. 

1.4 The probability is Pr	(the	gene	appears	in	𝑟	Super	Modules|null	model)o
�fd . 

1.5 Pr the	gene	appears	in	𝑟	Super	Modules null	model =

𝑝;
ªR(1 − 𝑝;)1JªRo

;f1ªh,⋯,ªl:ªh«⋯!lm"
. 
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1.6 The target gene or microRNA is a consensus member of the Super Module Group 

if the p-value ≤ 0.1. 

2. The result obtained from step 1 is a sparse binary matrix of Super Module Group 

memberships. 

3. Enumerate all unique combinatorial patterns of Super Module Group memberships 

and count the number of genes belonging to each unique combinatorial pattern. 

4. Find the unique combinatorial patterns with the highest numbers of member genes. 

5. Report the member genes belonging to each unique combinatorial pattern. 

 

The Super Module membership matrix is decomposed into 17 Super Module Groups and 18 

Gene Groups. 

 

2.5 Meta Gene Groups 

 

The FDR-adjusted functional enrichment p-values of the 18 Gene Groups are reported in 

Supplementary Table S2B.  The enriched functional categories and the sorted Super Module 

membership matrix in Figure 3A indicate that several Gene Groups are highly enriched with 

similar functions and possess similar Super Module memberships.  We aggregated Gene 

Groups into three meta Gene Groups according to theses similarities.  Meta Gene Group 1 

consists of Gene Groups 1-3 and is highly enriched with genes involved in immune and 

inflammatory responses and cell adhesion.  Meta Gene Group 2 consists of Gene Groups 4-6 

and is highly enriched with genes involved in cell adhesion, neurogenesis, and development.  

Meta Gene Group 3 consists of Gene Groups 7, 8, 10, 12 and is highly enriched with genes 

involved in cell cycle processes. 
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3 Characterizing functions of IHAS 

 

3.1 Evaluating functional enrichment of Super Modules and Gene Groups 

 

We calculated the hyper-geometric (Fisher exact test) p-values of enrichment of 14545 

MSigDB gene sets in each Super Module and each Gene Group.  For each IHAS subunit 

(Super Module or Gene Group), the enrichment p-values are adjusted by false discovery rates 

using the procedures reported in Benjamini and Hochberg 1995. 

  

3.2 Inferring recurrent effectors of Super Module Groups 

 

A Super Module Group is essentially a collection of modules that share many common target 

genes across multiple cancer types.  It is of importance to find the shared effectors of its 

module members as well.  To fulfill this goal, we developed an algorithm to identify the 

recurrent effectors that appear frequently in a Super Module Group.  The algorithm builds a 

null model of effector occurrence frequencies over all modules and detects the effectors 

whose occurrence frequencies are statistically significant according to the null model.  The 

null model of each type of effectors is derived from the background distribution of their 

occurrence frequencies over all Super Module Groups.  The procedures of the algorithm are 

described below. 

 

 

Figure X24: Algorithm for identifying recurrent effectors of Super Module Groups. 
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Input: The effectors, regulators and targets of each Association Module, member modules of 

each Super Module, member Super Modules of each Super Module Group. 

 

Output: The recurrent effectors of each Super Module Group. 

 

Procedures: 

 

1. Partition each chromosome into smaller windows.  Count the frequencies that each 

window appears as a trans-acting CNV segment effector of each Super Module 

Group. 

2. Merge the consecutive windows with identical occurrence frequencies over Super 

Module Groups and form CNV segments. 

3. For each type of effectors and each direction of associations, obtain the background 

distribution of their occurrence frequencies over all Super Module Groups. 

4. For each Super Module Group, report the recurrent effectors according to the 

following criteria. 

4.1 The occurrence frequency is statistically significant according to the background 

distribution of effector occurrence frequencies. 

4.2 The occurrence frequency exceeds a threshold value. 

4.3 The occurrence frequency of the opposite direction of associations is negligible. 

4.4 For trans-acting CNV segments, also require the existence of regulators which are 

on the segments and have statistically significant occurrence frequencies. 
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3.3 Building the Artery Networks spanned by explanatory paths for 

associations 

 

We endowed an association between effector molecular alteration and target gene expression 

with a mechanistic interpretation by finding valid paths in the unified molecular interaction 

network connecting the effector and the target gene.  Due to the large number of association 

pairs and extensive connectivity of the unified network, these explanatory paths cover a large 

portion of the unified network and thus are not quite informative about the underlying 

mechanisms for associations.  Yet a core of the unified network is frequently traversed by the 

connecting paths of many association pairs, thus is indispensable for explaining many 

association pairs.  We termed this core the Artery Network from the analogy of transportation 

or communication systems.  An association pair resembles a task of transporting a unit of 

goods or packets from a source (effector) to a destination (target) in the unified network, 

which can be allocated along their valid connecting paths.  All the association pairs fill the 

network with differential volumes of traffic.  The Artery Network accommodates high 

volumes of the traffic.  Thus transportation or communication will be severely disrupted if 

links in the Artery Network are severed.  Finally, the Artery Networks across the 33 cancer 

types may share a common subnetwork responsible for explaining many association pairs in 

all cancer types.  We termed the common subnetwork the Consensus Artery Network.  Below 

we elaborate the procedures of building the Artery Network for each cancer type and the 

Consensus Artery Network across all cancer types.  The procedures comprise three major 

parts.  First, we computed edge weights in terms of explanatory paths for associations.  

Second, we identified a connected subgraph spanning the high-weight edges (and some less-

weight edges) to construct an Artery Network.  Third, we combined the Artery Networks 

from all cancer types and constructed the Consensus Artery Network accordingly. 
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3.3.1 Computing edge weights in terms of explanatory paths for associations 

 

Intuitively, an edge has a high weight if it is traversed by many valid paths connecting 

effectors and targets.  A naive definition of an edge weight is simply the number of valid 

connecting paths traversing the edge.  This definition, however, suffers from several 

shortcomings.  First, different (effector,target) association pairs may have very different 

numbers of connecting paths.  Giving every path an equal weight will inflate the importance 

of the association pairs possessing many connecting paths.  Second, even with only one 

association pair the connecting paths will not have equal contributions.  Shorter paths are 

preferred since they provide simpler mechanistic explanations for the association pair (we 

used the same logic in prioritizing candidate effectors in terms of their shortest path lengths 

to the target).  Third, the paths traversing highly connected hubs are less preferable as they 

are likely to occur by random chance.  To mitigate those drawbacks, we proposed the 

following weighting scheme for network edges. 

 

1. Set all edge weights to zero. 

2. For each (effector,target) pair, distribute a unit mass along the connecting paths. 

3. If the effector is a trans-acting segment CNV, then find all regulators and distribute a 

unit mass along all connecting paths of (regulator,target) pairs. 

4. Distribute the unit mass of one (effector,target) pair with the following criteria. 

4.1 Start the random walk from the effector. 

4.2 Randomly jump to one downstream neighbor of the current node with an equal 

probability. 

4.3 Stop the random walk when reaching the target. 
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4.4 Denote 𝜋(𝑠, 𝑡) valid path connecting source (effector,𝑠) and destination (target,𝑡). 

4.5 The probability of drifting from 𝑠 to 𝑡 along 𝜋(𝑠, 𝑡) is 𝑄 𝜋 𝑠, 𝑡 =

1
Â&(Ä)Ä	∈ö à,¼ ,Ä'¼ , where 𝑣 is a node along 𝜋(𝑠, 𝑡) excluding 𝑡 and 𝑑ê(𝑣) its out-

degree. 

4.6 Conditioned on reaching 𝑡, the probability of traversing along 𝜋(𝑠, 𝑡) is 

𝑃 𝜋 𝑠, 𝑡 𝑠, 𝑡 = ) ö à,¼
) öú*+∈,(-,.)

 , where Π(𝑠, 𝑡) denotes the collection of all valid 

paths connecting 𝑠 and 𝑡. 

4.7 Add 𝑃 𝜋 𝑠, 𝑡 𝑠, 𝑡  to the weight of each edge along 𝜋 𝑠, 𝑡 . 

 

This weighting scheme fixes the aforementioned drawbacks since it (1) assigns a unit weight 

to each association pair, (2) path probabilities decline with path lengths, (3) paths traversing 

hubs with high out-degrees are assigned low probabilities.  It is also computationally 

intractable as it has to normalize by all valid paths connecting all association pairs.  This 

normalization step contrasts our weighting scheme with the heat kernel diffusion in networks.  

We proposed two alternative approximation algorithms to efficiently calculate edge weights.  

As noted before, the last portion of a valid path pertains to a direct interaction from a 

regulator (mostly a transcription factor) to the target.  Thus a valid path can be decomposed 

into two portions from the effector to the regulator and from the regulator to the target.  Since 

there are far more targets than regulators, a concise representation for valid paths is the 

product of valid paths from all effectors to all regulators and the links from all regulators to 

all targets.  Both the former and the latter can be efficiently enumerated.  The two algorithms 

differ by the ways to evaluate edge weights.  One algorithm explicitly uses the 

aforementioned formula to calculate normalized path weights.  The other uses a dynamic 
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programming formula to iteratively calculate edge weights.  Both algorithms use a function 

enumerate_paths to enumerate valid paths. 

 

 

Figure X25: Algorithm enumerate_paths for enumerating valid paths. 

 

Input: The unified network of molecular interactions, a (source,destination) pair. 

 

Output: Valid paths connecting the (source,destination) pair. 

 

Procedures: 

 

1. Start with edges emanating from the source as the candidate paths. 

2. Iteratively augment the candidate paths by additional edges until the stopping criteria 

are satisfied. 

2.1 If a candidate path is not a valid path, then nullify it as a candidate. 

2.2 If a candidate path terminates at the destination, then add it to the list of valid 

paths and nullify it as a candidate. 

2.3 If no candidate paths are left, then stop. 

2.4 If the total number of candidate paths reaches 10000000, then stop. 

2.5 If the total number of valid paths reaches 1000, then stop. 

 

 

Figure X26: Algorithm 1 for evaluating edge weights. 
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Input: The unified network of molecular interactions, an association pair (effector,target). 

 

Output: Edge weights pertaining to the association pair. 

 

Procedures: 

 

1. For an (effector,target) pair, incur enumerate_paths(.) to find valid connecting paths. 

2. Calculate normalized path weights according to the weighting scheme. 

 

 

Figure X27: Algorithm 2 for evaluating edge weights. 

 

Input: The unified network of molecular interactions, an association pair (effector,target). 

 

Output: Edge weights pertaining to the association pair. 

 

Procedures: 

 

1. For each (effector,target) pair, incur enumerate_paths(.) to find valid connecting 

paths. 

2. Stratify all the nodes along the valid connecting paths into level sets in terms of their 

shortest distances from the effector. 

3. Denote 𝑠 and 𝑡 the effector and regulator, 𝑣 a node in connecting paths with distance 

𝑑 from 𝑠, 𝐿ÂJ1 the level set of nodes with distance 𝑑 − 1 from 𝑠. 
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4. Define 𝑤1(𝑠, 𝑣) the sum of unnormalized path weights from 𝑠 to 𝑣, and 𝑤2(𝑣, 𝑡) the 

sum of unnormalized path weights from 𝑣 to 𝑡. 

5. 𝑤1(𝑠, 𝑣) is iteratively calculated by 𝑤1 𝑠, 𝑣 = 𝑤1 𝑠,𝑢4∈56ih ∙ 𝑤(𝑢, 𝑣), where 

𝑤 𝑢, 𝑣 = 1
Â7

. 

6. Likewise 𝑤2 𝑣, 𝑡  is iteratively calculated by 𝑤2 𝑣, 𝑡 = 𝑤2 𝑢, 𝑡4∈56«h ∙ 𝑤(𝑣,𝑢). 

7. For an edge (𝑢, 𝑣), the unnormalized edge weight is 𝑤1(𝑠,𝑢) ∙ 𝑤(𝑢, 𝑣) ∙ 𝑤2(𝑣, 𝑡). 

Normalize edge weights by 𝑤1 𝑠, 𝑡 = 𝑤2(𝑠, 𝑡). 

 

 

3.3.2 Generating the Artery Networks 

 

The high-weight edges of the unified network constitute the Artery Network that account for 

the majority of the association pairs.  In an analogy of transportation networks, one unit of 

flow from the effector to the target of an association pair is distributed along their connecting 

paths.  The Artery Network accommodates the heaviest traffic flows in the network.  We 

proposed a simple algorithm to extract the Artery Network from the edge weights of the 

whole network. 

 

 

Figure X28: Algorithm for generating the Artery Network. 

 

Input: Edge weights of the unified network of molecular interactions, association pairs 

between effectors and targets. 

 

Output: The Artery Network. 
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Procedures: 

 

1. Sort edges by their weights in a descending order.  Extract the edges whose weights 

are within one-percentile and use them as the backbone of the Artery Network. 

2. Denote sources as the nodes which are effectors of many association pairs but targets 

of few or no association pairs.  Denote sinks as the nodes which are targets of many 

association pairs but effectors of few or no association pairs. 

3. Nodes which are neither sources nor sinks in an Artery Network should not emit or 

absorb large net flows. 

4. Therefore, add edges whose weights are below the threshold to make the intermediate 

nodes in the Artery Network accommodate little net flows. 

 

The nodes in the Artery Network are the hubs that emit or absorb high volumes of traffic 

flows.  We stratify the hub nodes into multiple levels according to their interactions.  Level 1 

hub nodes emit positive-weight edges to many downstream nodes but have no downstream 

hub neighbors.  Level 2 hub nodes emit high-weight edges to level 1 hub nodes, and are not 

lower level hub nodes.  Level 3 hub nodes emit high-weight edges to level 2 hub nodes, and 

are not lower level hub nodes.   Higher-level hub nodes are identified similarly.  The lowest 

and highest levels of nodes correspond to the sinks and sources of the Artery Network 

respectively. 

 

The two algorithms of computing edge weights give rise to two Artery Networks.  We 

reported the intersection of the two Artery Networks. 
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3.3.3 Generating the Consensus Artery Network from multiple cancer types 

 

We identified the hub nodes and edges that appeared in at least 10 cancer types and reported 

the Consensus Artery Network. 

 

 

4 Relating IHAS with clinical phenotypes 

 

4.1 Aligning Sample Groups with clinical features within cancer types 

 

For each cancer type, our clustering algorithm (Figures X20 and X21) partitions all modules 

into several Super Modules and all samples into several Sample Groups.  TCGA provides 

rich molecular and clinical annotations to the samples.  We aligned the Sample Groups 

generated by our clustering algorithm with the TCGA sample annotations and checked 

whether the Sample Groups were aligned with some of those predefined annotations.  The 

alignment with patients' survival times will be discussed in the next section. 

 

TCGA sample annotations are roughly subdivided into four categories: (1) 

pathology/histology classes of tumors such as stages and grades of tumors, (2) clustering 

outcomes from single types of data such as mRNA expressions, CNV, DNA methylation, mir 

expressions, and protein expressions, or from integrated data such as COC, iclusters or 

paradigm, (3) molecular signatures of single genes such as ER and PR status in BRCA and 

Kras and Braf mutations in COAD, (4) molecular signatures derived from multiple genes 

such as the PAM50 subtypes in BRCA, hyper-mutations and CMS in COAD, and G-CIMP 
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subtypes in GBM.  We visualized the mRNA expressions of sorted genes and samples 

according to Super Modules and Sample Groups as well as the sample annotations.  In 

addition, we calculated the concentration coefficients to measure the quality of alignments 

between Sample Group labels and feature values.  In each Sample Group, we determined the 

dominant feature value that possesses the highest number of samples.  A concentration 

coefficient is the fraction of samples whose feature values are the dominant feature values. 

 

4.2 Prognostic analysis of Sample Groups within cancer types 

 

Survival information is available for all cancer types of TCGA data except LAML.  We 

counted the survival time (in days) of a patient as the interval from the date of first diagnosis 

and the date of reported death, and the censoring time (in days) as the interval from the date 

of first diagnosis and the date of last diagnosis.  We quantified the associations between 

subunits at each level of the integrated hierarchical association structure and patients' survival 

times using several approaches.  For each subunit (module and Super Module), we calculated 

the distribution of Cox regression coefficients of its member mRNA expression data, and 

assessed the statistical significance of survival time associations with the deviation between 

this distribution and a background distribution of Cox regression coefficients from all mRNA 

expression data.  In addition, we subdivided patients into two groups according to their 

median expression levels over the member genes of the subunit and calculated the log rank p-

values of their Kaplan-Meier (survival) curves.  Within each cancer type, we also manually 

constructed a decision tree that related the combinatorial expression profiles of Sample 

Groups with their survival times. 
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4.2.1 Computing Cox regression coefficients and log rank p-values of Kaplan-Meier 

curves 

 

Cox regression coefficients (Cox 1972) and log rank p-values of Kaplan-Meier curves (Peto 

and Peto, 1972) are the two most common quantitative measures in survival analysis.  Denote 

𝑇 a random variable of death time, and the PDF of 𝑇 is the hazard function: 

 

𝜆(𝑡) ≡ lim
9¼→Y«

:;	(¼<1<¼p9¼)
9¼

.       (17) 

 

Suppose the hazard function depends on some covariates 𝒛 ≡ (𝑧1,⋯ , 𝑧o): 

 

𝜆 𝑡; 𝒛 = 𝜆Y(𝑡) ∙ 𝑒𝒛∙𝜷.   (18) 

 

𝜷 ≡ (𝛽1,⋯ , 𝛽o) are the Cox regression coefficients specifying the associations between the 

covariate and the hazard function value.  A high positive Cox regression coefficient denotes 

that a higher covariate value implies a larger hazard and thus a shorter survival time.  A high 

negative Cox regression coefficient exhibits the opposite effect. 

 

Cox regression coefficients can be estimated from the conditional log likelihood function.  

Suppose each one of the 𝑁 patients possesses either death or censoring times, without loss of 

generality we sorted those times in an ascending order 𝑡1 < ⋯ < 𝑡k, and denote 𝑑; a binary 

indicator of whether 𝑡; is a death (𝑑; = 1) or censoring (𝑑; = 0) time.  Define the risk set 

𝑅(𝑡;) as the collection of patients whose death/censoring times ≥ 𝑡;.  At the moment right 

before the event time 𝑡;, patients in 𝑅(𝑡;) still survive.  For each patient 𝑙 ∈ 𝑅(𝑡;), the 
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probability of failure (death) at 𝑡; is 𝜆 𝑡;; 𝒛> 𝛿𝑡 =	𝜆Y(𝑡;) ∙ 𝑒𝒛@∙𝜷.  Conditioned on a death 

event at 𝑡;, the probability that patient 𝑖 dies is: 

 

Pr patient	𝑖	dies	at	𝑡;	 	patients	 ∈ 𝑅 𝑡; 	survive	at	𝑡; − 𝛿𝑡) =
·𝒛R∙𝜷

·𝒛@∙𝜷@∈B(.R)
.      (19) 

 

The conditional log likelihood is: 

 

ℒ 𝜷 = 𝒛; ∙ 𝜷{;:	ÂRf1} − log	( 𝑒𝒛@∙𝜷>∈� ¼R ).        (20) 

 

Notice the index of the conditional log likelihood term 𝑖 is over the patients who encounter 

death, while the index of the normalization term 𝑙 is over the patients who encounter either 

death or censoring after 𝑡;.  𝜷 can be estimated from the death/censoring times of all patients 

using Newton Raphson’s method. 

 

4.2.2 Assessing statistical significance of prognostic associations for IHAS subunits 

 

The basic subunits of the integrated hierarchical association structure within a cancer type 

comprise subsets of target genes with coherent expressions (e.g., Super Modules and Gene 

Groups).  Each member gene possesses a Cox regression coefficient between its mRNA 

expression levels and the patients' prognosis.  A subunit is related to the patients' survival 

times if the Cox regression coefficients of its members possess coherently large positive or 

negative values.  To quantify this intuition, we compared two distributions of Cox regression 

coefficients: those drawn from the members of the designated subunit and those drawn from 

all genes in the data.  A large deviation between the two distributions implies that the mRNA 

expression levels of the target genes are either negatively associated with survival times 
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(positive Cox regression coefficients) or the opposite.  There are several standard methods to 

assess the deviation between empirical distributions, such as Kolmogorov-Smirnov tests and 

Mann-Whitney tests.  Those methods, however, are very sensitive to sample sizes of 

empirical distributions (the numbers of genes in our case).  Small deviations between the two 

distributions become highly significant if the sample sizes are large.  This property is not 

desirable for our purpose since member genes are highly correlated rather than independently 

drawn from a distribution.  The KS and MW test p-values thus over-estimate the significance 

of deviations.  To mitigate this problem, we proposed a new measure 𝑝Â;�� to quantify the 

deviation of two distributions.  Denote two random variables 𝑋1 and 𝑋6 whose PDFs are 𝑝1 

and 𝑝6 respectively.  We define 𝑝Â;�� as the difference between two probabilities that 𝑋1 is 

greater and smaller than 𝑋6: 

 

𝑝Â;�� ≡ Pr 𝑋1 > 𝑋6 + 𝜖 − Pr	(𝑋1 < 𝑋6 − 𝜖 ).      (21) 

 

𝑝Â;�� is superior to standard non-parametric scores due to several properties.  First, a large 

positive or negative 𝑝Â;�� value indicates that 𝑋1 is considerably higher or lower than 𝑋6, 

compatible with the intuition about deviations.  Second, 𝑝Â;�� is bounded in the interval 

[−1,1].  Third, unlike KS or MW p-values, 𝑝Â;�� is much less sensitive to the sample sizes.  

Fourth, 𝑝Â;�� can be efficiently computed.  𝑝Â;�� can be reduced into the difference of right 

and left tail probabilities of a random variable 𝑍 ≡ 𝑋1 − 𝑋6, 𝑝Â;�� = Pr 𝑍 > 𝜖 − Pr	(𝑍 <

−𝜖).  Pr 𝑍 > 0  and Pr	(𝑍 < 0) can be estimated by rejection sampling on 𝑋1 and 𝑋6.  

Given a PDF 𝑝, we want to draw 𝑁 instances from the distribution	𝑝: 

 

1. Start with an empty set 𝑋 = 𝜙. 

2. Repeat the following steps until 𝑋 = 𝑁. 



 92 

2.1 Uniformly draw a number 𝑥 from the domain of 𝑝. 

2.2 Evaluate 𝑝(𝑥). 

2.3 Uniformly draw a number 𝑞(𝑥) from the interval [0, 𝑝d��], where 𝑝d�� is the 

maximum value of 𝑝. 

2.4 If 𝑞(𝑥) ≤ 𝑝(𝑥), then 𝑋 ← 𝑋 ∪ {𝑥}. 

 

𝑝Â;�� is obtained by the fractions of instances when 𝑋1 > 𝑋6 + 𝜖  and 𝑋1 < 𝑋6 − 𝜖 . 

 

We calculated the Cox regression coefficient of each mRNA expression profile and obtained 

a background distribution accordingly.  For each Super Module and Gene Group, we also 

obtained the distribution of Cox regression coefficients of its target gene expressions.  The 

direction and significance of deviation of the two distributions was assessed by both one-side 

KS tests and the 𝑝Â;�� measure.  We reported the KS p-values and 𝑝Â;�� scores of all Super 

Modules and Gene Groups for each cancer type in Supplementary Table S5. 

 

4.2.3 Assessing statistical significance of survival function difference between 

subpopulations differentiated by target gene expressions 

 

The Kaplan-Meier curve is a common non-parametric estimator of the survival function in a 

population of patients.  The survival function 𝑆 𝑡 = Pr	(𝑇 > 𝑡) is simply the complement of 

the CDF of 𝑇.  To estimate 𝑆 𝑡 , we subdivided time by the moments of death events.  The 

estimator is a piecewise constant function whose value remains invariant in each interval 

between death events.  At any time 𝑡, the Kaplan-Meier curve is: 

 

𝑆 𝑡 = (1 − dR
üR{;:	¼R<¼} ).      (22) 
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𝑚; and 𝑛; denote the numbers of patients who die at time 𝑡; and who have not died up to time 

𝑡;. 

 

The log rank test statistic compares the estimates of the hazard functions of two or multiple 

groups.  Suppose there are 𝐾 groups.  At each time 𝑡, denote 𝑁;¼ the number of group 𝑖 

patients who are at risk (not yet dead or being censored) at time 𝑡, and 𝑂;¼ the number of 

group 𝑖 patients who die at time 𝑡.  The null hypothesis is that the 𝐾 groups have the same 

hazard function.  To test this hypothesis, we constructed a test statistic by defining two 

random variables 𝑼 and 𝑽: 

𝑈; = [𝑂;¼ − 𝑂;¼ ∙
𝑁;¼
𝑁>¼I

>f1
].

I

>f1¼
 

 

𝑉;< = [ 𝑂>¼ ∙
𝑁;¼
𝑁>¼I

>f1
∙

I

>f1¼

𝑁<¼
𝑁>¼I

>f1
∙

(𝑁>¼ − 𝑂>¼)I
>f1

(𝑁>¼ − 1)I
>f1

]. 

 

                                              			𝑍 = 𝑼1𝑽J1𝑼.         (23) 

 

𝑍	asymptotically follows a 𝜒6 distribution with 𝐾 − 1 degrees of freedom.  Thus we can 

calculate the log rank p-value from the 𝑁;¼ and 𝑂;¼ data. 

 

For each subunit (Super Module or Gene Group) in a cancer type, we obtained the median 

expression level of each patient over its target member genes, and subdivided patients into 

two equal sized groups according to their median expression levels.  The log rank p-values of 

the two subgroups were reported. 
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4.2.4 Constructing decision trees relating combinatorial expression patterns of Sample 

Groups with their survival times 

 

The aforementioned Cox regression coefficient measures and log rank p-values considered 

the survival association with each single subunit (Super Module or Gene Group) one time.  In 

practice, survival times are likely affected by the combinatorial expression patterns of 

multiple subunits.  To specify the more complex relation between survival times and Super 

Modules, we manually constructed decision trees relating combinatorial expression patterns 

of Super Modules and survival times.  For each cancer type, we visualized the Kaplan-Meier 

curves of Sample Groups and reported their multi-group log rank p-values.  The Sample 

Groups were aggregated according to the proximity of their Kaplan-Meier curves.  Within 

each aggregated Sample Group, we then identified the Super Module expression patterns that 

were shared among its members.  An example of the BLCA decision tree is illustrated in 

Figure X29.  There are 4 Sample Groups with all very distinct Kaplan-Meier curves.  Sample 

Groups 2 (green) and 1 (blue) have the lowest survival curves, followed by groups 4 (cyan) 

and 3 (red).  We found expression levels of Super Module 8 best separated Sample Groups 2 

and 1 (high), 4 (intermediate), and 3 (low).  Between Sample Groups 2 and 1, Super Module 

5 expression levels are slightly higher in the former.  These delineations constitute the 

decision tree in the right panel of Figure X29. 

 

In some cancer types, the combinatorial expression patterns of Super Modules are poorly 

associated with survival times.  It is hence difficult to draw the decision trees of those cancer 

types.  For instance, in OV the Kaplan-Meier curves of all Sample Groups are barely 

separable (log rank p-value 0.324).  No decision tree is constructed accordingly.  The 
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combinatorial expressions, survival curves of the Sample Groups and their decision tree of 

each cancer type are visualized in Supplementary Data. 

 

4.3 Generating Pan-cancer Sample Groups 

 

Similar to Super Modules, Sample Groups generated from multiple cancer types can be 

closely related and thus form a higher order structure.  In brief, we solicited three Meta Gene 

Groups from the 18 Gene Groups: group 1 (Gene Groups 1-3) are highly enriched with 

immune response, group 2 (Gene Groups 4-6) are highly enriched with development and cell 

adhesion, and group 3 (Gene Groups 7, 8, 10, 12) are highly enriched with cell cycle.  The 

average expression level of each large group in each sample Gene Group is quantized into a 

binary value (0 or 1), and there are 22 = 8 combinatorial binary expressions of the three meta 

Gene Groups.  To assign Sample Groups to Pan-cancer Sample Groups, we first derived the 

combinatorial expression patterns of the 228 Sample Groups over the 18 Gene Groups 

(Figure 4A).  Certain Gene Groups are irrelevant in some Sample Groups if they are not over-

represented in any Super Module of the corresponding cancer type (the white patches in 

Figure 4A).  For instance, olfactory receptors (Gene Group 16) are target genes of Super 

Modules in only a few cancer types (such as GBM).  They do not appear in the IHAS of other 

cancer types, thus are irrelevant in the corresponding Sample Groups.  Furthermore, not all 

members of a Gene Group are relevant in a Sample Group since some members may not 

appear as target genes of the constituting Super Modules.  We proposed an algorithm to 

select members of the Gene Groups over-represented in the Super Modules pertaining to each 

Sample Group.  The combinatorial expression of a Gene Group in a Sample Group is the 

average expression of the selected genes among the Sample Group members (a patch in 

Figure 6A), and the average expression value is not valid if no genes are selected (white 
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patches in Figure 6A).  We then quantized the combinatorial expression patterns into binary 

values and assigned the binary Meta Gene Group states of each Sample Group accordingly.  

The 8 Pan-cancer Sample Groups immediately arise from the 3-bit Meta Gene Group states.  

More precise procedures are described below. 

 

 

Figure X29: In BLCA data, the combinatorial expression patterns of Super Modules are 

displayed (left panel).  Patients are subdivided into 5 groups in terms of Sample Groups, and 

their Kaplan-Meier curves are displayed (middle panel).  The distinction of the Kaplan-Meier 

curves in these groups is explained by a decision tree in terms of the combinatorial 

expression patterns of Super Modules. 

 

 

 

 

Figure X30: Algorithm for generating Pan-cancer Sample Groups. 
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Input: Super Modules, Gene Groups, and Sample Groups, mRNA expression data of all 

cancer types. 

 

Output: Assignments of Sample Groups to one of the 8 combinatorial expression patterns of 

three large groups. 

 

Procedures: 

 

1. Subdivide the mRNA expression data of each cancer type into grids of spanned by 

Super Modules and Sample Groups.  Calculate the mean expression value for each 

entry (Super Module-Sample Group combination) of the grids.  Denote this grid 

expression matrix as 𝐴. 

2. For each Super Module, consider the representative Gene Groups with enrichment p-

value 10J1Y. 

3. For each Gene Group, calculate the partial expression profile over the Super Module-

Sample Group grids.  If the Gene Group is over-represented in a Super Module, then 

extract the intersection of the Gene Group members and Super Module members and 

calculate their mean expression data in each Sample Group.  If the Gene Group is not 

over-represented in a Super Module, then place an invalid (NaN) value to in the 

entries corresponding to the Super Module in the grids.  Denote the grid expression 

matrix of Gene Group 𝑙 as 𝐵>. 

4. For each Super Module 𝑙, compare 𝐴 and 𝐵> and report whether each entry has 

compatible expressions (meaning that the expression values are either close or the 

quantized expression values have the same signs). 
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5. Construct a binary selection matrix 𝐶 where 𝐶;< denotes that Gene Group 𝑗 is selected 

in Super Module 𝑖.  The following criteria are adopted. 

5.1 Each row and each column in 𝐶 contain at least one unit entry.  In other words, at 

least one Gene Group is selected for each Super Module, and at least one Super 

Module contains each Gene Group.  If not possible, then minimize the number of 

rows and columns with all zero entries. 

5.2 If 𝐶;< = 1, then ensure the 𝑖ÞM row in 𝐴 and the 𝑗ÞM row in 𝐵> are inconsistent in at 

most 2 Sample Groups. 

6. For each cancer type, select genes according to 𝐶.  For each 𝐶;< = 1, find the 

intersection of Super Module 𝑖 and Gene Group 𝑗 members, and take the union of 

those genes. 

7. For each Sample Group, find the corresponding cancer type and subdivide the 

selected genes into Gene Groups.  Calculate the average expression levels of 

intersections between selected genes and each Gene Group. 

8. For each Sample Group, quantize the average expression levels of Gene Groups into a 

binary vector 𝑞. 

9. Collapse the quantized binary vector 𝑞 into a three-component binary vector 𝑟.  𝑟1 =

1	if	 𝑞1 = 1 ∨ 𝑞6 = 1 ∨ 𝑞2 = 1 , 𝑟6 = 1	if	 𝑞  = 1 ∨ 𝑞¡ = 1 ∨ 𝑞� = 1 , 𝑟2 =

1	if	 𝑞� = 1 ∨ 𝑞� = 1 ∨ 𝑞1Y = 1 ∨ 𝑞16 = 1 . 

10. Assign 𝑟 to one of the 8 combinatorial expression patterns. 

 

 

4.4 Aligning Pan-cancer Sample Groups with pan-cancer phenotypes 
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In addition to phenotypes of individual cancer types, TCGA also provides information about 

the phenotypes that appear across multiple cancer types.  We aligned the 8 Pan-cancer 

Sample Groups with four pan-cancer phenotypes: hypermutations of selected samples, 

mesenchymal subtypes, purity levels of samples (Aran et al., 2015), and stemness of samples 

(Malta et al., 2018).  Annotations of these pan-cancer phenotypes are juxtaposed with the 

sorted mRNA expression data of all Gene Groups and all samples in the TCGA data (Figure 

6B), and the sorted mRNA expression data of the three meta Gene Groups in 7 cancer types 

(Figure 6C).   

 

4.5 Integrating effector and target information within and across cancer 

types 

 

To obtain a holistic view about various aspects of IHAS information, we integrated the 

functional enrichment of Super Modules, occurrence of effectors, combinatorial mRNA 

expression patterns of Super Modules and Sample Groups, alignment of clinical phenotypes 

with Sample Groups, and survival information in each Sample Group in 8 selected cancer 

types and visualized them in Supplementary Figures S10-11.  Since the numbers of enriched 

functional categories, effectors and clinical phenotypes are too large to visualize, we solicited 

them by the following criteria.  For functional categories, we selected the MSigDB Gene Sets 

which are either annotated with HALLMARK or involved in neuron functions, and 

calculated their FDR-adjusted hyper-geometric enrichment p-values in each Super Module.  

For effectors, we chose the hub genes in the Consensus Artery Network which were 

effectors, and counted their occurrences in the positive and negative association directions.  

For clinical phenotypes, we manually selected one or two phenotypes from Table 5, and 

calculated the phenotype value composition in each Sample Group.  For survival information, 
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we counted the patients in each Sample Group with survival or censoring times and the 

patients whose survival or censoring times surpassed 5 years (1800 days).  Below we 

summarize the integrated information of 8 cancer types. 

 

Figure S10A displays the integrated information of ACC.  Super Modules 1 and 3 are 

enriched with cell cycle control and immune response respectively.  Prominent positive 

effectors include EIIF4EBP1 and RPS6 for Super Module 1 and STAT3 for Super Module 3.  

Sample Group 1 has high expression in Super Module 3 and moderate-low expression in 

Super Module 1.  Sample Group 2 has high expression in Super Module 1 and low expression 

in Super Module 3.  Sample Group 3 has low expression in Super Modules 2 and 3.  Sample 

Group 1 is dominated by the mRNA phenotype of “steroid phenotype low” and the 

methylation phenotype of “CIMP-low”.  Sample Group 2 is dominated by the mRNA 

phenotype of “steroid phenotype high” and the methylation phenotype of “CIMP-

intermediate”.  Sample Group 3 is dominated by the mRNA phenotype of “steroid phenotype 

high + proliferation” and the methylation phenotype of “CIMP-high”.  Sample Group 1 

comprises a higher proportion of long-surviving patients than other Sample Groups. 

 

Figure S10B displays the integrated information of BRCA.  Super Modules 1-3 are enriched 

with estrogen response, and Super Module 1 is also enriched with neuron functions.  Super 

Modules 4-5 are enriched with cell cycle control.  Super Module 6 is enriched with cell cycle 

control, immune response, development, and neuron function.  Super Modules 7-8 are 

enriched with immune response, development, and neuron function.  Prominent positive 

effectors include BRCA1, NF1, STAT5B for Super Modules 2-3, EIIF4EBP1 and SHC1for 

Super Modules 4, FOXM1, TEAD4, SETDB1, GAPDH, ATF7IP for Super Modules 5-7, 

MAPK14, FOXO3, FYN, HDAC2 for Super Modules 6-7, and MTOR, RUNX3, RPS6KA1 
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for Super Modules 7-8.  Sample Group 1 has high expression in Super Modules 7-8, 

moderate-high expression in Super Module 1, and low expression in Super Modules 3-5.  

Sample Group 2 has moderate-high expression in Super Modules 1-2 and low expression in 

Super Module 5.  Sample Group 3 has high expression in Super Modules 5-7 and low 

expressions in Super Modules 1-3 and 8.  Sample Group 4 has high expression in Super 

Modules 5-6 and low expression in Super Modules 1-2 and 8.  Sample Group 5 has high 

expression in Super Modules 3-4 and low expression in Super Modules 6-8.  Sample Group 6 

has high expression in Super Modules 2-3 and low expression in Super Modules 5-8.  Sample 

Groups 1-2 are dominated by luminal A tumors.  Sample Group 3 is dominated by basal-like 

tumors.  Sample Group 4 is a mixture of Her2-enriched and luminal B tumors.  Sample 

Groups 5-6 are mixtures of luminal A and luminal B tumors.  Sample Groups 1-2 comprise 

slightly higher fractions of long-surviving patients than Sample Groups 4-5. 

 

Figure S10C displays the integrated information of COAD.  Super Module 1 is enriched with 

neuron function.  Super Modules 3 and 8-10 are enriched with cell cycle control.  Super 

Module 4 is enriched with ribosome and respiration.  Super Module 6 is enriched with 

immune response and development.  Super Module 7 is enriched with neuron function, 

immune response and development.  Super Modules 8 and 10 are enriched with cell cycle 

control.  Super Module 8 is enriched with immune response and cell cycle control.  

Prominent positive effectors include MAPK3, CDH1, CBERBP for Super Modules 1 and 7, 

NF1, CDK5, PDX1, NLK, MED1, STAT5B for Super Modules 3-4, PLOR2A, SMAD4, 

EP300, SREBF1 for Super Modules 7-8, SMAD3 and E2F1 for Super Module 6.  Sample 

Group 1 has high expression in Super Modules 6-7 and moderate-high expression in Super 

Modules 8-10, and low expression in Super Modules 2-4.  Sample Group 2 has moderate-

high expression in Super Modules 8 and 10 and low expression in Super Modules 1, 5, 7.  
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Sample Group 3 has high expression in Super Modules 1-3 and low expression in Super 

Modules 6-7 and 9-10.  Sample Group 4 has high expression in Super Modules 3-5 and low 

expression in Super Modules 6-9.  Sample Group 5 has high expression in Super Modules 1 

and 7 and low expression in Super Modules 3, 8 and 10.  Sample Group 1 is a mixture of 

CMS1 and CMS4 tumors and dominated by MSI/CIMP mRNA subtypes.  Sample Group 2 

has diverse CMS tumors and a mixture of invasive and MSI/CIMP mRNA subtypes.  Sample 

Groups 3-4 are dominated by CMS tumors and CIN mRNA subtype.  Sample Group 5 is 

dominated by CMS4 tumors a mixture of mRNA subtypes.  Sample Groups 2 and 4 comprise 

slightly higher fractions of long-surviving patients than others. 

 

Figure S10D displays the integrated information of ESCA.  Super Module 1 is enriched with 

lipid metabolism.  Super Modules 2 and 4 are enriched with neuron function.  Super Modules 

3 and 6 are enriched with cell cycle control.  Super Module 5 is enriched with neuron 

function and cell cycle control.  Prominent positive effectors include PRKCD and PCM1 for 

Super Modules 1-2, SRC for Super Module 1, GSK3B, PRKAA1, MITF for Super Modules 

2 and 4, ZNF148, TBL1XR1, MAPK1 for Super Modules 4-5, KDM5B and RBBP5 for 

Super Modules 4 and 6, and FOXM1, TEAD4, GAPDH for Super Modules 5-6.  Sample 

Group 1 has high expression in Super Modules 4-5 and low expressions in Super Modules 1-

3.  Sample Group 2 has high expression in Super Modules 1, 2, 4 and low expression in 

Super Modules 5-6.  Sample Group 3 has high expression in Super Modules 1 and 3 and low 

expression in Super Modules 4-5.  Sample Group 1 is dominated by esophagus squamous cell 

carcinoma.  Sample Groups 2-3 are dominated by esophagus adenocarcinoma NOS. 

 

Figure S11A displays the integrated information of LGG.  Super Modules 1-3 are enriched 

with neuron function.  Super Modules 4-5 are enriched with cell cycle control.  Super Module 
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6 is enriched with cell cycle control, immune response, and development.  Super Module 7 is 

enriched with immune response, and development.  Prominent positive effectors include RB1 

for Super Modules 1-2, MAPK8 and EIF4EBP1 for Super Modules 1 and 3, FOXO3 and 

PRKCA for Super Module 2, MTOR, TGFB1, GSK3A, and BCL3 for Super Modules 6-7.  

Sample Group 1 has high expression in Super Modules 5-7 and low expression in Super 

Modules 1-4.  Sample Group 2 has low expression in Super Module 1.  Sample Group 3 has 

high expression in Super Modules 4-5 and low expression in Super Modules 1-2.  Sample 

Group 4 has high expression in Super Modules 3-4 and low expression in Super Module 6-7.  

Sample Group 5 has high expression in Super Modules 1-2 and low expression in Super 

Modules 4-6.  Sample Group 1 is dominated by IDH wild type.  Sample Groups 2-3 are 

dominated by IDH mutant-non codel subtype.  Sample Group 4 is dominated by IDH mutant-

codel subtype.  Sample Group 5 is a mixture of IDH mutant codel and IDH mutant noncodel 

subtypes. 

 

Figure S11B displays the integrated information of LUSC.  Super Module 1 is enriched with 

immune response, development, and neuron function.  Super Module 4 is enriched with cell 

cycle control.  Prominent positive effectors include JUN and NFKB1for Super Module 1, 

MTOR, PRKCA, FBXW7, JAK2, MAPK1 for Super Modules 1 and 4, EGFR, MET, AKT1, 

ASH2L, PRKDC, TCEA1, E2F1, EIF6, EP300 for Super Modules 3-4.  Sample Group 1 has 

high expression in Super Modules 1-2 and low expression in Super Modules 3-4.  Sample 

Group 2 has moderate-high expression in Super Module 1 and low expression in Super 

Module 4.  Sample Group 3 has low expression in Super Modules 1-2.  Sample Group 4 has 

high expression in Super Module 4 and low expression in Super Modules 1-2.  Sample Group 

1 is dominated by secretory tumors.  Sample Group 2 is a mixture of secretory and basal 
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tumors.  Sample Group 3 is a mixture of four subtypes.  Sample Group 4 is dominated by 

classical tumors. 

 

Figure S11C displays the integrated information of PCPG.  Super Module 1 is enriched with 

RNA splicing and respiration.  Super Module 3 is enriched with immune response and 

development.  Super Modules 4-5 are enriched with neuron function.  Super Modules 6-7 are 

enriched with protein secretion/localization.  Prominent positive effectors include FOXO3 

and RAF1 for Super Module 3, TRAM1, MTOR, SKIL, NF1 for Super Modules 3 and 6, 

ATF2 and STAT1 for Super Modules 6 and 7.  Sample Group 1 has high expression in Super 

Modules 1 and 3 and low expressions in Super Modules 4-7.  Sample Group 2 has moderate-

high expression in Super Module 7 and low expression in Super Modules 1 and 3.  Sample 

Group 3 has high expression in Super Modules 4-5 and 7 and low expression in Super 

Modules 1 and 3.  Sample Group 1 is dominated by the pseudohypoxia mRNA subtype and 

intermediate methylated subtype.  Sample Groups 2-3 are dominated by kinase signaling 

mRNA subtype and low methylated subtype. 

 

Figure S11D displays the integrated information of SARC.  Super Module 1 is enriched with 

cytoskeleton, myogenesis, and neuron function.  Super Modules 4-6 are enriched with cell 

cycle control and development.  Super Modules 7-8 are enriched with immune response and 

development.  Prominent positive effectors include AKT2, GSK3A, CDKN2A for Super 

Modules 1 and 5, EIF4EBP1, SETDB1, RIT1, UBQLN4 for Super Modules 4-5, CDK5, 

SMARCD1, ATF1, SP1, CDK4, MDM2 for Super Modules 7-8.  Sample Group 1 has high 

expression in Super Modules 1-2 and 4 and low expression in Super Modules 5-8.  Sample 

Group 2 has low expression in Super Module 4.  Sample Group 3 has high expression of 

Super Module 5 and low expression in Super Modules 1-2.  Sample Group 4 has high 



 105 

expression of Super Modules 5, 7-8 and low expression in Super Modules 1-4.  Sample 

Group 1 is dominated by STLMS histology subtype.  Sample Group 2 is dominated by 

DDLPS subtype.  Sample Groups 3-4 are dominated by UPS subtype.     

 

We also combined the information of effectors and targets of all Super Modules across all 

cancer types to identify the pathways that impact distinct Gene Groups or Meta Gene Groups.  

First, we restricted effectors to the 379 hub genes from the Consensus Artery Network.  

Second, for each hub effector we counted its occurrence in each Super Module Group.  

Positive and negative associations in a Super Module Group were counted separately.  Third, 

for each hub effector we determined whether it appeared frequently in a Super Module Group 

according to two criteria: (1) the occurrence in one direction ≥ 6, (2) the occurrence in this 

direction ≥ 3 folds of the occurrence in the other direction.  Using these criteria we quantized 

the occurrence of each hub effector over Super Module Groups into a trinary vector: +1 and -

1 denote that the hub effector occurs frequently in positive and negative directions of a Super 

Module Group.  Fourth, we selected 101 hub effectors which occurred frequently in at least 

one Super Module Group and sorted their quantized occurrence vectors.  Fifth, we selected 

35 MSigDB Gene Sets which contained ≥ 3 selected hub effectors and were not generated 

from high-throughput data.  All of those 35 Gene Sets happen to be pathways.  Sixth, we 

sorted the 35 pathways according to their membership vectors of the 101 selected hub 

effectors. 

 

According to the selected hub effectors and pathways we constructed 4 matrices/tensors.  𝑀1 

(17×18) is the binary over-representation matrix of 18 Gene Groups in 17 Super Module 

Groups.  𝑀6 (17×101×2) is the occurrence tensor of 101 selected hub effectors in 17 Super 

Module Groups and 2 directions.  𝑀2 (35×101) is the membership matrix of 101 selected 
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hub effectors in 35 pathways.  𝑀  (35×18×2) is the aggregate tensor combining 𝑀1-𝑀2: 

𝑀  : , : , 𝑖 = 𝑀1 ∙ 𝑀6(: , : , 𝑖) ∙ 𝑀2.  Furthermore, we identified and marked 16 selected hub 

effectors which appeared in ≥ 5 selected pathways.  They include the following genes: 

CDKN2A, RB1, CDK2, TP53, E2F1, AKT1, PRKCA, SHC1, RAF1, STAT3, MAPK1, 

SRC, MAPK3, MAPK8, MAPK14, EGFR. 

 

By inspecting the visualization of 𝑀  we subdivided the 35 pathways into two groups.  Group 

1 includes the following 14 pathways: BIOCARTA RACCYCD, BIOCARTA ATM, 

BIOCARTA G1, BIOCARTA G2, BIOCARTA CTCF, BIOCARTA CELL CYCLE, 

BIOCARTA P53, BIOCARTA RB, BIOCARTA TEL, BIOCARTA ARF, REACTOME G0 

and early G1, REACTOME YAP1 and WWTR1 TAZ STIMULATED GENE 

EXPRESSION, REACTOME G1 PHASE, REACTOME E2F MEDIATED REGULATION 

OF DNA REPLICATION.  Group 2 includes the following 21 pathways: REACTOME 

GAB1 SIGNALOSOME, BIOCARTA EDG1 PATHWAY, BIOCARTA EIF4 PATHWAY, 

BIOCARTA BIOPEPTIDE PATHWAY, BIOCARTA ATR1 PATHWAY, BIOCARTA 

ECM PATHWAY, BIOCARTA INTEGRIN PATHWAY, BIOCARTA PYK2 PATHWAY, 

BIOCARTA HER2 PATHWAY, BIOCARTA SPRY PATHWAY, REACTOME 

SIGNALING TO RAS, REACTOME SIGNALING TO ERKS, KEGG TYPE II DIABETES 

MELLITUS, BIOCARTA AGR PATHWAY, BIOCARTA SPPA PATHWAY, BIOCARTA 

ERK PATHWAY, BIOCARTA MPR PATHWAY, BIOCARTA VARRESTIN SRC 

PATHWAY, BIOCARTA MET PATHWAY, REACTION GROWTH HORMONE 

RECEPTOR SIGNALING, REACTOME NEGATIVE REGULATION OF FGFR 

SIGNALING.  The first 5 selected hub effectors (from CDKN2A to E2F1) frequently occur 

on pathway group 1, and the remaining 11 selected hub effectors (from AKT1 to EGFR) 

frequently occur on pathway group 2. 
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5 Validating IHAS on external datasets 

 

We validated the integrated hierarchical association structures in and their relations with 

clinical phenotypes in various external datasets from both tumors and normal tissues.  

Validation focuses on several aspects of the integrated hierarchical association structures: (1) 

whether the subunits (modules, Super Modules, Gene Groups, etc.) retain coherent 

expressions in external data, (2) whether the associations between effector molecular 

alterations and target gene expressions are preserved in external data, (3) whether the 

relations between target gene expressions of subunits and prognosis are preserved in external 

data, (4) whether the combinatorial expression patterns of Super Modules can be reproduced 

in external data, (5) whether the gene sets derived from TCGA possess functional 

implications in the datasets of drug responses and gene dependencies in cancer cell lines, (6) 

whether the gene sets derived from TCGA possess functional implications in the datasets of 

transcriptomes and epigenomes of normal tissues. 

 

5.1 Juxtaposition of cancer subtypes and combinatorial expression patterns 

of Super Modules 

 

Subtypes of breast cancers and glioblastomas are demarcated according to the expression 

signatures of selected genes.  To demonstrate the persistent relations between Super Module 

gene expression patterns and cancer subtypes, we visualized the transcriptomic expressions 

of TCGA BRCA and GBM data as well as METABRIC and REMBRANDT data, and 
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juxtaposed the cancer subtypes of samples.  For TCGA data, genes and samples are sorted 

according to the clustering outcomes, while the boundaries of Super Modules and Sample 

Groups are demarcated.  For external data, genes are sorted with the same order and Super 

Module boundaries are identical to TCGA, while samples are sorted by subtypes that give 

rise to similar expression patterns as TCGA.   

 

5.2 Evaluating expression coherence of Super Modules and Gene Groups 

 

An immediate validation of IHAS is to check whether the genes in each Super Module or 

Gene Group retain coherent expressions on external data.  We quantified the expression 

coherence of a collection of genes with two scores: the median correlation coefficient among 

the expression profiles of the member gene pairs and the 𝑝Â;�� deviation between the 

correlation coefficient distribution of the member gene pairs and the background distribution 

of all gene pairs in the data.  To reduce the burden of assessing the background distribution 

we randomly selected 5000 genes and calculated their distribution of pairwise correlation 

coefficients excluding self-correlations.  Expression coherence is reported in all external 

datasets. 

 

5.3 Associations between association structure and survival outcomes 

 

METABRIC, REMBRANDT, and a subset of the GEO datasets provide prognostic 

information of survival and censoring times.  Verification of prognostic information on 

external data is similar to the prognostic analysis on TCGA data.  For each Super Module and 

Gene Group, we calculated the deviation score 𝑝Â;�� of Cox regression coefficients 

distribution relative to the background distribution.  For METABRIC and REMBRANDT 
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data, we grouped patients by their expression subtypes, visualized their Kaplan-Meier curves, 

and reported their log rank p-values. 

 

5.4 Aligning the combinatorial expression patterns in the GEO datasets 

 

For each cancer type in TCGA, the combinatorial expression patterns denote the average 

expression levels of each combination of Super Module and Sample Group.  We anticipated 

that the whole or parts of those combinatorial expression patterns are reproducible in the 

external datasets of the same cancer type.  To identify similar or partially similar 

combinatorial expression patterns in external datasets, we need to align Super Modules and 

Sample Groups in the TCGA data with the counterparts in an external data.  Alignments of 

Super Modules are immediate since they have to share the same groups of genes.  

Alignments of Sample Groups are less trivial since samples in TCGA and external data are 

not directly related.  We aligned Sample Groups in both TCGA and external datasets and 

generated the combinatorial expression patterns in the external dataset.  In brief, we 

employed spectral clustering recursively to both datasets and generated two trees of binary 

partitions of samples, and developed a dynamic programming algorithm to align the binary 

partition trees and generate the combinatorial expression patterns in the external data.  A 

valid alignment has to respect the tree structures.  If nodes 𝐴 and 𝐵 are aligned, then 

descendants of 𝐴 are aligned with 𝐵 or its descendants and vice versa.  Furthermore, the loss 

function of a valid alignment is defined recursively by the sum of loss functions of the best 

sub-alignments among the children of the current nodes and the match/gap score of aligning 

the current nodes.  A belief propagation like method returns the globally optimal assignment.  

More precisely, the algorithm consists of two parts: recursive evaluation of the loss function 
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value for each pair of nodes between the two binary partition trees, and recursive 

determination of the alignment that minimizes the loss function. 

 

 

Figure X31: Algorithm of recursive_loss_evaluation: recursively evaluating the loss 

functions. 

 

Input: Two binary partition trees of samples 𝑇1 and 𝑇6 from the two datasets, their gene 

expression data, the current nodes 𝑣1 ∈ 𝑇1 and 𝑣6 ∈ 𝑇6. 

 

Output: loss functions 𝐿1(: , : ) and 𝐿6(: , : ) of pair 𝑣1 and 𝑣6 and their descendants. 

 

Procedures: 

 

1. Define a patch 𝑝1 of 𝑣1 as a 𝐾-component vector, where each component is the 

average expression level over the Super Module target members and samples 

encompassed by 𝑣1.  Define a patch 𝑝6 of 𝑣6 likewise. 

2. If both 𝑣1 and 𝑣6 are leaf nodes, then 𝑆1(𝑣1, 𝑣6) is the number of mismatched 

components between 𝑝1 and 𝑝6 (one component has a value ≥ 0.55 and another has a 

value ≤ 0.45), and 𝑆6(𝑣1, 𝑣6) is the Euclidean distance between 𝑝1 and 𝑝6.  

𝐿1 𝑣1, 𝑣6 = 𝑆1(𝑣1, 𝑣6), 𝐿6 𝑣1, 𝑣6 = 𝑆6(𝑣1, 𝑣6).  Stop. 

3. If 𝑣1 is not a leaf node and 𝑣6 is a leaf node, then 𝐿1 𝑣1, 𝑣6 = 𝑆1 𝑣1, 𝑣6 + 0.4 ∙

#	Super	Modules , 𝐿6 𝑣1, 𝑣6 = 𝑆6 𝑣1, 𝑣6 + 1
�
∙ #	Super	Modules  .  Stop. 
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4. If 𝑣1 is a leaf node and 𝑣6 is not a leaf node, and suppose 𝑐1 and 𝑐6 are two children 

of 𝑣6.  Then 𝐿1 𝑣1, 𝑣6 = 𝑆1 𝑣1, 𝑣6 + min 𝐿1 𝑣1, 𝑐1 , 𝐿1 𝑣1, 𝑐6 , 𝐿6 𝑣1, 𝑣6 = 

𝑆6 𝑣1, 𝑣6 + min 𝐿6 𝑣1, 𝑐1 , 𝐿6 𝑣1, 𝑐6 .  Denote 𝑐 the matched child of 𝑣6.  Set the 

current nodes to 𝑣1 and 𝑐 and incur recursive_loss_evaluation. 

5. If neither 𝑣1 nor 𝑣6 is a leaf node, then consider all possible alignments between the 

trios of 𝑣1 and 𝑣6.  The loss functions are the infinimum from all those possible 

alignments.  

5.1 Both children of 𝑣1 are aligned with both children of 𝑣6.  The loss functions 

𝐿1 𝑣1, 𝑣6  and 𝐿6 𝑣1, 𝑣6  are the sum of loss functions for children's alignments 

plus 𝑆1(𝑣1, 𝑣6) and 𝑆6 𝑣1, 𝑣6  respectively.  Spin off two current node pairs 

corresponding to the matched children pairs and incur recursive_loss_evaluation. 

5.2 𝑣1is aligned to a child 𝑐1 of 𝑣6.  The loss functions 𝐿1 𝑣1, 𝑣6  and 𝐿6 𝑣1, 𝑣6  are 

the loss functions of aligning 𝑣1and 𝑐1, plus the gap penalty of not aligning 𝑐6, 

another child of 𝑣6, to any node in 𝑇1.  The gap penalties are 0.4 ∙

#	Super	Modules  and 1
�
∙ #	Super	Modules  for the two loss functions.  Set 

the current nodes to 𝑣1 and 𝑐1 and incur recursive_loss_evaluation. 

5.3 A child 𝑐1 of 𝑣1 is aligned to 𝑣6.  The loss functions can be computed in a 

reciprocal manner.  Move the current nodes to 𝑐1 and 𝑣6 and incur 

recursive_loss_evaluation. 

5.4 A child 𝑐1 of 𝑣1 is aligned to a child 𝑐6 of 𝑣6, and other children of 𝑣1 and 𝑣6 are 

not aligned.  The loss functions are the loss functions of aligning 𝑐1 and 𝑐6 plus 

the gap penalty of not aligning the other children of 𝑣1 and 𝑣6.  Set the current 

nodes to 𝑐1 and 𝑐6 and incur recursive_loss_evaluation. 
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Figure X32: Algorithm of recursive_alignment_determination: recursively aligning nodes in 

the binary partition trees. 

 

Input: Two binary partition trees of samples 𝑇1 and 𝑇6 from the two datasets, their gene 

expression data, loss functions 𝐿1(: , : ) and 𝐿6(: , : ) for all node pairs, the current nodes 𝑣1 ∈

𝑇1 and 𝑣6 ∈ 𝑇6. 

 

Output: Alignment mappings 𝑓16 and 𝑓61 that map 𝑣1 and 𝑣6 to the counterparts in 𝑇6 and 𝑇1 

respectively.  One node can be mapped to one or multiple nodes. 

 

Procedures: 

 

1. If both 𝑣1 and 𝑣6 are leaf nodes, then 𝑓16 𝑣1 = 𝑣6 and 𝑓61 𝑣6 = 𝑣1.  Stop. 

2. If 𝑣1 is not a leaf node and 𝑣6 is a leaf node, then 𝑓16 𝑣1 = 𝑣6 and 𝑓61 𝑣6 = 𝑣1.  

Stop. 

3. Suppose 𝑣1 is a leaf node and 𝑣6 is not a leaf node.  Suppose 𝑐1 and 𝑐6 are two 

children of 𝑣6, and 𝐿1 𝑣1, 𝑐1 < 𝐿1(𝑣1, 𝑐6).  Then 𝑓16 𝑣1 = 𝑣6, 𝑐1 , 𝑓61 𝑣6 =

𝑣1, 𝑓61 𝑐1 = 𝑣1.  Suppose 𝐿1 𝑣1, 𝑐1 = 𝐿1(𝑣1, 𝑐6) but 𝐿6 𝑣1, 𝑐1 = 𝐿6(𝑣1, 𝑐6), then 

𝑓16 𝑣1 = 𝑣6, 𝑐1 , 𝑓61 𝑣6 = 𝑣1, 𝑓61 𝑐1 = 𝑣1.  Move the current nodes to 𝑣1 and 𝑐1 

and incur recursive_alignment_determination. 

4. If neither 𝑣1 nor 𝑣6 is a leaf node, then find the alignment of the trios of 𝑣1 and its 

children and of 𝑣6 and its children that minimizes the loss function 𝐿1(: , : ).  If there 

are multiple minimizers for 𝐿1(: , : ), then find the alignment that minimizes 𝐿6(: , : ).  
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Set 𝑓16 and 𝑓61 according to the best alignments.  Spin off and move current nodes 

according to the best alignment.  Incur recursive_alignment_determination. 

 

The function building_alignments establishes alignment mappings between the two partition 

trees by employing recursive_loss_evaluation and recursive_alignment_determination in 

sequence. 

 

 

Figure X33: Algorithm of building_alignment: build alignments of the two binary partition 

trees. 

 

Input: Two binary partition trees of samples 𝑇1 and 𝑇6 from the two datasets, their gene 

expression data. 

 

Output: Alignment mappings 𝑓16 and 𝑓61 for all nodes in 𝑇1 and 𝑇6 respectively. 

 

Procedures: 

 

1. Initialize 𝐿1 : , : = 0 and 𝐿6 : , : = 0, and the current nodes to the roots of 𝑇1 and 𝑇6 

respectively. 

2. Incur recursive_loss_evaluation recursively to calculate the loss function values 

𝐿1 : , :  and 𝐿6 : , :  for all pairs of nodes. 

3. Set the current nodes to the roots of 𝑇1 and 𝑇6 respectively. 

4. Incur recursive_alignment_determination recursively to determine the alignment 

mappings 𝑓16 and 𝑓61. 



 114 

 

5.5 Assessing preservation of CNV-mRNA associations 

 

CNV data are available for two external datasets of specific cancer types (METABRIC and 

REMBRANDT) and one external dataset of multiple cancer types (CCLE).  We verified 

CNV-mRNA associations of these two types of external data with slightly different 

approaches.  For specific cancer types, we extracted the effectors and targets of trans-acting 

CNV modules in TCGA BRCA and GBM data assessed their association strength in 

METABRIC and REMBRANDT data by (1) median correlation coefficients between 

effectors and targets and (2) their 𝑝Â;�� scores.  For multiple cancer types, we extracted the 

recurrent effectors of CNV segments from TCGA data for each Super Module Group, and 

identified the corresponding enriched Gene Groups.  We then evaluated the association 

strength between the CCLE CNV data of the recurrent effectors and the CCLE mRNA 

expression data of the members of the enriched Gene Groups using both median correlation 

coefficients and 𝑝Â;�� scores. 

 

5.6 Assessing preservation of other types of effector-target associations 

 

CCLE possesses all types of TCGA molecular alteration data beyond CNV (mutations, DNA 

methylations, etc.).  These data cover many effector genes, but relatively few of them are 

recurrent by our definition.  To better validate those effector-target associations, we asked 

whether the numbers of effector-target associations of effector genes in TCGA were 

positively correlated with their numbers of effector-target associations in CCLE.  

Specifically, we sorted effector genes (mutated genes, methylated genes, etc) by their 

numbers of effector-target associations in TCGA and grouped them into bins of 10 genes.  In 
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each bin, we then extracted the corresponding effector-target associations in CCLE and 

counted the associations with compatible and incompatible directions relative to TCGA.  One 

type of effector-target associations is preserved in CCLE if the number of compatible 

associations in CCLE declines with the rank of the effector bin in terms of the number of 

associations in TCGA, while the number of incompatible associations is relatively invariant 

with the rank.  We assessed preservation of effector-target associations for four types of 

effectors in CCLE data: mutations, DNA methylations, microRNA expressions, and protein 

phosphorylations.  The results are summarized in Supplementary Figure S8. 

 

5.7 Relating Gene Group expressions and drug response data 

 

One external dataset comprises drug response data.  CCLE reports the IC50 values of 24 drugs 

on 1046 cancer cell lines.  We related IHAS from TCGA with the two drug response data by 

different means.  In CCLE, for each (compound,gene) pair we evaluated the correlation 

coefficient between the IC50 values of the compound and the mRNA expression values of the 

gene over the 1046 samples.  A negative correlation denotes that cells with high expression 

values of the gene are also sensitive to the drug treatment (low IC50 values), and a positive 

correlation denotes the opposite relation. To verify whether the expressions of Gene Groups 

are indicative about drug responses, we determined the directions and calculated the 𝑝Â;�� 

scores of all (compound,Gene Group) pairs and. 

 

 

5.8 Relating Gene Group expressions and gene dependencies 
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Gene dependency data are not provided in TCGA.  To use them to verify the integrated 

hierarchical association structure in TCGA, we examined whether the correlations between 

Achilles gene dependency data and CCLE mRNA expression data of Gene Groups possessed 

certain patterns.  We calculated the correlation coefficient between each pair of (growth 

response,mRNA expression) profiles from the Achilles gene dependency data and CCLE 

mRNA expression data.  Furthermore, for each pair of (perturbed gene,Gene Group) we 

computed the average correlation coefficient over target members of the Gene Group.  Since 

gene dependency data were generated by two technologies (RNAi and CRISPR), we also 

selected the perturbed genes whose dependency data between RNAi and CRISPR 

technologies were correlated, and whose (perturbed gene,Gene Group) correlation matrices 

between RNAi and CRISPR technologies were also correlated.  2000 perturbed genes were 

selected accordingly.  Figures 9C-D display the (gene dependency data, Gene Group 

expression data) correlation coefficients generated by RNAi and CRISPR technologies.  The 

RNAi and CRISPR correlation matrices are highly similar.  We subdivided the 2000 

perturbed genes into 3 stable clusters.  Cluster 1 (939 genes) possess moderate positive 

correlations with Gene Groups 7, 10, 12, 13, 14, 15 and moderate negative correlations with 

Gene Groups 1, 2, 6, 11.  Cluster 2 (675 genes) possess moderate negative correlations with 

Gene Groups 7, 10, 12, 13, 14, 15 and moderate positive correlations with Gene Groups 1, 3, 

6.  Cluster 3 (386 genes) possess moderate/weak negative correlations with Gene Groups 7, 

10, 12 and positive correlations with Gene Groups 1, 2, 11.  A negative association between a 

perturbed gene and a Gene Group denotes that cell lines possessing high expressions of the 

Gene Group undergo more growth reduction upon the deletion of the perturbed gene.  A 

positive association implies the opposite relation.  Thus, deleting genes in cluster 1 will 

reduce growth of cell lines with higher cell differentiation/immune response activities but 

will elevate growth of cell lines with higher cell proliferation/division activities.  In contrast, 
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deleting genes in cluster 2 will will reduce growth of highly proliferative/dividing cell lines 

but will elevate growth of quiescent/metastasizing/differentiating cell lines.  Deleting genes 

in cluster 3 induces very similar responses to those of cluster 2. 

 

We calculated the hypergeometric enrichment p-values of MSigDB gene sets for each cluster 

and reported the outcomes in Supplementary Table S10I.  Curiously, certain functional 

classes are either uniquely enriched in one gene clusters or commonly enriched in multiple 

clusters.  Gene sets of cell adhesion, cell-cell communication, immune response, cell 

development and differentiation are enriched in cluster 1.  Gene sets of respiration, splicing, 

protein complex disassembly, and translation are highly enriched in cluster 2.  In contrast, 

various gene sets related to cell cycle/proliferation/division are enriched in clusters 1, 2, 3 or 

their combinations. 

 

5.9 Verifying the impacts of selected hub effectors in gene dependency data 

 

From the integrated data of effectors and targets of Super Module Groups we identified 16 

selected hub genes which occurred frequently in some Super Module Groups and appeared in 

≥ 5 selected pathways (Section 4.5).  5 selected hub effectors appear frequently in pathway 

group 1 (pathways pertaining to cell cycle control), and 11 selected hub effectors appear 

frequently in pathway group 2 (various signaling pathways).  We expected that perturbing the 

5 selected hub effectors –  CDKN2A, RB1, CDK2, TP53, E2F1 – will impact cancer cells 

with higher Meta Gene Group 3 expressions, and perturbing the 11 selected hub effectors – 

AKT1, PRKCA, SHC1, RAF1, STAT3, MAPK1, SRC, MAPK3, MAPK8, MAPK14, EGFR 

– will impact cancer cells with higher Meta Gene Groups 1-2 expressions.  To verify the 

predictions on the Achilles data, we further narrowed down the 16 selected hub effectors to 9 
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by considering the genes where the dependency profiles between RNAi and CRISPR 

experiments ≥ 0.1: RB1, CDK2, TP53, E2F1, AKT1, RAF1, MAPK1, MAPK14, and EGFR.   

We calculated the mean correlation coefficient between the Achilles dependency profile of 

each selected hub effector and the CCLE mRNA expression profiles of each of the 18 Gene 

Groups.  The results are two 9×18 correlation coefficient matrices 𝐶1 and 𝐶6 (for RNAi and 

CRISPR perturbations).  Since correlation coefficients between dependency and mRNA 

expression profiles are generally low, we rescaled 𝐶1 and 𝐶6 by a background distribution.  

We constructed two matrices 𝐵1 and 𝐵6 of the mean correlation coefficients between the 

dependency profiles of all perturbed genes (16934 and 17604 for RNAi and CRISPR data) 

and the 18 Gene Groups.  Entries in 𝐶1 and 𝐶6 were converted into the CDF values 𝑃1 and 𝑃6 

based on the background distributions in 𝐵1 and 𝐵6.  Small CDF values (close to 0) denote 

negative correlation coefficients, and large CDF values (close to 1) denote positive 

correlation coefficients.  To facilitate visualization we further converted CDF values to the 

range [-1,+1] by 𝑄1 = 𝑃1 − 0.5 ∗ 2,𝑄6 = 𝑃6 − 0.5 ∗ 2.  Figure 6B in the main text 

displays 𝑄1 and 𝑄6 for the 9 selected hub effectors on 10 Gene Groups belonging to the 3 

Meta Gene Groups.  RB1 and TP53 yielded strong negative values (≤ −0.8) in Gene Group 

7 for both 𝑄1 and 𝑄6, and AKT1 and EGFR yielded strong negative values in Gene Group 2 

for both 𝑄1 and 𝑄6.  Overall, cancer cell lines with higher expressions of Meta Gene Group 3 

are more dependent on RB1 and TP53, and cancer cell lines with higher expressions of Meta 

Gene Group 1 are more dependent on AKT1, RAF1, MAPK14, and EGFR. 

 

 

5.10 Relating IHAS from TCGA and transcriptomic and epigenomic data 

in normal tissues 
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To verify IHAS in Bodymap and Roadmap data in normal tissues, we examined whether 

genes possessing tissue-specific expression or epigenomic states were strongly enriched in 

Super Modules and Gene Groups.  For the Bodymap data, we calculated standard hyper-

geometric enrichment p-values of the 16 sets of tissue-specific genes (Table X3) in each 

Super Module and Gene Group.  The enrichment outcomes are sorted by both the orders of 

Super Module Groups and cancer types. 

 

The Roadmap Epigenomic data was converted into a 29293×129 binary matrix 𝑅 of active 

transcription states of 29293 probed genes over 129 probed tissues.  We roughly subdivided 

the 129 tissues into four groups –  stem, neuron, blood, and others.  An element 𝑅;< denotes 

the active transcription state of gene 𝑖 in tissue type 𝑗.  Each gene has a binary vector 

indicating its active transcription states over 129 tissues.  This	129-component binary vector 

was reduced into a 4-component vector indicating the overall active transcription states the 

four tissue groups.  We counted the number of genes possessing each of the 2  = 16 

combinatorial epigenomic states over the 4 tissue groups, sorted the combinatorial 

epigenomic states by the gene counts and picked the top 8 states, and categorized genes into 8 

clusters (Figure 12A).  Clusters 1 and 2 genes are active and inactive across all tissue types 

respectively.  Cluster 3 genes are active in neuron tissues alone.  Cluster 4 genes are active in 

stem cell tissues alone.  Cluster 5 genes are active in both stem cell and and neuron tissues.  

Cluster 6 genes are active in all tissues but blood cells.  Cluster 7 genes are active in all 

tissues but stem and blood cells.  Cluster 8 genes are active in blood cells.  We calculated 

standard hyper-geometric enrichment p-values of the 8 gene clusters in each Super Module 

and Gene Group. 
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6. Comparing IHAS with other multi-omics integration studies 

and databases 

 

6.1 Comparing IHAS with other multi-omics integration studies 

 

We compared IHAS with 5 prior studies of multi-omics integration methods: iClusters of 

tumors (Hoadley et al., 2018), immune subtypes of tumors (Thorsson et al., 2018), Multi-

Omics Factor Analysis (MOFA, Argelaguet et al., 2018), Multi-omics Master-Regulator 

Analysis (MOMA, Paull et al., 2021), and tumor microenvironment subtypes (TME, Bagaev 

et al., 2021).  We first qualitatively checked the presence or absence of 12 features pertaining 

to multi-omics data integration in IHAS and those methods.  iClusters, immune subtypes and 

TME clustered TCGA tumors.  We counted the overlaps of the reported tumor clusters with 

the 8 Pan-cancer Sample Groups from IHAS and calculated the enrichment p-values.  

MOMA and TME clustered genes.  We counted the overlaps of the reported gene clusters 

with the 18 Gene Groups from IHAS and calculated the enrichment p-values.  MOFA is a 

dimension reduction algorithm.  For each cancer type, we applied MOFA to decompose the 

integrated data into 15 factors, projected samples onto the factor space, and applied k-means 

to cluster samples with k equals to the number of Sample Groups.  MOFA sample clusters 

were aligned with IHAS Sample Groups by maximizing the overlap counts over all 

permutations of sample clusters. 

 

6.2 Verifying IHAS results on the STRING database 
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STRING is a large database of known and predicted protein-protein associations of about 67 

million proteins from about 14000 organisms (Franceschini et al., 2013).  It is widely used by 

biologists and bioinformaticians as a surrogate for the ground truth of protein-protein 

associations.  STRING assigns each protein pair a confidence score of associations according 

to multiple types of evidence such as literature co-occurrence, high-throughput assays, and 

comparative genomics.  We performed two enrichment analysis of the IHAS inference results 

on STRING.  First, we checked whether effectors/regulators co-occurring in the same Super 

Modules tend to possess high STRING scores.  We extracted 22416181 co-occurring 

effector/regulator pairs and sorted them by their co-occurring frequencies over the Super 

Modules.  To assess enrichment in STRING we calculated the cumulative confidence scores 

(sum of the scores from the first to the current positions) and displayed the cumulative scores 

with respect to ranks.  As a negative control we randomly sampled the same number of 

effector/regulator pairs and calculated their cumulative scores.  The co-occurring 

effector/regulator pairs (blue curve) possess much higher cumulative scores than random 

effector/regulator pairs (red curve).  Among the top 100, 1000 and 10000 co-occurring pairs, 

37, 309 and 2247 possess positive STRING scores, yet only 4, 40 and 409 control pairs 

possess positive STRING scores. 

 

Second, we checked whether effector-target pairs co-occurring in the same Super Modules 

tend to possess high STRING scores.  We extracted 41334000 co-occurring effector-target 

pairs and assessed enrichment with the STRING database with the same procedures.  The 

same number of randomly sampled effector and target gene pairs were extracted as the 

negative control.  The cumulative STRING scores of the co-occurring effector-target pairs 

are also considerably higher than those of the random effector-target pairs, but the level of 

enrichment is lower than the co-occurring effector pairs.  Among the top 100, 1000 and 
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10000 co-occurring effector-target pairs, 8, 42 and 378 possess positive STRING scores (3, 

21, 252 for control effector-target pairs respectively).  Recurrent effector-target pairs are less 

well aligned with the STRING database than recurrent effector pairs probably because there 

are many more targets than effectors.  Consequently, some effector-target associations are 

likely (1) not direct protein-protein interactions or transcriptional regulation links, (2) not 

reported in literature since the target genes are less well studies, or (3) spurious. 
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