YMTHE, Volume 31

Supplemental Information

Intravenous treatment with a molecular chaperone

designed against β -amyloid toxicity improves

Alzheimer's disease pathology in mouse models

Shaffi Manchanda, Lorena Galan-Acosta, Axel Abelein, Simone Tambaro, Gefei Chen, Per Nilsson, and Jan Johansson

Supplementary material to

Intravenous treatment with a molecular chaperone designed against amyloid- β toxicity improves features of Alzheimer disease pathology in mouse models

Shaffi Manchanda^{1,2}, Lorena Galan-Acosta^{1,2}, Axel Abelein^{1,2}, Simone Tambaro², Gefei Chen^{1,2}, Per Nilsson² and Jan Johansson^{1,2,*}

¹Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden

²Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden

Supplementary Fig. S1. Full-length APP and its processed forms levels remain unchanged after Rh Bri2 BRICHOS R221E treatment in *App^{NL-F}* mice.

Representative western blots (A) and histograms (B, C) showing levels of full-length APP (FL-APP) and ratio of APP derived C-terminal fragments (CTF α and CTF β) in cortex of PBS and rh Bri2 BRICHOS R221E treated App^{NL-F} mice (n=6-7 mice/group). Data are represented as Mean \pm SEM. Unpaired parametric two-tailed t-test was used to calculate the p-values.