YMTHE, Volume 31

Supplemental Information

Self-amplifying RNA vaccine protects mice

against lethal Ebola virus infection

Verena Krähling, Stephanie Erbar, Alexandra Kupke, Sara S. Nogueira, Kerstin C. Walzer, Hendrik Berger, Erik Dietzel, Sandro Halwe, Cornelius Rohde, Lucie Sauerhering, Letícia Aragão-Santiago, Jorge Moreno Herrero, Sonja Witzel, Heinrich Haas, Stephan Becker, and Ugur Sahin

1 Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection

Verena Krähling*^{1,2}, Stephanie Erbar*³, Alexandra Kupke^{1,2}, Sara S. Nogueira³, Kerstin C.
Walzer³, Hendrik Berger³, Erik Dietzel^{1,2}, Sandro Halwe^{1,2}, Cornelius Rohde^{1,2}, Lucie
Sauerhering^{1,2}, Letícia Aragão-Santiago³, Jorge Moreno Herrero³, Sonja Witzel⁴, Heinrich
Haas³, Stephan Becker*^{1,2}, Ugur Sahin*³

- ¹ Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg,
 Germany
- 8 ² German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen,
- 9 Marburg, Germany
- ³ BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
- ⁴ TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg
- 12 University gGmbH, Freiligrathstraße 12, 55131 Mainz, Germany
- 13 * These authors contributed equally to this work

14

Figure S1. Hydrodinamic diameter (Z-Average) and polydispersity index (PDI) of LNPs used 15 in the experiments by dynamic Light Scattering (DLS). (A) LNPs co-formulated with GP 16 saRNA/NP saRNA or GP saRNA/filler RNA showed identical hydrodynamic diameter and 17 PDI, either in the prime injection or boost injection represented in Figure 2. A measurable 18 increment of PDI between both formulations used for the boost is accompanied by an overall 19 reduction in the hydrodynamic diameter. (B) LNPs co-formulated with GP saRNA/NP saRNA 20 either for i.m or i.d application, depicted in Figure 3, showed identical hydrodynamic diameter 21 and PDI. (C) No differences could be observed in the hydrodynamic diameter or PDI of the 22 23 LNPs after co-formulation of GP saRNA/filler RNA or NP saRNA/filler RNA or GP saRNA/NP saRNA or filler alone, that were used for the prime or boost injection in the 24 challenge experiment depicted in Figure 4. (D) LNPs co-formulated with either GP-25 saRNA/filler or GP-saRNA/NP-saRNA or filler for the challenge experiment in Figure 5, 26 showed identical hydrodynamic diameter and PDI. 27

28

29	Supplemental Tab	le 1: Evaluation	table of clinical	scores during	challenge ex	periments
25	Suppremental Las	ic i. L'aluation	table of chillen	scores auring	chancinge ex	perments

Scoring	0	1	5	10
Body weight (deviation from	0 % - 5 %	6 % - 10 %	11 % - 15 %	> 15 %
average individual weight*)				
General condition	Fur smooth,	Fur slightly	Fur dull,	Focally sticky
	shiny; Orifices	ruffled, poor	disordered;	or shaggy,
	clean; Eyes	or excessive	unkempt	rough fur;
	clear; no	grooming; no	orifices; Eyes	Eyes cloudy;
	deviation in	deviation in	cloudy;	Diarrhea;
	body	body	Deviation of	Jaundice or
	temperature	temperature	the body	evidence of
			temperature	coagulopathy;
			up to 1 ° C	Deviation of
				the body
				temperature
				up to 2 ° C
Spontaneous behaviour	Normal	Minor	Moderate	Severe activity
	behaviour	deviations	changes in	changes or
	(sleeping,	from normal	activity	lethargy; Self-
	reacting to	behaviors	(hyperactivity	isolation,
	touch,		/ hypoactivity)	aggressive
	curiosity,			behavior
	social contact)			towards
				oneself or
				cage mates

*The average individual body weight was determined by measuring on three different days before the experiment.

The score in the three different categories (body weight, general condition and spontaneous behaviour) for each animal is summed up and animals were euthanized when they reached a score of 10, i.e. the evaluation in one of the criteria body weight, general condition and spontaneous behaviour with a score of 10 was sufficient for euthanasia. If, by adding up the results of the various criteria, a score of 10 on a single day or 6 on two consecutive days was obtained, the veterinarian was consulted to decide on the euthanasia.

31	Supplemental	Table 2: Peptides	used in ELISpot assays
----	--------------	-------------------	------------------------

Peptide name	Amino acid sequence		
Peptides derived from EBOV GP			
MHC class I			
GP MHC-I 1	FEVDNLTYV		
GP MHC-I 2	MASENSSAM		
GP MHC-I 3	FSILNRKAI		
GP MHC-I 4	DNLTYVQL		
GP MHC-I 5	AFFLYDRL		
GP MHC-I 6	ELRTFSIL		
MHC class II			
GP MHC-II 1	GLAWIPYFGPAAEGI		
GP MHC-II 2	KRWGFRSGVPPKVVN		
Peptides derived from E	BOV NP		
MHC class I			
NP MHC-I 1	YQVNNLEEI		
NP MHC-I 2	ARLLNLSGV		
NP MHC-I 3	DGVKRLEEL		
MHC class II			
NP MHC-II 1	EVNSFAKALSSLAKH		
NP MHC-II 2	TSNRTTPVAPPAPVY		