iScience, Volume 26

Supplemental information

Low-dose ethanol increases aflatoxin production

due to the *adh1*-dependent incorporation

of ethanol into aflatoxin biosynthesis

Tomohiro Furukawa, Masayo Kushiro, Hiroyuki Nakagawa, Hirofumi Enomoto, and Shohei Sakuda

Figure S1 Effects of low-molecular-weight alcohols on the aflatoxins production and mycelial weight of *Aspergillus parasiticus* NRRL2999. Related to Figure 1. Mean \pm SD, n = 5 (ethanol) or 4 (other alcohols), ANOVA followed by Dunnett's test. **p < 0.01, ***p < 0.001, ***p < 0.0001, vs. control.

Figure S2 ¹³C of [1-¹³C]-ethanol and [2-¹³C]-ethanol were also incorporation into aflatoxin B₂. Related to Figure 2.

(A–C) Mass spectra of aflatoxin B₂ extracted from control culture (A) and cultures supplemented with 1% of $[1-{}^{13}C]$ - and $[2-{}^{13}C]$ -ethanol, respectively (B and C). The observed mass, predicted molecular formula, and mass accuracy between theoretical and observed *m/z* are shown above each peak.

(**D**) Predicted pathway of 13 C incorporation from labeled ethanol to aflatoxin B₂.

• and * indicate ¹³C derived from ¹³C of [1-¹³C]- and [2-¹³C]-ethanol, respectively.

Figure S3 ¹³C incorporation into aflatoxin B₁, aflatoxin B₂, and acetyl-CoA when labeled ethanol was added. Related to Figure 3.

(A) Percentages of peak areas of aflatoxin B₂ produced by *A. flavus* cultured with [1-¹³C]-ethanol; aflatoxin B₂ concentrations and ¹³C abundance are shown in the inset panels. Mean \pm SD, n = 6. ***p < 0.001, ****p < 0.0001 vs. control, ANOVA followed by Dunnett's test.

(B) Percentages of peak areas of aflatoxin B₁ produced by *A. flavus* cultured with [2-¹³C]-ethanol; aflatoxin B₁ concentrations and ¹³C abundance are shown in the inset panels. Mean \pm SD, n = 6. **p < 0.01, ***p < 0.001, ***p < 0.0001 vs. control, ANOVA followed by Dunnett's test.

(C) Percentages of peak areas of acetyl-CoA extracted from *A. flavus* cultured with [2-¹³C]-ethanol; ¹³C abundance shown in the inset panel. Mean \pm SD, n = 6.

(**D**) Probability of ¹³C incorporation into aflatoxin B₁ and ¹³C label enrichment of acetyl-CoA, estimated by binomial regression and expressed as mole per excess percent excess (MPE), respectively. Mean \pm SD, n = 6.

Figure S4 Preparation of deletion mutants of alcohol dehydrogenase gene *adh1* in CA14 strain. Related to Figure 4.

(A) Effects of ethanol on aflatoxin B₁ production and mycelial weight of A. flavus CA14.

Mean \pm SD, n = 4. *p < 0.05, ****p < 0.0001, vs. control, ANOVA followed by Dunnett's test.

(B) Schematic diagram of preparation of adh1 gene deletion mutant. Orotidine-5' -monophosphate decarboxylase gene (pyrG) was used as the selective marker of deletion candidates, based on the uridine-dependent auxotroph of CA14 strain.

Locations of the primers are represented by black arrows. The sequences of primers are listed in Table S4.

(C and D) PCR verification of adh1 gene deletion. Genomic DNAs extracted from CA14 and $\Delta adh1$ candidate strains

were subjected to PCR using indicated primers. Asterisk represents non-specific PCR products.

(E) Percentages of peak areas of aflatoxin B₂ produced by $\Delta adh l$ strains supplemented with [1-¹³C]-ethanol; aflatoxin B₂ concentrations and ¹³C abundance are shown in the inset panels. Mean \pm SD, n = 4. *p < 0.05, **p < 0.01, ****p < 0.0001 vs. CA14,

ANOVA followed by Dunnett's test (aflatoxin B2 concentration) or Kruskal–Wallis test followed by Dunn's test (13C abundance).

Figure S5 ¹³C of [2-¹³C]-2-Propanol was also incorporation into aflatoxin B₂. Related to Figure 5.

(A) Percentages of peak areas of aflatoxin B₂ produced by *A. flavus* cultured with [2-¹³C]-2-propanol; aflatoxin B₂ concentrations and ¹³C abundance are shown in the inset panels. Mean \pm SD, n = 6 (control group) and 4 ([2-¹³C]-2-propanol treated groups). ****p < 0.0001 vs. control, ANOVA followed by Dunnett's test.

(B) Percentages of peak areas of aflatoxin B₂ collected from the cultures of $\Delta adh l$ strains with 0.3% [2-¹³C]-2-propanol; aflatoxin B₂ concentrations and ¹³C abundance are shown in the inset panels. Mean \pm SD, n = 4.

*p < 0.05, ***p < 0.001, ****p < 0.0001 vs. CA14, ANOVA followed by Dunnett's test (aflatoxin B₂ concentrations) or Kruskal–Wallis test followed by Dunn's test (¹³C abundance).

Observed <i>m/z</i>	313.070886	314.073687	315.077562	316.080631	317.084683	318.086868	319.089989	320.094021	321.09701	322.100844	323.103549
Formula	C ₁₇ H ₁₃ O ₆	$C_{16}^{13}C_1H_{13}O_6$	$C_{15}^{13}C_2H_{13}O_6$	$C_{14}^{13}C_{3}H_{13}O_{6}$	$C_{13}^{13}C_4H_{13}O_6$	$C_{12}^{13}C_5H_{13}O_6$	C ₁₁ ¹³ C ₆ H ₁₃ O ₆	$C_{10}^{13}C_7H_{13}O_6$	$C_9^{13}C_8H_{13}O_6$	$C_8^{13}C_9H_{13}O_6$	$C_7^{13}C_{10}H_{13}O_6$
Label	[M+H] ⁺	[M+H+1] ⁺	[M+H+2] ⁺	[M+H+3] ⁺	[M+H+4] ⁺	[M+H+5] ⁺	[M+H+6] ⁺	[M+H+7]⁺	[M+H+8]⁺	[M+H+9]⁺	[M+H+10] ⁺
Observed intensity	51953.23	151173.13	238743.33	262597.41	194023.50	176273.23	137345.19	102922.27	65428.24	21940.20	1164.91
Relative abundance	19.78	57.57	90.92	100.00	73.89	67.13	52.30	39.19	24.92	8.36	0.44
Contribution to the [M+H+10] ⁺ abundance ^a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.11	0.74	0.86 ^t
Contribution to the [M+H+9] ⁺ abundance ^c	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.22	2.49	2.72 ^d	

Table S1. Estimation of ¹³C incorporation into aflatoxin B_1 from [1-¹³C]-ethanol, Related to Figure 2.

^aAssuming that $[M+H+10]^+$ is derived from the natural ¹³C contribution, approximate abundance values for the contribution to $[M+H+10]^+$ from $[M+H]^+$ to $[M+H+9]^+$ were calculated. For example, the contribution from $[M+H+9]^+$ was calculated as follows: as natural ¹³C is present at an approximate abundance of 1.1%, the abundance of $[M+H+10]^+$ ($C_7^{13}C_{10}H_{13}O_6$), in which one more ¹²C atom of the remaining eight ¹²C atoms of $[M+H+9]^+$ ($C_8^{13}C_9H_{13}O_6$) is replaced by natural ¹³C, is estimated to be $\frac{({}^{0}_{1})\cdot0.011^4\cdot0.989^7}{0.989^8} = 0.089$ when the abundance of $[M+H+9]^+$ is set to 1. Multiplied by the relative abundance of $[M+H+9]^+$, the contribution from $[M+H+9]^+$ to $[M+H+10]^+$ is estimated to be 8.36 × 0.089 = 0.74. ^bSum of the contributions from $[M+H]^+$ to $[M+H+9]^+$. The value is comparable to the observed relative abundance, indicating that $[M+H+10]^+$ can be attributed to the natural ¹³C contribution from $[M+H]^+$ to $[M+H+9]^+$. ^cAssuming that $[M+H+9]^+$ is derived from the natural ¹³C contribution, approximate abundance values for the contribution to $[M+H+9]^+$, in [M+H]⁺ to $[M+H+8]^+$ were calculated. For example, the contribution from $[M+H+7]^+$ was calculated as follows: the abundance of $[M+H+9]^+$, in which two more ¹²C atoms of the 10 ¹²C atoms of $[M+H+7]^+$ ($C_{10}^{13}C_7H_{13}O_6$) are replaced by natural ¹³C, is estimated to be $\frac{(\frac{20}{2})\cdot0.011^2 \cdot 0.989^8}{0.989^{10}} = 0.0056$ when $[M+H+7]^+$ is set to 1. Therefore, the contribution from $[M+H+9]^+$ is calculated to be 39.19 × 0.0056 = 0.22. ^dSum of the contributions from $[M+H+8]^+$. The value is much smaller than the observed abundance, indicating that $[M+H+9]^+$ cannot be explained by the natural ¹³C contribution alone, i.e., $[M+H+9]^+$ was derived from ¹³C incorporation from added ¹³C.

Observed m/z	313.071038	314.073814	315.077664	316.080716	317.083796	318.087854	319.090953	320.094004	321.097932
Formula	$C_{17}H_{13}O_{6}$	$C_{16}{}^{13}C_1H_{13}O_6$	$C_{15}^{13}C_2H_{13}O_6$	$C_{14}^{13}C_{3}H_{13}O_{6}$	$C_{13}{}^{13}C_4H_{13}O_6$	$C_{12}^{\ \ 13}C_5H_{13}O_6$	$C_{11}^{13}C_6H_{13}O_6$	$C_{10}{}^{13}C_7H_{13}O_6$	$C_9^{13}C_8H_{13}O_6$
Label	[M+H] ⁺	[M+H+1] ⁺	[M+H+2] ⁺	[M+H+3]⁺	[M+H+4] ⁺	[M+H+5] ⁺	[M+H+6] ⁺	[M+H+7]⁺	[M+H+8] ⁺
Observed intensity	56696.72266	138612.5625	189037.8125	171276	122706.5234	67372.64844	27864.01172	7313.080078	783.017761
Relative abundance	29.99	73.33	100.00	90.60	64.91	35.64	14.74	3.87	0.41
Contribution to the [M+H+8] ⁺ abundance ^a	0.00	0.00	0.00	0.00	0.00	0.01	0.10	0.43	0.54 ^b
Contribution to the [M+H+7] ⁺ abundance ^c	0.00	0.00	0.00	0.00	0.03	0.29	1.80	2.12 ^d	

Table S2. Estimation of ¹³C incorporation into a flatoxin B_1 from [2-¹³C]-ethanol, Related to Figure 2.

^aAssuming that $[M+H+8]^+$ is derived from the natural ¹³C contribution, approximate abundance values for the contribution to $[M+H+8]^+$ from $[M+H]^+$ to $[M+H+9]^+$ were calculated.

^bSum of the contributions from $[M+H]^+$ to $[M+H+7]^+$. The value is comparable to the observed relative abundance, indicating that $[M+H+8]^+$ can be attributed to the natural ¹³C contribution from $[M+H]^+$ to $[M+H+7]^+$.

^cAssuming that $[M+H+7]^+$ is derived from the natural ¹³C contribution, approximate abundance values for the contribution to $[M+H+7]^+$ from $[M+H]^+$ to $[M+H+6]^+$ were calculated.

^dSum of the contributions from $[M+H]^+$ to $[M+H+6]^+$. The value is much smaller than the observed abundance, indicating that $[M+H+7]^+$ cannot be explained by the natural ¹³C contribution alone, i.e., $[M+H+7]^+$ was derived from ¹³C incorporation from added ¹³C.

Biological process	Gene	Protein (Yeast)	Identity	Similarity	EnsemblFungi ID	EnsemblFungi Description (A. flavus)	Primer pair $(5' \rightarrow 3')$	
	(Yeast)		(%)	(%)	(A. flavus)			
Ethanol biosynthetic process	ADH1	Alcohol dehydrogenase 1	57	88	AFLA_048690	alcohol dehydrogenase, putative	CAAGCCATGTGCGAGCAACT	TAGCGGCTTTGACATCTGCAA
			33	73	AFLA_010360	quinone oxidoreductase, putative	GGCGATTGGGTGGTGATTT	CCTTTATCCGAGCAGCAATCTG
			44	74	AFLA_024290	alcohol dehydrogenase, putative	ACGCAGGCGAGTCAAAGAGA	AGGATCGGACGTTTCGATGA
			42	72	AFLA_039390	alcohol dehydrogenase, putative	ACTCGACCTCCGCCATGATA	AGAAACCAGTGCATTCCAACTTG
			42	74	AFLA_073680	alcohol dehydrogenase, putative	ACGCCCAATCTGTGCAGTTC	GATGGGCTGAGGGTTGTTTTC
			46	78	AFLA_125860	alcohol dehydrogenase, putative	CCGCTCGTTTTGGCTTTG	CGCTTCCTCGACATCTCTCAA
			35	74	AFLA_133830	alcohol dehydrogenase, putative	GCCACCGCTTTCTTCGATT	CGAGCCCACCCGTTAGTTT
Ethanol catabolic process	ALD1	Aldehyde dehydrogenase 1, mitochondrial	38	73	AFLA_108790	aldehyde dehydrogenase AldA, putative	TGGCTGGGCCGATAAGATT	GTGGCGGGTGTAGGTAAGAGACT
Acetyl-CoA biosynthetic process from acetate	ACS1	Acetyl-coenzyme A synthetase 1	63	89	AFLA_027070	acetyl-coenzyme A synthetase FacA	CGCAAGTCGATTGGACCATT	ATCTTACCGCTGCGAGTCTTAGG
Malonyl-CoA biosynthetic process	ACC1	Acetyl-CoA carboxylase	64	89	AFLA_046360	acetyl-CoA carboxylase, putative	CACAGGTGCTCCGGCTATTAA	ATACATAATCTGCGTTCCACCAAGT
Acetate metabolic process	ACH1	Acetyl-CoA hydrolase	66	89	AFLA_078380	acetyl-coA hydrolase Ach1, putative	CACCCCGACTACAAGCCAAT	TCGTGGCCCATACCCTTCT
Glycolytic fermentation to ethanol	PDC1	Pyruvate decarboxylase isozyme 1	48	83	AFLA_031570	pyruvate decarboxylase PdcA, putative	AACCGGCACTGCCAATTTC	TACCCCAAAGAACCTGACTAATGG
Aflatoxin biosynthetic process					AFLA_139380	aflA / fas-2 / hexA / fatty acid synthase alpha subunit	TTGGCCGCCTCCTCTATTC	GGCTTGTCTCTCGTCATACTCATAAC
					AFLA_139370	aflB / fas-1 / fatty acid synthase beta subunit	GCATATTGTCGGACTGTCGAAGT	CAAACGAGAACCGTCCCTAAAG
					AFLA_139410	aflC / pksA / pksL1 / polyketide synthase	TGCATGGCGATGTGGTAGTT	GTAAGGCCGCGGAAGAAAG
					AFLA_139390	aflD / nor-1 / reductase	AGTCCAAGCAACAGGCCAAGT	CGCGCATAGTCGTGCATGT
					AFLA_139310	aflE/ norA/ aad/ adh-2/ NOR reductase/ dehydrogenase	TATCATCTAGCGCCGGTGTTC	CATTACCCCTTTCCAGCCATT
					AFLA_139440	aflF / norB / dehydrogenase	GCACATTTCACTGATGGATGAAG	CGGAAATCCAGGATCAAACTCA
					AFLA_139260	aflG/ avnA/ ord-1/ cytochrome P450 monooxygenase	GCAACCTTGTCCGCGATCT	ACAGCTCATTGGGTGCGATT
					AFLA_139330	aflH/ adhA/ short chain alcohol dehydrogenase	CAGGTAAACTTGATCGGCGTCTA	GATTGGCGGCCTTGTTTGT
					AFLA_139230	afII/ avfA/ cytochrome P450 monooxygenase	TCAAATCCTCGTTCGGTCAAA	CGTGGACTTGTGGGTTTCTTG

Table S3. Primers used for RT-qPCR, Related to STAR Methods.

	AFLA_139320	aflJ/ estA/ esterase	TGAGGAGAATGCGGAGTTGAC	ACCGGCGCCTTGTAACAAT
	AFLA_139190	aflK/ vbs/ VERB synthase	CAGATCGGAGCCAAGAAGGA	CCGATTCCAGACACCATTAGC
	AFLA_139250	aflL/ verB/ desaturase/ P450 monooxygenase	CAACAAGCGGATGAAAATGGA	GCTGATTATCGTCGGCACTCT
	AFLA_139300	aflM/ ver-1/ dehydrogenase/ ketoreductase	TGAGGCAACTGCGAAGTTAATG	CCAGCGTTCGATGACACGAT
	AFLA_139280	aflN/ verA/ monooxygenase	CTTTAGCGGGACCTGGATGA	TGGCCGGTTTGGTTAAATTC
	AFLA_139220	aflO/ omtB/ dmtA/ O-methyltransferase B	AGAGAGCGACACGCCGATAA	GAAGAATGCGACCAAGGAGTCT
	AFLA_139210	afIP/ omtA/ omt-1/ O-methyltransferase A	ACCAAGGAGTGGAATTCGCTTAT	GCCTTTGCGCCACCATATCT
	AFLA_139200	aflQ/ ordA/ ord-1/ oxidoreductase/ cytochrome P450 monooxigenase	AATCGGGATTCGACGGTTCTT	CGTTGGCTTCCTTTCGGATAT
	AFLA_139360	aflR / apa-2 / afl-2 / transcription activator	TCCGCCATCTTTTCTCATCA	CCGAATTCCGAATCGACTGTTA
	AFLA_139340	aflS/ pathway regulator	CGAGTCGCTCAGGCGCTCAA	GCTCAGACTGACCGCCGCTC
Ribosomal RNA	G4B84_011247	18S ribosomal RNA	CTCACCAGGTCCAGACAAAATAAGG	GCACCACCATCCAAAAGATCA

Application	Primer name	Sequence $(5' \rightarrow 3')$	Notes	
Amplification of 5' flank region and preparation of replacement construct 1	Del_1F	GCATGGGACTGAGTCTGGTC		
Amplification of 5' flank region	Del_2R	GAGTGTCTGAAGGTGCAGCTTCTCTCCTCAGGGTCTCCG	The 5' end 20 nucleotides are complementary to P6R primer.	
Amplification of 3' flank region	Del_3F	CGGGGATTATGCCTGGCTTTTGACTTTGGGATCTTGTGTTGA	The 5' end 20 nucleotides are complementary to P5F primer.	
Amplification of 3' flank region and preparation of replacement construct 2	Del_4R	AGAAACGGAACTAGCGGCTC		
Amplification of <i>pyrG</i> gene	P5F	AAAGCCAGGCATAATCCCCG		
Amplification of <i>pyrG</i> gene	P6R	AGCTGCACCTTCAGACACTC		
Preparation of replacement construct 2	PY-F	ACAGCCGACTCAGGAGTTTG		
Preparation of replacement construct 1	YR-R	AACCATCACCGGTCTGAAGG		
Confirmation of <i>adh1</i> gene replacement	Check_1F	CTAGAAGATGCTACCCGCCG	Check_1F and Check_1R pair amplifies 5' flanking to 3' flanking region of <i>adh1</i> gene.	
Confirmation of <i>adh1</i> gene replacement	Check_1R	CGCAACCTCCTTTCTTCCCT		
Confirmation of <i>adh1</i> gene replacement	Check_2F	GGTTACCGACGTAGCTTCCC	Check_2F and Check_2R pair amplifies inside <i>adh1</i> gene.	
Confirmation of <i>adh1</i> gene replacement	Check_2R	GAGATGCAGTGGGCTCAAGT		

Table S4. Primers used for preparation of $\Delta adh1$ strains, Related to STAR Methods.