Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting information: Towards Control of Excitonic Coupling in DNA-Templated Cy5 Aggregates: The Principal Role of Chemical Substituent Hydrophobicity and Steric Interactions.

Authors: Sebastián A. Díaz*, Gissela Pascual, Lance K. Patten, Simon K. Roy, Adam Meares, Matthew Chiriboga, Kimihiro Susumu, William B. Knowlton, Paul D. Cunningham, Divita Mathur, Bernard Yurke, Igor L Medintz, Jeunghoon Lee*, Joseph S Melinger*

E-mail corresponding authors: <u>sebastian.diaz@nrl.navy.mil</u>, jeunghoonlee@boisestate.edu, joseph.melinger@nrl.navy.mil

	Page
Oligonucleotide Sequences	S2
Schematic of Cy5-R Integration into DNA	S2
Additional Spectra and Characterization	
Monomer Spectra	S3
Dimer Spectra	S3
PAGE gel	S4
Spectra as a function of MgCl ₂	S4-S6
HJ Melting Curves	S7
KRM parameters as a function of Log(P) and σ_p	S8
Logistic Fitting Parameters	S8
Supporting Analysis of KRM Results	
Parameter list	S9
Additional Discussion	S10-S11
Complete Cy5Cl data	S12-S19
Complete Cy5Peg data	S20-S27
Complete Cy5hex data	S28-S35
Complete Cy5tBu data	S36-S41
Complete Cy5H data	S42-S47

Supporting Information Table of Contents

Table S1: Oligonucleotide sequences

Unlabeled A	ATATAATCGCTCGCATATTATGACTG	Labeled A	ATATAATCGCTCG-X-
			CATATTATGACTG
Unlabeled B	CAGTCATAATATGTGGAATGTGAGTG	Labeled B	CAGTCATAATATG-X-
			TGGAATGTGAGTG
Unlabeled C	CACTCACATTCCACTCAACACCACAA	Labeled C	CACTCACATTCCA-X-
			CTCAACACCACAA
Unlabeled d	TTGTGGTGTTGAGCGAGCGATTATAT	Labeled D	TTGTGGTGTTGAG-X-
			CGAGCGATTATAT

X indicates the position of Cy5-R

Figure S1. General structure of the Cy5 dye derivatives inserted internally into DNA oligonucleotides during phosphoramidite synthesis and attached to the DNA at both the 3' and 5' ends.

Figure S2: (A-D) Absorbance of Cy5-R monomers. (E-H) Fluorescence emission of Cy5-R monomers. 615 nm excitation wavelength.

Figure S3: Adjacent dimers are full lines while transverse dimers are dotted lines. (A-D) Absorbance of Cy5-R dimers. (E-H) CD spectra of Cy5-R dimers. (I-L)Fluorescence emission of Cy5-R. 615 nm excitation wavelength.

Figure S4: 10% Polyacrylamide gel electrophoresis of variations of the HJ Cy5-R homodimers in $1 \times$ TAE and 15 mM Mg⁺² as the sample buffer as well as control structures that include partial structures and unlabeled HJ. It can be seen that all structures form with relatively high efficiency. Quantification on the gels was >85% HJ efficiency.

Figure S5: Spectra of Cy5Cl in $1 \times$ TAE with increasing concentration of Mg⁺². (A-C) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AB dimer. (D-F) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AC dimer.

Figure S6: Spectra of Cy5Peg in $1 \times$ TAE with increasing concentration of Mg⁺². (A-C) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AB dimer. (D-F) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AC dimer.

Figure S7: Spectra of Cy5hex in $1 \times$ TAE with increasing concentration of Mg⁺². (A-C) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AB dimer. (D-F) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AC dimer.

Figure S8: Spectra of Cy5tBu in $1 \times$ TAE with increasing concentration of Mg⁺². (A-C) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AB dimer. (D-F) Absorbance, CD, and fluorescence emission (615 nm excitation) of HJ AC dimer.

Figure S9: Melting curves of Cy5-R HJ in $1 \times$ TAE with 15 mM Mg⁺² following both absorbance (260 nm, black ; 600 nm, blue) and CD (250 nm, orange ; 600 nm, red) signals. (A, D) Cy5H HJ AB and AC, respectively. (B, E) Cy5Cl HJ AB and AC, respectively. (C, F) Cy5Peg HJ AB and AC, respectively. (G, I) Cy5hex HJ AB and AC, respectively. The 600 nm CD signal for Cy5hex HJ AC was not fit as the signal change was not clear. (H, J) Cy5tBu HJ AB and AC, respectively. (K) Unlabeled HJ.

Figure S10: A) α as a function of hydrophobicity. B) *R* as a function of hydrophobicity. C) α as a function of the electron donating capability of the substituent. D) *R* as a function of electron donating capability of the substituent.

$$y = A_2 + \frac{(A_1 - A_2)}{1 + (\frac{x}{x_0})^p}$$

Data	A_1	A_2	X_0	р	\mathbb{R}^2
J _{m,n} - Adjacent	51 ± 20	115 ± 20	0.91 ± 0.04	25 ± 6	0.90
$J_{m,n}$ - Transverse	69.7 ± 1.2	131 ± 2	0.59 ± 0.03	6.4 ± 1.2	0.99
α - Adjacent	79 ± 10	7.2 ± 1.6	0.90 ± 0.04	31 ± 8	0.97
α - Transverse	35.9 ± 0.3	3.1 ± 0.3	0.49 ± 0.01	4.0 ± 0.2	0.99
R - Adjacent	1.26 ± 0.06	0.41 ± 0.02	0.87 ± 0.04	9 ± 2	0.98
<i>R</i> - Transverse	0.80 ± 0.03	0.37 ± 0.01	0.51 ± 0.03	3.5 ± 1.5	0.99

Table S2: Fitting parameters of logistic fits from Figure 6C-E main text. Equation:

Supporting Analysis of KRM Results

Parameter List (See Figure 5 in the main text for schematics)

Ev - The energy of vibron (eV)

- *d* Displacement of excited state vibronic potential (dimensionless units)
- Γ Energy loss damping constant (*eV*)
- J_{θ} Characteristic exchange energy (meV-nm³)

M - Dipole Moment (*Debye*)

nv - Vibrational state Hilbert space

 E_{of} - Energy offset from monomer (eV)

l - Length of the transition dipole moment (*nm*)

cdis - Closest distance between the long axes of any pair of dyes (nm)

r - The ratio of theoretical to experimental values of the ratio of the max abs CD peak height to max absorbance peak height

 OI_{AB} - Normalized overlap integral for the experimental and theoretical absorbance curves

 OI_{CD} - Normalized overlap integral for the experimental and theoretical CD spectra

OI_{Tot} - Mean of OI_{AB} and OI_{CD}

MSD_{abs} - Absorbance spectrum mean-square deviation

MSD_{cd} - CD spectrum mean-square deviation

 $w_{abscd}rms$ - Weighted mean-squared deviation between the experimental and theoretical ABS and CD spectra

 $J_{m,n}$ – The excitonic hopping parameter (*meV*)

R - Center-to-Center distance (Å)

dmin - The shortest distance between the transition dipole moment vectors (*nm*)

 α - Oblique angle (°)

 θ_{Is} - Slip angle, the angle between dye 1 and the line connecting dye centers (°)

 θ_{2s} - Slip angle, the angle between dye 2 and the line connecting dye centers (°)

 θ_t - Twist angle, the angle between dye 1 and dye 2 in the XY plane (rotation about Z-axis or R) (°)

As detailed in the main text there were a few cases where the KRM fitting was improved by assuming that the spectra were composed of a mixed population of Cy5-R dimers. We note that the fitting program necessarily assumed 50% population for each dimer, though of course there is no experimental evidence to support this specific distribution. The particular case of Cy5hex HJ BC is shown in Figure S9, while a compilation of the specific cases is provided in Table S2. All other systems not found in Table S2 were the best fit by a single dimer.

Figure S11: Three KRM fittings of Cy5hex HJ BC denoting the single dimer fitting (top), a result where the fit was improved by using two dimers which resulted in an H-like and J-like dimer pair (middle), a third fit which was also improved where the resulting packing was two dimers of oblique nature with opposite chirality.

	Single Dimor		Two dimers				
Structure _	Single			imer I	Di	Dimer II	
	Type	$J_{m,n}$ [meV]	Type $J_{m,n}$ [meV]		Type	$J_{m,n}$ [meV]	
Cy5Cl AB	oblique	52.8	H-like	62.8	oblique	47.8	
Cy5Cl AD	oblique	48.9	oblique	60.2	oblique	60.0	
Cy5Cl CD	oblique	48.0	oblique	59.4	oblique	57.2	
Cy5Peg AD	oblique	57.0	H-like	82.2	J-like	-53.2	
Cy5Peg BC	oblique	55.1	J-like	-44.2	H-like	85.4	
Cy5hex AD	Η	109.4	oblique	67.8	oblique	96.6	
Cy5hex CD	Η	95.5	oblique	77.8	oblique	67.4	
Cy5hex BC	oblique	57.7	oblique	59.5	oblique	62.1	

Table S3: Comparison of coupling strength for dimers presenting heterogeneous configuration, suggested by the KRM modeling.

The oblique type configuration of dimer I and dimer II indicate that they are chiral opposites of the same packing, thereby they have similar coupling strength. When two $J_{m,n}$ are reported that is because the coupling strength is unique to each dimer. The coupling strength is presented in the same order as the dimer type in the column to the left.

Of the 30 structures we looked at the majority (73%) were fit optimally by a single dimer KRM approach. In the remaining systems, five of the eight, had improved fits by assuming two dimers of the same type (still oblique) with opposite chiral orientations. These cases do not modify the interpretation of the parameters of the Cy5-R that determine dimer structure in DNA HJ templates. The more interesting cases are where the 'Double Dimer' fitting shift the prediction from one configuration in the single dimer to either a different configuration (e.g. Cy5hex AD) or a heterogeneous mixture (e.g. Cy5Peg AD). In all cases, the dimers in the 'Double Dimers' do not couple between each other as seen below. The cases where two dimer configurations are proposed open up the possibility of greater heterogeneity within the structures, though again we highlight that our modeling inherently fixes the distribution at 50% of each dimer. With our current spectroscopy approaches we cannot parse the validity of the hypothesis. Work is underway utilizing more advanced approaches to test for heterogeneity within structures, particularly looking for the J-like dimers in Cy5Peg AD and BC, which will be the focus of future manuscripts.

Single Cy5Cl Dimer

Figure S12. Three-dimensional vector plots of the KRM single dimer positions for Cy5Cl showing the different plane projections XY, XZ, and YZ.

Figure S13. Three-dimensional vector plots of the KRM two dimer positions for Cy5Cl showing the different plane projections XY, XZ, and YZ.

Single Cy5Cl Dimer: Absorbance and Circular Dichroism

Figure S14. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5Cl covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Two Cy5Cl Dimers: Absorbance and Circular Dichroism

Figure S15. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5Cl covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Parameter	Monomer A	Monomer B	Monomer C	Monomer D
E_{ν} , (eV)	0.135	0.136	0.138	0.143
d (dimensionless units)	0.807	0.805	0.815	0.820
Г (<i>eV</i>)	0.039	0.037	0.040	0.043
J_0^* (meV-nm ³)	65.3	60.9	66.5	60.3
M* (Debye)	13.627	13.162	13.761	13.096

Table S4. Various monomer parameters for Cy5Cl.

Parameter	Adjacent AB	Adjacent BC	Adjacent CD	Adjacent AD	Transverse AC	Transverse BD
n _v	3	3	3	3	3	3
J_0^* (meV·nm ³)	65.3	63.7	63.4	62.8	65.9	60.6
$E_{of}(eV)$	0.020	0.012	0.024	0.028	0.032	0.014
$E_v(eV)$	0.140	0.137	0.140	0.139	0.136	0.139
d (dimensionless units)	0.806	0.810	0.818	0.814	0.811	0.813
Г (eV)	0.039	0.038	0.041	0.041	0.039	0.040
l (nm)	1.4	1.4	1.4	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34	0.34	0.34	0.34

Table S5. Input fitting parameters used in calculations of single Cy5Cl dimers.

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Parameter	Adjacent, AB	Adjacent, CD	Adjacent, AD
n _v	3	3	3
J_0^* (meV·nm ³)	65.3	63.4	62.8
$E_{of}(eV)$	0.020	0.022	0.041
$E_{v}(eV)$	0.14	0.14	0.139
d (dimensionless units)	0.806	0.818	0.814
Г (eV)	0.039	0.041	0.041
l (nm)	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34

Table S6. Input fitting parameters used in calculations of two Cy5Cl dimers.

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Construct	r	<i>ОІ_{АВ}</i>	OI _{CD}	OI _{Tot}	MSD _{abs}	MSD _{cd}	Wabscd FMS
Adjacent Dimer, AB	0.962	0.987	0.960	0.973	0.359	0.547	0.907
Adjacent Dimer, BC	0.982	0.988	0.947	0.968	0.218	0.647	0.866
Adjacent Dimer, CD	1.013	0.981	0.910	0.946	0.432	1.212	1.644
Adjacent Dimer, AD	1.010	0.987	0.808	0.898	0.303	2.322	0.303
Transverse Dimer, AC	1.008	0.973	0.963	0.968	0.694	0.759	1.454
Transverse Dimer, BD	0.998	0.980	0.974	0.977	0.544	0.626	1.170
Two Adjacent Dimers, AB	0.999	0.989	0.975	0.982	0.300	0.340	1.498
Two Adjacent Dimers, CD	1.000	0.995	0.914	0.955	0.115	0.981	1.096
Two Adjacent Dimers, AD	1.026	0.995	0.825	0.910	0.118	2.231	2.349

Table S7. The goodness of the fit parameters for absorbance and CD spectra for Cy5Cl dimers (both for one and two dimers).

Dye	θ_i (°)	arphi_i (°)	^{<i>x</i>_i} (nm)	y_i (nm)	^{<i>Z_i</i>} (nm)				
Adjacent Dimer, AB									
Dye 1	43.3	0.0	0.000	0.000	-0.586				
Dye 2	112.1	2.2	0.000	0.000	0.586				
	Adjacent Dimer, BC								
Dye 1	30.9	0.0	0.000	0.000	-0.689				
Dye 2	124.4	2.5	0.000	0.000	0.689				
	Adjacent Dimer, CD								
Dye 1	33.5	0.0	0.000	0.000	-0.676				
Dye 2	122.5	2.0	0.000	0.000	0.676				
		Adjacent	Dimer, AD						
Dye 1	37.8	0.0	0.000	0.000	-0.631				
Dye 2	116.9	1.1	0.000	0.000	0.631				
		Transverse	Dimer, AC						
Dye 1	107.3	0.0	0.000	0.000	-0.304				
Dye 2	87.4	-4.2	0.000	0.000	0.304				
		Transverse	Dimer, BD						
Dye 1	105.6	0.0	0.000	0.000	-0.297				
Dye 2	86.5	-6.0	0.000	0.000	0.297				

Table S8. Kühn-Renger-May model fitting outputs describing each dye orientation and positionin Cy5Cl dimers for one dimer.

Dye	^θ ⁱ (°)	<i>φ</i> _i (°)	^{<i>x</i>} <i>i</i> (nm)	^y _i (nm)	^{<i>z</i>_{<i>i</i>} (nm)}				
	Two Adjacent Dimers, AB								
Dye 1	64.2	0.0	0.000	0.000	-0.361				
Dye 2	87.6	4.0	0.000	0.000	0.361				
Dye 3	43.9	0.0	0.000	0.000	-0.765				
Dye 4	160.5	2.1	0.000	0.000	0.765				
Two Adjacent Dimers, CD									
Dye 1	42.7	0.0	0.000	0.000	-0.602				
Dye 2	130.8	-33.2	0.000	0.000	0.602				
Dye 3	48.7	0.0	0.000	0.000	-0.534				
Dye 4	130.4	38.3	0.000	0.000	0.534				
	Two Adjacent Dimers, AD								
Dye 1	47.1	0.0	0.000	0.000	-0.547				
Dye 2	131.1	36.8	0.000	0.000	0.547				
Dye 3	50.0	0.0	0.000	0.000	-0.589				
Dye 4	135.3	-32.1	0.000	0.000	0.589				

Table S9. Kühn-Renger-May model fitting outputs describing each dye in standard orientation and position in Cy5Cl dimers for two dimers.

* Standard orientation and position of Dimer I (dyes 1 & 2) and Dimer II (dyes 3 & 4) separated by ~1,000 nm.

Dimer Aggregate	$J_{m,n}$ (meV)	R, (Å)	d _{min} (nm)	a (°)	$ heta_{ls}$ (°)	$ heta_{2s}$ (°)	θ_t (°)
Adjacent, AB	52.8	1.17	0.34	68.9	43.3	67.9	2.2
Adjacent, BC	48.1	1.38	0.34	86.5	30.9	55.6	2.5
Adjacent, CD	48.0	1.35	0.34	89.1	33.5	57.5	2.0
Adjacent, AD	48.9	1.26	0.34	79.2	37.8	63.1	1.1
Transverse, AC	85.0	0.61	0.34	20.4	72.7	87.4	-4.2
Transverse, BD	79.5	0.59	0.34	20.0	74.4	86.5	-6.0
Two Adjacent	62.8	0.72	0.41	23.7	64.2	87.6	4.0
dimers, AB	47.8	1.53	0.35	63.4	43.9	19.5	2.1
Two Adjacent	59.4	1.20	0.34	87.0	42.7	49.2	-33.2
dimers, CD	57.2	1.07	0.38	88.8	48.7	49.6	38.3
Two Adjacent	60.2	1.09	0.36	89.6	47.1	48.9	36.8
dimers, AD	60.0	1.18	0.34	90.0	50.0	44.7	-32.1

Table S10. Calculated $J_{m,n}$ and geometric parameters of Cy5Cl dimers (both for one and two dimers).

Single Cy5Peg Dimer

Figure S16. Three-dimensional vector plots of the KRM single dimer positions for Cy5Peg showing the different plane projections XY, XZ, and YZ.

Two Cy5Peg Dimers

Figure S17. Three-dimensional vector plots of the KRM two dimer positions for Cy5Peg showing the different plane projections XY, XZ, and YZ.

Single Cy5Peg Dimer: Absorbance and Circular Dichroism

Figure S18. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5Peg covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Figure S19. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5Peg covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Table S11.	Various	monomer parameters	for	Cy5Peg.
------------	---------	--------------------	-----	---------

Parameter	Monomer A	Monomer B	Monomer C	Monomer D
E_{ν} , (eV)	0.140	0.138	0.140	0.143
d (dimensionless units)	0.944	0.920	0.944	0.926
Γ (<i>eV</i>)	0.047	0.041	0.045	0.049
$J_0 (\mathrm{m}eV\text{-}nm^3)$	68.0	70.0	68.5	65.4
M (Debye)	13.911	14.112	13.957	13.641

Parameter	Adjacent AB	Adjacent BC	Adjacent CD	Adjacent AD	Transverse AC	Transverse BD
n _v	3	3	3	3	3	3
J_0^* (meV·nm ³)	69.0	69.2	66.9	66.7	68.2	67.7
$E_{of}(eV)$	0.010	0.014	0.000	0.006	0.008	0.006
Energy of vibron, $E_v(eV)$	0.139	0.139	0.141	0.141	0.140	0.140
d (dimensionless units)	0.930	0.932	0.935	0.933	0.942	0.923
Г (eV)	0.0439	0.0430	0.0470	0.0479	0.0459	0.0450
l (nm)	1.4	1.4	1.4	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34	0.34	0.34	0.34

Table S12. Input fitting parameters used in calculations of single Cy5Peg dimers.

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Table S13.	Input fitting	parameters used	in calculations	of two C	y5Peg dimers.
------------	---------------	-----------------	-----------------	----------	---------------

Parameter	Adjacent, BC	Adjacent, AD
n _v	3	3
J_0^* (meV·nm ³)	69.2	66.7
$E_{of}(eV)$	0.010	0.015
$E_{v}(eV)$	0.139	0.141
d (dimensionless units)	0.932	0.933
Γ (eV)	0.0430	0.0479
l (nm)	1.4	1.4
cdis (nm)	0.34	0.34

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Construct	r	OI _{AB}	OI _{CD}	OI _{Tot}	MSD _{abs}	MSD _{cd}	W _{abscd} rms
Adjacent Dimer, AB	1.015	0.970	0.963	0.966	0.625	0.686	1.310
Adjacent Dimer, BC	1.016	0.987	0.968	0.977	0.391	0.469	0.859
Adjacent Dimer, CD	1.006	0.991	0.949	0.970	0.231	0.763	0.994
Adjacent Dimer, AD	0.996	0.976	0.952	0.964	0.763	1.023	1.786
Transverse Dimer, AC	1.004	0.980	0.878	0.929	0.371	2.581	2.953
Transverse Dimer, BD	1.003	0.975	0.893	0.934	0.458	2.377	2.835
Two Adjacent Dimers, BC	1.001	0.990	0.977	0.983	0.332	0.368	0.700
Two Adjacent Dimers, AD	1.010	0.997	0.965	0.981	0.090	0.717	0.808

Table S14. The goodness of the fit parameters for absorbance and CD spectra for Cy5Peg dimers (both for one and two dimers).

Dye	θ _i (°)	φ_i (°)	x_i (nm)	y_i (nm)	^{<i>z</i>_i} (nm)		
		Adjacent	Dimer, AB				
Dye 1	94.5	0.0	0.000	0.000	-0.277		
Dye 2	78.5	5.2	0.000	0.000	0.277		
		Adjacent	Dimer, BC				
Dye 1	137.0	0.0	0.000	0.000	-0.614		
Dye 2	64.0	3.2	0.000	0.000	0.614		
	Adjacent Dimer, CD						
Dye 1	119.1	0.0	0.000	0.000	-0.648		
Dye 2	36.2	2.4	0.000	0.000	0.648		
		Adjacent	Dimer, AD				
Dye 1	129.6	0.0	0.000	0.000	-0.542		
Dye 2	70.7	2.3	0.000	0.000	0.542		
		Transverse	Dimer, AC				
Dye 1	95.6	0.0	0.000	0.000	-0.207		
Dye 2	100.8	2.7	0.000	0.000	0.207		
		Transverse	Dimer, BD				
Dye 1	98.7	0.0	0.000	0.000	-0.194		
Dye 2	95.0	4.5	0.000	0.000	0.194		

Table S15. Kühn-Renger-May model fitting outputs describing each dye orientation and position in Cy5Peg single dimers.

Dye	θ _i (°)	<i>φ</i> _i (°)	^{<i>x</i>_i} (nm)	^{<i>y</i>} <i>i</i> (nm)	^{<i>Z</i>_{<i>i</i>} (nm)}			
	Two Adjacent Dimers, BC							
Dye 1	150.6	0.0	0.000	0.000	-0.754			
Dye 2	173.4	-42.8	0.000	0.000	0.754			
Dye 3	74.7	0.0	0.000	0.000	-0.264			
Dye 4	72.6	4.6	0.000	0.000	0.264			
		Two Adjacen	nt Dimers, AD					
Dye 1	66.7	0.0	0.000	0.000	-0.261			
Dye 2	66.0	6.3	0.000	0.000	0.261			
Dye 3	12.5	0.0	0.000	0.000	-0.818			
Dye 4	12.8	-9.1	0.000	0.000	0.818			

Table S16. Kühn-Renger-May model fitting outputs describing each dye in standard orientation and position in Cy5Peg two dimers.

*Standard orientation and position of Dimer I (dyes 1 & 2) and Dimer II (dyes 3 & 4) separated by ~1,000 nm.

Dimer Aggregate	$J_{m,n}$ (meV)	R, (Å)	d _{min} (nm)	α (°)	$ heta_{Is}$ (°)	$ heta_{2s}$ (°)	θ_t (°)
Adjacent, AB	95.8	0.55	0.34	16.8	85.5	78.5	5.2
Adjacent, BC	55.1	1.23	0.34	73.1	43.0	64.0	3.2
Adjacent, CD	51.6	1.30	0.34	82.9	60.9	36.2	2.4
Adjacent, AD	57.0	1.08	0.34	58.9	50.4	70.7	2.3
Transverse, AC	124.0	0.41	0.34	5.8	84.4	79.2	2.7
Transverse, BD	131.0	0.39	0.34	5.8	81.3	85.0	4.5
Two Adjacent	-44.2	1.51	0.41	24.9	29.4	6.6	-42.8
dimers, BC	85.4	0.53	0.49	4.9	74.7	72.6	4.6
Two Adjacent	82.2	0.52	0.48	5.8	66.7	66.0	6.3
dimers, AD	-53.2	1.64	0.36	2.0	12.5	12.8	-9.1

Table S17. Calculated $J_{m,n}$, and geometric parameters of Cy5Peg dimers (both for one and two dimers).

Single Cy5hex Dimer

Adjacent Dimer AB

Adjacent Dimer BC

Adjacent Dimer CD

Single Cy5hex Dimer: Absorbance and Circular Dichroism

Figure S19. Three-dimensional vector plots of the KRM single dimer positions for Cy5hex showing the different plane projections XY, XZ, and YZ.

Two Cy5hex dimers

Figure S20. Three-dimensional vector plots of the KRM two dimer positions for Cy5hex showing the different plane projections XY, XZ, and YZ.

Figure S21. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5hex covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Two Cy5hex Dimers: Absorbance and Circular Dichroism

Adjacent Dimer BC

Adjacent Dimer CD

Adjacent Dimer AD

Figure S22. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5hex covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Parameter	Monomer A	Monomer B	Monomer C	Monomer D
E_{ν} , (eV)	0.141	0.137	0.141	0.144
d (dimensionless units)	0.958	0.946	0.969	0.971
Γ (eV)	0.057	0.043	0.049	0.048
$J_0 (\mathrm{m}eV\text{-}nm^3)$	75.4	72.8	67.2	67.7
M (Debye)	14.645	14.389	13.823	13.885

Table S18. Monomer parameters for Cy5hex.

Parameter	Adjacent AB	Adjacent BC	Adjacent CD	Adjacent AD	Transverse AC	Transverse BD
n_{ν}	3	3	3	3	3	3
J_0^* (meV·nm ³)	74.1	70.0	67.4	71.6	71.3	70.3
$E_{of}(eV)$	0.014	0.004	-0.010	0.002	0.022	0.006
$E_v(eV)$	0.139	0.139	0.142	0.142	0.141	0.140
d (dimensionless units)	0.9520	0.9572	0.9699	0.9647	0.9635	0.9583
Г (eV)	0.0498	0.0460	0.0485	0.0523	0.0528	0.0455
l (nm)	1.4	1.4	1.4	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34	0.34	0.34	0.34

Table S19. Input fitting parameters used in calculations of single Cy5hex dimers.

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Parameter	Adjacent, BC	Adjacent, CD	Adjacent, AD
n _v	3	3	3
J_0^* (meV·nm ³)	70.0	67.4	71.6
$E_{of}(eV)$	0.020	0.015	0.014
$E_{v}(eV)$	0.139	0.142	0.142
d (dimensionless units)	0.957	0.970	0.965
Γ (eV)	0.046	0.049	0.052
l (nm)	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34

Table S20. Input fitting parameters used in calculations of two Cy5hex dimers.

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Construct	r	OI _{AB}	OI _{CD}	OI _{Tot}	MSD _{abs}	MSD _{cd}	W _{abscd} rms
Adjacent Dimer, AB	1.017	0.981	0.973	0.977	0.344	0.679	1.023
Adjacent Dimer, BC	1.033	0.973	0.824	0.899	0.807	2.858	0.807
Adjacent Dimer, CD	0.984	0.956	0.801	0.878	1.124	3.833	4.957
Adjacent Dimer, AD	1.021	0.960	0.841	0.901	0.802	3.635	4.437
Transverse Dimer, AC	1.005	0.997	0.392	0.694	0.047	11.767	0.047
Transverse Dimer, BD	0.987	0.977	0.887	0.932	0.430	2.683	3.113
Two Adjacent Dimers, BC	0.946	0.984	0.844	0.914	0.488	2.474	2.962
Two Adjacent Dimers, CD	0.981	0.995	0.780	0.888	0.138	3.972	4.110
Two Adjacent Dimers, AD	0.956	0.984	0.941	0.962	0.339	1.355	1.694

Table S21. The goodness of the fit parameters for absorbance and CD spectra for Cy5hex dimers (both for one and two dimers).

Dye	θ _i (°)	<i>φ</i> _i (°)	^{<i>x</i>_i} (nm)	^{<i>y</i>} <i>i</i> (nm)	^{<i>Z_i</i>} (nm)				
	Adjacent Dimer, AB								
Dye 1	76.6	0.0	0.000	0.000	-0.261				
Dye 2	90.6	6.3	0.000	0.000	0.261				
	Adjacent Dimer, BC								
Dye 1	46.7	0.0	0.000	0.000	-0.576				
Dye 2	112.2	-3.4	0.000	0.000	0.576				
		Adjacent]	Dimer, CD						
Dye 1	76.2	0.0	0.000	0.000	-0.271				
Dye 2	91.1	3.5	0.000	0.000	0.271				
		Adjacent]	Dimer, AD						
Dye 1	78.1	0.0	0.000	0.000	-0.248				
Dye 2	89.8	4.9	0.000	0.000	0.248				
		Transverse	Dimer, AC						
Dye 1	90.6	0.0	0.000	0.000	-0.261				
Dye 2	77.3	-2.0	0.000	0.000	0.261				
		Transvers	se Dimer, BD						
Dye 1	92.7	0.0	0.000	0.000	-0.194				
Dye 2	89.1	3.2	0.000	0.000	0.194				

Table S22. Kühn-Renger-May model fitting outputs describing each dye in standard orientation and position in Cy5hex dimers for one dimer.

Dye	^θ ⁱ (°)	^φ _i (°)	<i>x_i</i> (nm)	^{<i>y</i>} <i>i</i> (nm)	z_i (nm)				
Two Adjacent Dimers, BC*									
Dye 1	130.5	0.0	0.000	0.000	-0.516				
Dye 2	56.3	-36.6	0.000	0.000	0.516				
Dye 3	121.2	0.0	0.000	0.000	-0.577				
Dye 4	44.2	26.2	0.000	0.000	0.577				
	Two Adjacent Dimers, CD*								
Dye 1	64.0	0.0	0.000	0.000	-0.384				
Dye 2	114.4	27.0	0.000	0.000	0.384				
Dye 3	67.3	0.0	0.000	0.000	-0.460				
Dye 4	119.8	-21.2	0.000	0.000	0.460				
		Two Adjacen	t Dimers, AD*						
Dye 1	78.1	0.0	0.000	0.000	-0.301				
Dye 2	86.4	-18.0	0.000	0.000	0.301				
Dye 3	73.1	0.0	0.000	0.000	-0.247				
Dye 4	97.9	24.5	0.000	0.000	0.247				

Table S23. Kühn-Renger-May model fitting outputs describing each dye in standard orientation and position in Cy5hex dimers for two dimers.

* Standard orientation and position of Dimer I (dyes 1 & 2) and Dimer II (dyes 3 & 4) separated by ~1,000 nm.

Dimer Aggregate	$J_{m,n}$ (meV)	R, (Å)	d _{min} (nm)	a (°)	$ heta_{ls}$ (°)	$ heta_{2s}$ (°)	θ_t (°)
Adjacent, AB	107.8	0.52	0.34	15.3	76.6	89.4	6.3
Adjacent, BC	57.7	1.15	0.34	65.6	46.7	67.8	-3.4
Adjacent, CD	95.5	0.54	0.34	15.3	76.2	88.9	3.5
Adjacent, AD	109.4	0.50	0.34	12.7	78.1	89.8	4.9
Transverse, AC	104.3	0.52	0.34	13.4	89.4	77.3	-2.0
Transverse, BD	136.6	0.39	0.34	4.8	87.3	89.1	3.2
Two Adjacent	59.5	1.03	0.39	81.5	49.5	56.3	-36.6
Dimers, BC	62.1	1.15	0.34	80.6	58.8	44.2	26.2
Two Adjacent,	77.8	0.77	0.34	56.8	64.0	65.6	27.0
Dimers CD	67.4	0.92	0.34	56.3	67.3	60.2	-21.2
Two Adjacent,	67.8	0.60	0.54	19.6	78.1	86.4	-18.0
Dimers AD	96.6	0.49	0.34	34.6	73.1	82.1	24.5

Table S24. Calculated $J_{n,m}$ and geometric parameters of Cy5hex dimers (both for one and two dimers).

Single Cy5tBu Dimer

Figure S23. Three-dimensional vector plots of the KRM single dimer positions for Cy5tBu showing the different plane projections XY, XZ, and YZ.

Figure S24. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5tBu covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Parameter	Monomer A	Monomer B	Monomer C	Monomer D
E_{ν} , (eV)	0.137	0.141	0.137	0.139
<i>d</i> (dimensionless units)	0.867	0.873	0.833	0.862
Γ (eV)	0.043	0.041	0.040	0.043
$J_0 (\mathrm{m}eV\text{-}nm^3)$	69.2	63.4	61.0	60.4
M (Debye)	14.031	13.431	13.174	13.114

Table S25. Various monomer parameters for Cy5tBu.

 Table S26. Input fitting parameters used in calculations of Cy5tBu dimers.

Parameter	Adjacent AB	Adjacent BC	Adjacent CD	Adjacent AD	Transverse AC	Transverse BD
n _v	3	3	3	3	3	3
J_0^* (meV·nm ³)	66.3	62.2	60.7	64.8	65.1	61.9
$E_{of}(eV)$	0.012	0.008	-0.004	0.016	-0.010	0.001
$E_v(eV)$	0.139	0.139	0.138	0.138	0.137	0.140
d (dimensionless units)	0.870	0.853	0.848	0.865	0.850	0.868
Г (eV)	0.042	0.040	0.041	0.043	0.041	0.042
l (nm)	1.4	1.4	1.4	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34	0.34	0.34	0.34

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Construct	r	OI _{AB}	OI _{CD}	OI _{Tot}	MSD _{abs}	MSD _{cd}	w _{abscd} rms
Adjacent Dimer, AB	1.013	0.991	0.979	0.985	0.106	0.446	0.552
Adjacent Dimer, BC	0.997	0.988	0.980	0.984	0.163	0.377	0.539
Adjacent Dimer, CD	1.010	0.988	0.865	0.926	0.167	2.439	2.605
Adjacent Dimer, AD	0.996	0.991	0.974	0.982	0.121	0.620	0.741
Transverse Dimer, AC	1.002	0.971	0.946	0.959	0.451	1.245	1.696
Transverse Dimer, BD	0.998	0.977	0.900	0.938	0.437	2.172	2.609

 Table S27. The goodness of the fit parameters for absorbance and CD spectra for Cy5tBu dimers.

Dye	^θ ⁱ (°)	φ_i (°)	^{<i>x</i>} <i>i</i> (nm)	^{<i>y</i>} <i>i</i> (nm)	^{<i>z</i>_{<i>i</i>} (nm)}				
	Adjacent Dimer, AB								
Dye 1	94.5	0.0	0.000	0.000	-0.207				
Dye 2	88.7	5.9	0.000	0.000	0.207				
	Adjacent Dimer, BC								
Dye 1	88.8	0.0	0.000	0.000	-0.202				
Dye 2	83.9	4.5	0.000	0.000	0.202				
	Adjacent Dimer, CD								
Dye 1	98.0	0.0	0.000	0.000	-0.204				
Dye 2	93.2	1.8	0.000	0.000	0.204				
		Adjacent	Dimer, AD						
Dye 1	83.5	0.0	0.000	0.000	-0.214				
Dye 2	90.4	5.4	0.000	0.000	0.214				
		Transverse	Dimer, AC						
Dye 1	88.5	0.0	0.000	0.000	-0.181				
Dye 2	87.3	2.5	0.000	0.000	0.181				
	Transverse Dimer, BD								
Dye 1	86.8	0.0	0.000	0.000	-0.188				
Dye 2	84.2	-2.5	0.000	0.000	0.188				

Table S28. Kühn-Renger-May model fitting outputs describing each dye orientation and positionin Cy5tBu dimers.

Dimer Aggregate	$J_{m,n}$ (meV)	R, (Å)	d _{min} (nm)	α (°)	$ heta_{Is}$ (°)	$ heta_{2s}$ (°)	θ_t (°)
Adjacent, AB	119.1	0.41	0.34	8.3	85.5	88.7	5.9
Adjacent, BC	115.4	0.40	0.34	6.7	88.8	83.9	4.5
Adjacent, CD	112.4	0.41	0.34	5.1	82.0	86.8	1.8
Adjacent, AD	113.2	0.43	0.34	8.8	83.5	89.6	5.4
Transverse, AC	137.5	0.36	0.35	2.8	88.5	87.3	2.5
Transverse, BD	124.7	0.38	0.34	3.6	86.8	84.2	-2.5

Table S29. Calculated $J_{m,n}$ and geometric parameters of Cy5tBu dimers.

Single Cy5H Dimer

Figure S25. Three-dimensional vector plots of the KRM single dimer positions for Cy5H showing the different plane projections XY, XZ, and YZ.

Single Cy5H Dimer: Absorbance and Circular Dichroism

Figure S26. Normalized obtained steady-state absorption and circular dichroism spectra (solid line) of Cy5H covalently templated by DNA HJ with matching one dimer KRM Fit (dash-dot line). These spectra were recorded at 20 °C with the dye-DNA construct concentration at 2 μ M in 1× TBE, 15 mM MgCl₂.

Parameter	Monomer A	Monomer B	Monomer C	Monomer D
E_{ν} , (eV)	0.138	0.136	0.139	0.145
d (dimensionless units)	0.810	0.810	0.800	0.810
Γ (<i>eV</i>)	0.044	0.039	0.039	0.044
$J_0 (\mathrm{m}eV\text{-}nm^3)$	13.831	13.736	13.854	13.388
M (Debye)	67.2	66.3	67.5	63.0

Table S30. Various monomer parameters for Cy5H.

 Table S31. Input fitting parameters used in calculations of Cy5H dimers.

Parameter	Adjacent , AB	Adjacent , BC	Adjacent , CD	Adjacent , AD	Transverse , AC	Transverse , BD
n _v	3	3	3	3	3	3
J_0^* (meV·nm ³)	67.2	66.9	65.2	65.1	67.3	64.6
$E_{of}(eV)$	0.005	0.017	0.008	0.015	0.021	0.019
$E_v(eV)$	0.155	0.137	0.142	0.1416	0.1383	0.141
d (dimensionless units)	0.780	0.805	0.805	0.810	0.805	0.810
Γ (eV)	0.043	0.039	0.042	0.044	0.0415	0.042
l (nm)	1.4	1.4	1.4	1.4	1.4	1.4
cdis (nm)	0.34	0.34	0.34	0.34	0.34	0.34

* J_0 was calculated from the fitting monomer absorption spectrum and used as an input parameter in the theoretical fitting of dimers. For dimers, each monomer J_0 was averaged between the two participating dyes.

Construct	r	OI _{AB}	OI _{CD}	OI _{Tot}	MSD _{abs}	MSD _{cd}	<i>W_{abscd}rms</i>
Adjacent Dimer, AB	0.951	0.986	0.949	0.968	0.415	0.735	1.149
Adjacent Dimer, BC	0.973	0.992	0.626	0.809	0.179	4.288	0.179
Adjacent Dimer, CD	0.986	0.992	0.926	0.959	0.203	0.951	1.154
Adjacent Dimer, AD	1.048	0.994	0.627	0.810	0.197	5.393	0.197
Transverse Dimer, AC	1.022	0.986	0.988	0.987	0.333	0.192	0.525
Transverse Dimer, BD	0.994	0.992	0.974	0.983	0.214	0.502	0.716

Table S32. The goodness of the fit parameters for absorbance and CD spectra for Cy5H dimers.

Dye	θ_i (°)	$arphi_i$ (°)	x_i (nm)	^{<i>y</i>} <i>i</i> (nm)	Z_i (nm)					
Adjacent Dimer, AB										
Dye 1	70.5	0.0	0.000	0.000	-0.544					
Dye 2	129.6	1.8	0.000	0.000	0.544					
Adjacent Dimer, BC										
Dye 1	34.4	0.0	0.000	0.000	-0.659					
Dye 2	120.4	-1.2	0.000	0.000	0.659					
Adjacent Dimer, CD										
Dye 1	119.5	0.0	0.000	0.000	-0.648					
Dye 2	39.2	-1.7	0.000	0.000	0.648					
Adjacent Dimer, AD										
Dye 1	116.3	0.0	0.000	0.000	-0.623					
Dye 2	40.1	0.6	0.000	0.000	0.623					
Transverse Dimer, AC										
Dye 1	99.1	0.0	0.000	0.000	-0.388					
Dye 2	64.9	-9.6	0.000	0.000	0.388					
Transverse Dimer, BD										
Dye 1	99.2	0.0	0.000	0.000	-0.409					
Dye 2	63.1	-3.9	0.000	0.000	0.409					

Table S33. Kühn-Renger-May model fitting outputs describing each dye orientation and positionin Cy5H dimers.

Dimer Aggregate	$J_{m,n}$ (meV)	R, (Å)	d _{min} (nm)	a (°)	$ heta_{Is}$ (°)	$ heta_{2s}$ (°)	$ heta_t$ (°)
Adjacent, AB	57.5	1.09	0.34	59.1	70.5	50.4	1.8
Adjacent, BC	51.1	1.32	0.34	86.0	34.4	59.6	-1.2
Adjacent, CD	50.3	1.30	0.34	80.3	60.5	39.2	-1.7
Adjacent, AD	51.2	1.25	0.34	76.3	63.7	40.1	0.6
Transverse, AC	72.5	0.78	0.34	35.5	80.9	64.9	-9.6
Transverse, BD	66.9	0.82	0.34	36.3	80.8	63.1	-3.9

Table S34. Calculated $J_{m,n}$ and geometric parameters of Cy5H dimers.