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SUMMARY
Clustering cells based on their high-dimensional profiles is an important data reduction process by which re-
searchers infer distinct cellular states. The advent of cellular barcoding, however, provides an alternative
means by which to group cells: by their clonal origin. We developed ClonoCluster, a computational method
that combines both clone and transcriptome information to create hybrid clusters that weight both kinds of
data with a tunable parameter. We generated hybrid clusters across six independent datasets and found that
ClonoCluster generated qualitatively different clusters in all cases. Themarkers of these hybrid clusters were
different but had equivalent fidelity to transcriptome-only clusters. The genes most strongly associated with
the rearrangements in hybrid clusters were ribosomal function and extracellular matrix genes.We also devel-
oped the complementary tool Warp Factor that incorporates clone information in popular 2D visualization
techniques like UMAP. Integrating ClonoCluster and Warp Factor revealed biologically relevant markers of
cell identity.
INTRODUCTION

Since the advent of high-dimensional molecular profiling, clus-

tering has been the most common form of data analysis and visu-

alization applied, allowing one to form groups out of entities with

similar profiles.1,2 Clustering has enabled the detection of net-

works of disease genes and loss of function patterns across can-

cer cell lines.3,4 More recently, the development of single-cell

measurement technologies has allowed the high-dimensional

profiling of individual cells. In this context, clustering has been

used to categorize cells into discrete molecular states, often

termed ‘‘fates’’ or ‘‘types,’’ that can be associated with distinct

cellular functions.5,6 At the same time, inmanybiological contexts,

single cells also have lineage relationships; i.e., they may arise

from a common progenitor. This information in principle provides

a complementary way to cluster profiles of single cells, but it has

not been incorporated into the systematics of single-cell profiles.7

Clustering purely based on molecular profiling has been suc-

cessful in many instances but relies on a number of assumptions

that have been difficult to evaluate rigorously. Briefly, most clus-

tering approaches start with some form of feature selection or

dimensionality reduction. Data points are then grouped to mini-

mize the distances between elements of the same groups, by

k-means clustering, hierarchical clustering, or graph-based

community detection methods that use connectivity to inform
C
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group membership.5,6,8 Intrinsic to all these methods is the use

of some sort of distance between cellsmeasured by somemetric

of distance between their molecular profiles, but in principle

many other types of information could be used to inform or

modify these distances.

Recently, the development of cellular barcoding systems has

provided an alternative means by which to group cells. Primarily,

these systems have been used for the longitudinal tracking of

molecular profiles through some sort of biological process,

such as differentiation or therapy resistance.9–15 Strikingly, these

studies have concluded, in some instances, that single-cell dif-

ferences in the expression of few or even just one gene can pre-

dict the ultimate fate of the cell, differences that would not have

been detected by standard clustering algorithms. For example,

this approach identified the expression of Mettl7a1, a methyl-

transferase, as a driver of successful stem cell reprogramming,13

identified TCF15 as necessary and sufficient for hematopoietic

stem cell self-renewal, and identified Pou2f2 expression in pro-

genitor cells as predicting DC-like versus neutrophil-like mono-

cyte fates.12,16,17 Such results suggest that the incorporation of

clone information could be very useful in determining the expres-

sion differences between cells that have distinct functional out-

comes. Being able to weigh both transcriptome and clone infor-

mation in clustering algorithms would potentially enable the

identification of such ‘‘hidden’’ factors.
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We thus developed an algorithm that we call ‘‘ClonoCluster’’

that integrates transcriptome and clone barcode information, al-

lowing one to cluster cells using a continuous parameter (a) that

adjusts the relativeweight of transcriptome versus clone informa-

tion. We applied ClonoCluster to six previously published inde-

pendent single-cell RNA sequencing datasets, including in vitro

hematopoiesis, directed stem cell differentiation, and drug treat-

ment of tumor cell lines.11,12,18 We found massive rearrange-

ments of the assignments of cells to clusters as a was shifted

to weigh clonal origin more heavily. These rearrangements had

novel, potentiallymore biologically interpretable, cluster markers,

and were associated with expression of genes involved in extra-

cellular matrix production and translation. These results held

across datasets where clone fate was determined intrinsically,

and the effects were considerably less strong in the dataset

where cell fate was determined extrinsically. Inspired by this

clone-weighted network graph clustering approach, we devel-

oped a tunable parameter (the Warp Factor, ranging from 0 to

10), that incorporates clonality information into the dimensionality

reduction step prior to the commonly used Uniform Manifold

Approximation and Projection (UMAP) algorithm for visualizing

high-dimensional datasets. We included ClonoCluster and

Warp Factor into an open-source R package, ClonoCluster

(https://github.com/leeprichman/ClonoCluster). As barcoding

data becomemore prevalent, ClonoCluster can provide a means

to evaluate the degree to which clustering can be altered by

factoring in clonal origin.

Design
ClonoCluster integrates clone barcode and

transcriptome information

Clone barcode assignment and transcriptome-level data repre-

sent two different modalities of data that can be used to cluster

single-cell RNA sequencing. In a prototypic clonal barcoding

experiment, a population of cells is transfected with random

transcribed barcodes such that each initial clone is likely to ex-

press a unique barcode. After proliferation, experimenters apply

some additional experimental conditions, such as drug treat-

ment or differentiation.11–14,18 At the chosen endpoint, one can

perform single-cell RNA sequencing on a pool of individual cells,

which is itself composed of some number of clones marked by

barcodes. The barcodes themselves can be determined by
Figure 1. The ClonoCluster method integrates transcriptome and clon

(A) Schematic depicting a generic approach to single-cell barcoding that yields ou

clustering by recovered barcode.

(B) Schematic depicting the integration of these clone and transcriptome clusterin

neighbor network graph edge weights are modified to incorporate clone clusters

transcriptome clusters. At a = 1, clusters are consistent with clone barcode assi

(C) Sankey diagram depicting the reorganization of cell clusters from the 15 larg

increasing a value colored by initial transcriptome cluster (top) and clone (bottom

clusters.

(D) Representative plot of high-dose BRAF inhibitor-treated melanoma clonal cell

showing that cluster number approaches unique clone barcode number with inc

chosen based on the approximate shoulder of the curve after which clusters rap

determined by the half ‘‘high a’’ value rounded to the nearest 10th value. At a = 0,

consistent with clone barcode assignments.

(E) Representative Sankey diagram of the 15 largest clone clusters from the hig

arrangements of clusters at transcriptome, low a, and high a levels, colored by init
various side reactions and subsequent sequencing, thus adding

a clone identifier to each cell’s transcriptome. (In practice, tech-

nical constraints on clone identification and sampling for single-

cell RNA sequencingmean that only some subsets of sequenced

cells will have an identifiable barcode.)

Once cells have both transcriptome and clone information

attached to them, one can compare methods of classification.

Two popular software packages for classifying cells by tran-

scriptome information alone are Seurat and scanpy,19,20 both

of which apply community detection algorithms to network

graphs to identify the most interconnected cell clusters. We

can then directly compare the classification of cells by transcrip-

tome clusters versus clone barcodes (Figure 1A). In principle,

these two classification schemes could be virtually identical, or

they could be completely uncorrelated with each other.

The tunable parameter a yields hybrid clone-

transcriptome defined clusters

We wondered whether there was some way to incorporate both

clone and transcriptome information to generate ‘‘hybrid’’ clus-

ters that group cells that balance transcriptomic similarity and

clonal relationships. In order to generate such hybrid clusters,

we developed the ClonoCluster model for measuring similarity

between cells. This model includes a tunable parameter, a,

that shifts weight between clustering by cell transcriptomes

alone (a = 0) and ‘‘clustering’’ by clone barcode alone (a = 1)

(Figure 1B). In well-established single-cell RNA sequencing

analysis packages like scanpy and Seurat, the algorithms build

a network graph of cells (nodes) connected by edges that are

weighted by transcriptional similarity (‘‘transcriptome weight’’),

determined by the number of shared nearest neighbors in prin-

ciple component space.19,20 The clustering itself is then deter-

mined by community detection within this graph, returning the

most highly interconnected groupings of cells as the assigned

clusters. In ClonoCluster, we retained this overall structure,

incorporating clone information by modifying the weights as fol-

lows. For each edge between cells, we also created a ‘‘clone

weight’’ of 1 or 0 based on whether the cells have the same or

different barcodes. We then normalized the ‘‘clone weight’’ by

the number of cells with that barcode to ensure that the attrac-

tive ‘‘force’’ of barcodes did not scale with the number of cells.

We linearly combined transcriptome and clone weights using a

such that it returned purely transcriptome weights for a = 0 and
e clustering modalities in a tunable manner using the a parameter

tput clusterable by two modalities of data, transcriptome clustering, and clone

gmodalities using the ClonoClustermethod, in which the transcriptome nearest

with a tunable free parameter, a. At a = 0, clustering is identical to traditional

gnments.

est clone clusters present at day 2 in an in vitro hematopoiesis assay12 with

). Nodes/boxes represent clusters and ribbons depict the flow of cells between

line (clonal WM989 cells treated with 1 mMof the BRAF inhibitor vemurafenib11)

reasing a value at fixed community detection resolution. ‘‘High a’’ values were

idly break into individual clone clusters with increasing a. ‘‘Low a’’ values were

clustering is identical to traditional transcriptome clusters. At a = 1, clusters are

h-dose BRAF inhibitor dataset treated melanoma clonal cell line depicting re-

ial transcriptome cluster assignment (left) and high a cluster assignment (right).
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Table 1. Dataset descriptions and sources

Dataset name Source Description

No. of

Replicates Fate determination

Low-dose BRAF inhibitor Goyal et al. bioRxiv (2021)11 WM989 A6-G3 clonal melanoma cells

treated with 100 nM vemurafenib for

3–4 weeks

1 Intrinsic

High-dose BRAF inhibitor Goyal et al. bioRxiv (2021)11 WM989 A6-G3 clonal melanoma

cells treated with 1 mM vemurafenib

3–4 weeks

2 Intrinsic

Cario-directed iPSCs Jiang et al. Genome Biol. (2022)18 PENN123i-SV20 human IPSC line

directed toward cardiomyocyte fate

sequenced on day 14

1 Extrinsic

In vitro hematopoiesis Weinreb et al. Science (2020)12 Hematopoietic progenitor cells derived

frommurine bonemarrow differentiating

in culture for 2 days

1 Intrinsic

WM983B BRAF inhibitor Goyal et al. bioRxiv (2021)11 WM983B E6-C6 clonal melanoma cells

treated with 100 nM vemurafenib for

3–4 weeks

2 Intrinsic

Paclitaxel-treated breast

cancer cells

Goyal et al. bioRxiv (2021)11 MDA-MB-231D4 clonal breast cancer

cells treated with 1 nM paclitaxel for

3–4 weeks

2 Intrinsic
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purely clone weights for a = 1 (Figure S1A). We could then use

this graph for cluster assignment just as is done by the conven-

tional algorithms (Figure S1B). Thus, for values of a in between 1

and 0, ClonoCluster provides hybrid clusters that weigh both

clone and transcriptome information.

RESULTS

Clone-to-cluster concordance variably increases with a

We used ClonoCluster to generate hybrid clusters from six

different clone barcoded single-cell RNA sequencing datasets

from our lab and others11,12,18 (see STAR methods and Table 1).

We first performed hybrid clustering at stepwise values of a from

traditional transcriptome-only clusters (a = 0) to the clone group-

ings (a = 1). We wanted to determine how distinct hybrid clusters

were from transcriptome or clone clustering alone as well as how

increasing a reorganized clusters from initial transcriptome clus-

ters to individual cloneclusters. Inorder tovisualize theflowofcells

through theseprogressive hybrid clusters,weconstructedSankey

diagrams21 of the datasets using the 15 largest clone clusters per

sample (Figures 1C and S2A). There was visible reorganization of

cells throughout clusters among the top 15 clone clusters as a

increased, with differences in cluster number, composition, and

size throughoutmuchof the rangeofa in all samples.Asexpected,

when a approached 1, the concordance between hybrid clusters

and clone clusters increased, meaning that hybrid clusters were

largely composed of individual clones or combinations thereof,

with the frequency of clones being split across clusters becoming

less. (At a = 1, clusterswere equivalent to clone groupings.) Within

each dataset, cells with the same clonal origin (i.e., sharing a bar-

code) demonstrated variable degrees of reorganization into

concordant clusters at given levels ofa, with some requiring higher

a values tocompletely unify into a single hybrid cluster thanothers.

The patterns of rearrangement also varied between datasets.

For example, the cardio-directed iPSC dataset showed less
4 Cell Genomics 3, 100247, February 8, 2023
concordance between clone clusters and transcriptome clusters

among the top 15 largest clone clusters compared with WM989

A6-G3 melanoma cells treated with high-dose vemurafenib. In

the cardio-directed iPSC dataset, each of the top clone clusters

segregated to a separate cluster by a = 0.6, compared with

a = 0.8 or 0.9 in the two melanoma replicates (Figure S2A). We

formally evaluated clone-to-cluster concordance using Cohen’s

k, a measure of agreement between classifications (grouping by

clone versus grouping by assigned cluster) computed from the

2 3 2 confusion matrix of clone barcode and cluster member-

ship. When clonal cells sharing a barcode are more frequently

assigned to a single cluster, Cohen’s k is high. (At a = 1 where

hybrid clusters and clonal clusters are equivalent, Cohen’s k

must also equal the maximum value of 1.) For most datasets,

we observed a gradual transition of Cohen’s k from 0 to 1 as a

increased, suggesting that there was a graded conglomeration

of clone barcodeswithin hybrid clusters as clonality was increas-

ingly factored into the clustering algorithm. The cardiomyocyte-

directed iPSCs, however, displayed a very sudden switch be-

tween low k and high k (Figure S2B), suggesting that there are

few meaningful intermediate hybrid clusters between purely

transcriptome clustering and purely clone clustering. Sankey

visualization matched this interpretation by showing that clones

were quite intermixed between the transcriptome-only clusters,

with little obvious areas of partial conglomeration. In the cardio-

myocyte-directed iPSC case, biologically, our prior findings

suggested that cell fate was extrinsically determined and did

not correlate well with clonality; hence, hybrid clusters would

increasingly be composed of cells of essentially random types,

explaining these observations for this dataset.

As a approaches 1, the number of hybrid clusters identified

approaches the large number of individual clone clusters in the

dataset, which are generally more numerous than the standard

transcriptome clusters returned using common methods. We

wondered if we could identify the maximum a value that
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generates a number of hybrid clusters similar to the number of

transcriptome clusters that also showed significant reorganiza-

tion of cells to be distinct from transcriptome-only clustering.

We therefore computed the number of clusters returned in

each sample across a values to identify the maximum a value

that still returned a number of clusters in this range; the final

cluster composition and cluster number was determined

by the Louvain algorithm as implemented in the Seurat

package.19,22 The Louvain algorithm iteratively severs network

graph edges to achieve optimal internal interconnectedness of

community members (modularity) and returns a greater number

of communities at higher values for the input resolution param-

eter. We performed all clustering at fixed resolution, therefore

the rising number of clusters with increasing a value can be

attributed to improved modularity of the clusters as networks

break apart into isolated networks of like-barcoded clones.

‘‘High a’’ values were chosen based on the maximum value

before the inflection point where cluster numbers dramatically

increase, with ‘‘low a’’ values being chosen at half this value

(Figures 1D and S3). The high a value varied between samples,

from 0.4 to 0.7. Even within this restricted range that limited

the number of clusters returned, we observed reorganization at

low and high a for the top 15 clone clusters (Figure 1E).

Hybrid a clusters reveal novel cluster markers without
loss of marker fidelity
A common goal of single-cell RNA sequencing analysis is the

identification of ‘‘marker’’ genes whose expression is high in

cells of a particular cluster (i.e., sensitive for cluster member-

ship) and is low in cells in other clusters (i.e., specific for cluster

membership).5,6,23 We consider the most useful markers to be

those that are specific and sensitive to the cells in a cluster and

thus have ‘‘high marker fidelity.’’ Given that increasing a altered

cluster number and membership, we wondered whether the

genes that served as the best markers changed with a, and

whether those markers were able to maintain similar sensitivity

and specificity as they did on purely transcriptomically defined

clusters. We used the receiver operating characteristic (ROC)

to evaluate all expressed genes as markers to classify cells

into clusters at all possible marker expression cutoffs. We

used area-under-the-curve (AUC) derived from the ROC to

summarize the fidelity of a marker by quantifying its sensitivity

and specificity as a marker. An AUC of 0.5 indicates a classifier

that is no better than random chance at determining cluster

membership of a cell, with a value of 1 being perfectly predic-

tive. We identified the cluster markers with the highest AUC

for each hybrid cluster at each a and found that the top markers
Figure 2. Manipulation of a reveals turnover of cluster markers

(A) AUC values for the top marker per cluster at zero, low, high, and maximum (a

day 2, a BRAF inhibitor-treated clonal melanoma cell lineWM989B, and directed d

fate, a system where extrinsic determinants of cell fate are expected be dominant

Kruskal-Wallis test with Bonferroni correction. When ‘‘global p’’ was less than 0.05

above boxes indicate the corrected Wilcox test p value compared with a = 0 (n.s

(B–D) Sankey diagram including all barcoded cells from various samples (see

clusters. Cells positive for the respectivemarker that are present in the cluster of in

not present in the cluster of interest are marked gray (‘‘False Positive’’). Positivity

curve (AUC) for the marker is annotated above the cluster nodes. Representative

across a values (B), markers that are only strong in transcriptome clusters (C), an

6 Cell Genomics 3, 100247, February 8, 2023
of the clusters were different for different a values (Figures S4

and S5A).

With this observed change in top markers, we wondered

whether overall fidelity of the top cluster markers at each a, as

reflected by AUC, was preserved with hybrid clustering. We

found that across almost all datasets, the median AUC of top

cluster markers at each value of awere not significantly different

from transcriptome clustering alone (Figures 2A and S5B), sug-

gesting that the rearrangements caused by incorporating clone

information did not radically decrease the ability to find a single

marker for a cluster, despite the fact that themarkers themselves

changed. We did see decreased marker fidelity in the cardio-

myocyte-directed iPSCs at the high a and clonal cluster levels

(0.69 and 0.79 versus 0.94). (Low-dose vemurafenib-treated

melanoma samples also had a decrease in marker fidelity,

although to a lesser extent, 0.80 and 0.84 versus 0.90.) Again,

given the extrinsic determination in cardiomyocyte-directed

iPSCs, we would expect that markers for hybrid clusters would

be hard to find; indeed, many putative markers had poorer per-

formance at high a18 (Figure S5A). Thus, in the datasets analyzed

in which cell states are thought to be intrinsically determined (Ta-

ble 1), hybrid clustering yielded new cluster markers revealed by

clonality information, often of equal fidelity to transcriptome clus-

tering. The alternative markers identified by ClonoCluster poten-

tially represent genes whose expression varies more between

different clonal populations than within a clonal population.

In addition to top cluster markers, we wondered how marker

fidelity of any single marker was likely to change as we increased

clonal weight with a. We used Sankey plots to directly visualize

the flow of marker-positive cells through hybrid clusters as a

changed. We found that the fidelity of transcriptome cluster

markers varied as a changed, with some markers persisting

across all values of a and others changing their fidelity dramati-

cally. Many markers maintained their fidelity over increasing a

values (representative samples shown in Figure 2B). We also

identified markers that were strong cluster classifiers at the tran-

scriptome cluster level that lost fidelity in low and high a clusters

(Figure 2C), suggesting that the classification properties of these

markers based on transcriptomes alone was lessened by the

addition of clone information. Conversely, we also observed

markers that increased in fidelity with increasing a, meaning

that those markers were highly expressed in clones that were

brought together into a hybrid cluster (Figure 2D). Analysis of

marker fidelity across a therefore identified new sets of markers

that balance clonal differences with transcriptome differences in

cluster assignment, especially favoring markers that are strongly

congruent in both.
= 1) values of a for multiple samples, an in vitromurine hematopoiesis assay at

ifferentiation of induced pluripotent stem cells (iPSCs) toward a cardiomyocyte

over clone barcodes.18 ‘‘Global p’’ indicates the p value for the non-parametric

, pairwiseWilcox tests were performed with Bonferroni correction. Annotations

., not significant; ***p < 0.001).

STAR Methods) depicting transcriptome clusters, low a clusters, and high a

terest aremarked purple (‘‘True Positive’’) while cells positive for themarker but

thresholds were determined as described in STAR Methods. Area-under-the-

markers are chosen to demonstrate markers whose classifier strength persists

d markers that are stronger at high and low a values (D).
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Reorganization of clusters with a is explained by
differential expression of extracellular matrix and
translation-associated genes
To identify expression of genes associated with reorganization of

cells from transcriptome clusters to hybrid clusters, we evaluated

genes as classifiers for explaining rearrangement of cells. Fig-

ure 3A demonstrates our approach to comparing reorganizing

cells to delineate these differentially expressed genes. For all

possible transcriptome cluster and low a cluster pairs, we calcu-

lated the AUC for each gene in the dataset as a predictor of

whether a cell from the transcriptome cluster would become a

member of the low a cluster. Genes with high AUC in this analysis

were strong predictors of whether or not a cell would switch affil-

iation to a particular low a cluster, and thus represent the differ-

entially expressed genes that explain cluster rearrangements

that either break apart or aggregate cells from the transcriptome

clusters upon the incorporation of clonal information to the clus-

tering algorithm. We have termed this AUC of a differentially ex-

pressed gene that explains the sorting of clusters into hybrid a

clusters as the reorganization AUC (‘‘reorg-AUC’’). Any gene

with reorg-AUC greater than 0.80 for any transcriptome to hybrid

a cluster was considered a ‘‘reorganizationmarker.’’ Representa-

tive examples of markers associated with contributing cells from

a transcriptome cluster and a low a cluster of interest are shown

in Figure 3B. Reorganization markers were identified in this way

for all datasets. Each set of reorganization markers for a paired

hybrid cluster and contributing transcriptome clusters was then

used to perform an overrepresentation analysis.24 Multiple gene

sets were significantly enriched in reorganization markers from

all samples. For visualization, we generated a heatmap of the

maximum enrichment ratio for all gene sets significantly overrep-

resented in three or more samples, as well as several commonly

chosen gene sets to serve as negative controls (Figure 3C). The

gene sets shared across the greatest number of samples were

associated with translation, ‘‘polysome,’’ ‘‘rRNA binding,’’ and

‘‘structural constituent of ribosome,’’ as well as many samples

showing enrichment for genes associated with the extracellular

matrix, including ‘‘extracellular matrix,’’ ‘‘extracellular matrix

structural constituent,’’ ‘‘extracellular matrix binding,’’ ‘‘collagen

trimer,’’ ‘‘collagen binding,’’ and ‘‘fibronectin binding.’’ Enrich-

ment was generally not seen in the negative control gene sets

selected. These analyses reveal that the cluster reorganization

induced by the incorporation of clonality information, even at

low levels of a, are not driven by random gene sets, but rather

by specific biological processes, such as those related to the

extracellular matrix and translation. Remarkably, these results

held across independent datasets taken from very different bio-
Figure 3. Reorganization markers are enriched in translation and extra

(A) Schematic depicting approach to differential expression that explains cluster

transcriptome cluster pair, differential expression analysis is performed between c

AUC). Geneset overrepresentation analysis was then performed on these groups

(see STAR Methods).

(B) Representative Sankey diagrams showing a low a cluster and a contributing t

marker and the associated cluster AUCs and reorg-AUC.

(C) Heatmap demonstrating maximum log enrichment ratio for gene sets significa

nine different data sources. All gene sets enriched in three or more samples are sh

(bottom). Gray tiles indicate no statistically significant enrichment in the sample

8 Cell Genomics 3, 100247, February 8, 2023
logical systems, suggesting that the biological processes associ-

ated with extracellular matrix and translation may help define a

‘‘fingerprint’’ for clonal information.

Warp Factor, s, modifies UMAP representations to
enhance clone separation
In addition to clustering and marker identification, an indepen-

dent step in single-cell RNA sequencing analysis is two-dimen-

sional visual representation of transcriptome data using dimen-

sionality reduction techniques such as t-SNE or UMAP.6,25 In

the same spirit of hybrid clustering, we wondered whether we

could apply the principle of adding weighted clone information

to these low-dimensional visual embeddings. Whereas a mod-

ifies the weight of edges in the network graph input to the clus-

tering algorithm, we sought to construct a method to incorporate

clone information with a tunable parameter, the Warp Factor,

into the input to the UMAP algorithm. UMAP represents variation

in the transcript count matrix-derived principal-component anal-

ysis (PCA) in a single manifold using attraction and repulsion

components. Two UMAP dimensions are usually projected to

visualize the high-dimensional data.6,25 We modified the PCA

input to UMAP to incorporate clone barcode information along-

side transcriptome variation. To test this approach, we simulated

data and used amodel to create amodified principal component

(PC) matrix in which a tunable ‘‘Warp Factor’’ parameter, s,

warps the values of PCs for each cell to approach themean value

of the principal component for the clone cluster it belongs to (Fig-

ure S6A); i.e., reducing the variance of cells within the clone. At

s = 0, the PC matrix is unmodified and at the maximum value,

s= 10, the only variation present in the datawill be between clone

clusters (Figure S6B). The incorporation of the Warp Factor into

visualization promoted separation of clone clusters in UMAP

space in simulated data (Figure 4A). We then used theWarp Fac-

tor for the visualization of clone clusters in the datasets. As ex-

pected, the spread between individual clone clusters reduced

across the UMAP with increasing Warp Factor. When we

engaged high Warp Factors, individual clone clusters formed

distinct spatial clusters in UMAP space. The amount of Warp

Factor required to promote distinct separation of individual clone

clusters and singlets into isolated spatial groups varied between

datasets, likely due to the differences in the size and number of

clone clusters as well as initial degree of clone-to-transcriptome

concordance (Figure 4B). Unexpectedly, we also observed that

‘‘singlets,’’ cells that are the only member of their clone cluster

(have a unique barcode), conglomerated together into a large

group, possibly through repulsion from the non-singlet clone

clusters (Figure 4C). The Warp Factor method was effective at
cellular matrix-associated gene sets

rearrangements with a modulation. For each hybrid a cluster and contributing

ells inside and outside the a cluster, yielding an AUC for reorganization (reorg-

of differentially expressed genes on reorganizing cells with reorg-AUC >0.80

ranscriptome cluster with colors indicating proportion of cells classified by the

ntly enriched by overrepresentation analysis of reorganization markers across

own (top) as well as several commonly explored gene sets as negative controls

(false discovery rate >0.05).
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incorporating clonal information into UMAP visualizations of sin-

gle-cell RNA sequencing datasets by reducingwithin-clone clus-

ter variation and increasing between-clone cluster variation in

the underlying PC matrix.

Combining hybrid clustering and Warp Factor highlights
unique clusters and markers
We sought to demonstrate the potential biological utility of

ClonoCluster and Warp Factor when used together, focusing

on data from melanoma11 and hematopoiesis.12 Starting with

melanoma, we first identified top marker genes at a high a (a

from 0.55 to 0.6); these markers were distinct from those identi-

fied by purely transcriptomic clustering (Figure 5A). Among these

were COL6A2 in low-dose and COL6A1 in high-dose vemurafe-

nib treatment, which was consistent with our findings that

collagen-associated gene sets were enriched in reorganization

markers (Figure 3C) in the three replicates of low- and high-

dose vemurafenib-treated WM989 cells.11 In the standard

UMAP, cells that highly expressed these markers were

dispersed, but upon engaging a Warp Factor of 5, these cells

came together, demonstrating that Warp Factor can visually

represent the results of incorporating clonal information.

We also performed a similar evaluation on the day 2 in vitro he-

matopoiesis data from Weinreb et al.12 The original authors

labeled the majority of these cells as ‘‘undifferentiated’’ at day

2, as they did not meet the expression level for conventional

markers used for supervised cutoffs to define cell types.12

Indeed, using conventional transcriptome clustering, many of

the top cluster markers identified (Alox5, Plac8, S100a9, Ptma,

and Ctsc) were not ones known to be associated with distinct

cell types in this system. However, for high a (a = 0.75), two

markers emerged as top cluster markers (Mpo and Prtn3) that

are known neutrophil-specific genes (Figure 5B).26 Using a

Warp Factor of 9.9 (likely needed due to the small number of cells

per clone), we could pull thesemarkers together to some degree.

The fact that ClonoCluster was able to recover more biologi-

cally meaningful markers suggests that there may be biological

utility in its use. To further assess whether ClonoCluster gener-

ated more biologically meaningful groupings, we computed the

entropy of distribution of the cells with known types based on

cutoffs of marker genes. Lower entropy in this setting indicates

that cells of the same type (biologically determined) are distrib-

uted across fewer clusters (computationally determined). We

found that indeed, at low a, ClonoCluster reduced the entropy

for several cell types (basophils, erythroid progenitors, lymphoid

progenitors, mast cells, megakaryocytes, migratory dendritic

cells, and plasmacytoid dendritic cells) as compared with clus-

tering based on the transcriptome alone. As a was further

increased, this decrease in entropy was often reduced or lost,

suggesting that both clonal and transcriptomic information are

needed to best reflect biologically meaningful clusters (Fig-

ure S7). The improvement in entropy for cluster distribution
Figure 4. Warp Factor, s, is a tunable parameter to modify UMAP visua

(A) Demonstration of the effect of increasing Warp Factor (s) value on UMAP st

components. Each UMAP axis is scaled and centered to allow comparison betw

(B) UMAPs with increasing Warp Factor for multiple datasets, highlighting a sing

(C) UMAPs with increasing Warp Factors showing singlets in two datasets. Singl

10 Cell Genomics 3, 100247, February 8, 2023
among cells of the same type alongside the identification of

more specific markers is promising evidence that hybrid

clonal-transcriptome clusters better reflect known biology.

DISCUSSION

Clonal barcoding has provided additional information that could

be used for clustering cells based on both clonal origin and tran-

scriptome. ClonoCluster provides a method for weighting clone

and transcriptome information—using a tunable parameter a—

to generate hybrid clusters. These clusters were distinct from

purely transcriptomically defined clusters, with unique sets of

marker genes. The reorganization was often accompanied by

the alignment of the expression of extracellular matrix proteins,

suggesting that category of protein may be important for

discriminating clones from each other. Further, we developed

Warp Factor, inspired by ClonoCluster, as a way to modify the

popular UMAP visualization to incorporate clone information.

A major question is whether these hybrid clusters more accu-

rately reflect biological differences than transcriptomically

defined clusters. We propose ClonoCluster as a method to

tune the degree to which clonal information is incorporated.

There are suggestions that some degree of clone information

does reveal biological information. First, the fact that the assign-

ment of cells to clusters changes dramatically as a is changed

suggests that there is at least different information captured by

clone information. Moreover, the top markers for clusters

changedmarkedly, again suggesting different biological charac-

terizations. It is hard to know what markers are biologically ‘‘cor-

rect,’’ but we do point out that in the case of the in vitro hemato-

poiesis dataset, we found that increased a led to the detection of

Mpo and Prtn3 as markers, which are well-known neutrophil-

specific genes26 that did not appear as a top cluster marker for

pure transcriptomic clustering. Furthermore, we found that inter-

mediate levels of a better recapitulated known biology by

reducing the entropy of known cell types across computationally

generated clusters. Moreover, in the case of cardiomyocyte-

directed iPSCs from Jiang et al.,18 in which we know that cell

fate is largely determined by extrinsic factors and thus less by

clonal factors, we observed that marker fidelity decreased at

the high a levels, providing a negative biological control for

ClonoCluster. Our analysis demonstrates that in some systems,

the addition of clonal information to clustering generates clusters

that reduce the likely erroneous spreading of known cell types

across groupings and yields markers that better correlate with

known biology. Therefore, a thoughtful interrogation of the

experimental system, considering the character of the markers

identified in hybrid a clusters alongside the overall marker

strength with increasing a, will help to determine if the addition

of clonal information to clustering with ClonoCluster provides

biologically meaningful insight. We expect that hybrid clustering

will reveal important markers and groupings for many systems in
lization to incorporate clone barcode information

ructure for simulated data of 3,000 cells with four barcodes and six principal

een facets.

le large clone cluster in each.

ets are cells that are the only cells in the sample with their unique barcode.
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developmental biology and other areas where clonality also

seems to correlate with cell fate decisions that would be difficult

to obtain using transcriptome-based clustering alone. Recent

work byWang et al.27 developing the Co-Spar algorithm robustly

demonstrates the utility of incorporating clonal information

to identify early fate biases in progenitor cells. The Co-Spar

approach identifies clonal fates over multiple time points to

approximate the transition manifold and assign likely progenitor

states to even singly observed clones. This approach is powerful

for identifying early states that commit to known fates by relying

on data from multiple time points. In settings without such time

series data, ClonoCluster provides a tunable time-independent

approach to incorporating clonal and transcriptomic information

into fate identification. Further development of tools will be

needed as the number of experiments incorporating lineage

tracing in different contexts continues to grow.

A potentially important consideration is whether the system in

question is at an endpoint, or is still in the process of transition-

ing to its final state. It is in principle possible that the appropriate

relative weighting between transcriptome and clone informa-

tion may differ in these two contexts. Most likely, we think sce-

narios in which cell fate is determined by intrinsic states will

benefit the most from ClonoCluster. That property may hold

for both transitional or endpoint cell states, and hence will likely

need to be evaluated on a case by case basis. Indeed, in our

application of ClonoCluster to two transitional cell systems, he-

matopoiesis and directed cardio-myocyte differentiation, the

former was intrinsically determined and ClonoCluster was infor-

mative, whereas the latter showed extrinsic determination and

ClonoCluster was less informative. Consequently, we think that

‘‘twin’’ analysis (barcoded twin cells subjected to different local

environments11) are critical controls that should be performed

to determine the relative contributions of intrinsic and extrinsic

factors to help judgewhether ClonoCluster will be a useful algo-

rithm to apply.

What are the primary transcriptomic correlates with the rear-

rangements driven by incorporating clone information? We

found these correlates were primarily associated with transla-

tion, ribosomal activity, and components of the extracellular

matrix. These associations were found across diverse, indepen-

dent datasets, suggesting that it is a common source of varia-

tion across the transcriptomes of clones. There is a known asso-

ciation between ribosomal gene expression and overall gene

expression level that may be the source of its influence on cell

clustering.6 Extracellular matrix may indicate some memory of

initial microenvironmental differences that differ between

clones. This memory would persist independent of subsequent

microenvironmental differences, however, because ‘‘twin’’ ex-

periments have shown that the same clone exposed to two
Figure 5. Combining hybrid clustering and Warp Factor highlights clus

(A) UMAPs highlighting a single high a cluster with the indicated top marker gene (

with vemurafenib.11 Representations are stratified by a andWarp Factor. Gray poi

of the high a cluster (purple) or the contributing transcriptome clusters. Contributi

than 10 cells were present in the high a cluster of interest.

(B) UMAPS as in (A) for the day 2 in vitro hematopoiesis data12 highlighting high a

Sankey diagram depicting marker positivity at both clustering levels, nodes are an

transcriptome clusters that contributed fewer than 10 cells to the high a cluster.

12 Cell Genomics 3, 100247, February 8, 2023
different microenvironments post-drug have virtually identical

transcriptomes.11 It is thus also possible that extracellular ma-

trix proteins inherently reflect stable cell type or state identi-

fiers.28 It is also perhaps surprising that clonal information is car-

ried by these sets of factors that are not transcription factors,

which are more canonically thought of as the critical regulators

of cell type. That difference suggests that extracellular matrix

proteins may be more important for these subtle aspects of

cell type determination than generally appreciated.

In general, the problemwe describe here is in many ways anal-

ogous to whether species should be organized by genetic phy-

logeny or by phenotypic characteristics.29 In someways, catego-

rizing species by phenotype would be analogous to clustering

cells by their phenotype (i.e., transcriptome), whereas categoriz-

ing species by genetic phylogenywould be akin to clustering cells

by lineage. Early zoology, predating genetic information, catego-

rized species by observable phenotypes, but the addition of ge-

netic information quickly grew to be an important form of catego-

rization; by analogy, using clone information in cell clusteringmay

similarly alter our classifications of cell types.

Limitations of the study
Ultimately, further testing of the homogeneity in the functional

properties of cells within each cluster will be required to truly

determine what clustering methods most closely match biolog-

ical distinctions. Our studies did not reveal a reliable method to

identify which experimental systems have intrinsic determinants

of cell fate and therefore are most likely to yield more biologically

meaningful clusters with the addition of clonal information. For

now, we recommend an empiric approach to determine if the

addition of clonal information is useful by first identifying the res-

olution value that returns the desired number of clusters from

standard transcriptome-only clustering, and then plotting the

number of clusters returned with increasing a. As a approaches

1, the number of hybrid clusters approaches the number of

unique clone barcodes in the data. This visualization allows the

user to determine the maximum a value that the experimental

systemwill tolerate to generate a comparable number of clusters

to transcriptome-only clustering while incorporating lineage in-

formation. Analysis of marker fidelity or comparison to ground

truth data can be used to confirm that the a value produces

hybrid clusters that are biologically meaningful. Example code

to determine the optimal a value and an example protocol is pro-

vided in the ClonoClusterGitHub repository (https://github.com/

leeprichman/ClonoCluster/blob/main/Tutorial.Rmd; https://doi.

org/10.5281/zenodo.3369197.)

Furthermore, technology for reading out full-lineage data (as

opposed to just clone data) has nowbeen developed, often using

CRISPR-Cas9 genome editing to make mutations in the genome
ters with distinct markers in UMAP representations

COL6A1 and COL6A2) in different replicates and doses of WM989 cells treated

nts represent cells outside the high a cluster. Colors reflect the topmarker gene

ng transcriptome (a = 0) clusters were grouped as ‘‘small contributors’’ if fewer

clusters marked by the granulocyte-enriched markersMpo and Prtn3 (top) and

notated with top cluster markers. ‘‘Small contributors’’ indicates all contributing

https://github.com/leeprichman/ClonoCluster/blob/main/Tutorial.Rmd
https://github.com/leeprichman/ClonoCluster/blob/main/Tutorial.Rmd
https://doi.org/10.5281/zenodo.3369197
https://doi.org/10.5281/zenodo.3369197
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that can be read out by sequencing30–33 or imaging to generate

the full cellular family tree.33–36Our analysis did not address these

types of data, although it is relatively straightforward to adapt

ClonoCluster to these situations, inwhich one canweight the dis-

tance between cells by the relative phylogenetic distance. We

expect that full-lineage tracing with time series information rather

than the limited-resolution single time point data we explored will

increase in prevalence, and ClonoCluster and like methods will

need to adapt to this higher resolution setting.
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This paper https://github.com/leeprichman/ClonoCluster

(https://doi.org/10.5281/zenodo.3369197)

Seurat Satija et al., 201519 https://cloud.r-project.org/package=Seurat

WebGestaltR Liao et al., 201924 https://cran.r-project.org/web/packages/

WebGestaltR/index.html

data.table, entropy, magrittr, ggplot2, devtools Comprehensive R Archive

Network

https://cran.r-project.org/

Other

Analysis scripts, count matrices, barcode

matrices, and output (https://doi.org/10.5281/

This paper https://github.com/arjunrajlaboratory/

ClonoCluster_paper (https://doi.org/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Arjun

Raj (arjunraj@seas.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single cell RNA sequencing and barcode data for six datasets were compiled from multiple sources. ‘‘Low dose BRAF inhib-

itor’’ and ‘‘high dose BRAF inhibitor’’ indicate replicates of a monoclonal human melanoma cell line, WM989 A6-G3,14 trans-

fected with a barcode library and treated with 250 nM and 1mM vemurafenib respectively. ‘‘WM983B BRAF inhibitor’’ samples

indicates replicates of a vemurafenib-resistant monoclonal human melanoma cell line, WM983B E6-C614 transfected with a

barcode library and treated with 250 nM vemurafenib.11 ‘‘Paclitaxel-treated breast cancer cells’’ indicates replicates of amono-

clonal line, MDA-MB-231D4, derived from human breast cancer cell line transfected with a barcode library and treated with

1 nM paclitaxel, as previously described.11,37 ‘‘Cardio-directed iPSC’’ indicates a barcode-transfected induced pluripotent

stem cell line treated to drive cells toward a cardiomyocyte fate as previously described.18 Countmatrices, barcodingmethods,

and barcode assignments for these samples were generated as described.11,18 ‘‘In vitro hematopoiesis’’ samples indicate bar-

codedmurine hematopoietic stem cells differentiating in vitro, collected and sequenced at the day 2 time point whenmost cells

were labeled ‘‘undifferentiated’’ using known cell markers. Count matrices and barcode assignments were deposited byWein-

reb et al.12 and retrieved from the NCBI Gene Expression Omnibus at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE140802. Count matrices and barcodes for all datasets used in this study are available in the analysis repository on

GitHub at https://github.com/arjunrajlaboratory/ClonoCluster_paper (https://doi.org/10.5281/zenodo.7105982).

d Raw data and scripts for all analyses are available at https://github.com/arjunrajlaboratory/ClonoCluster_paper (https://doi.

org/10.5281/zenodo.7105982). ClonoCluster is open source and available under the GPL3 license at https://github.com/

leeprichman/ClonoCluster (https://doi.org/10.5281/zenodo.3369197), including worked examples, example data, unit tests,

and a Docker image.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Transcriptome and clone barcode integration with ClonoCluster
To integrate the transcriptome and clone barcode information, the shared nearest neighbors network graph is produced, using the

single cell RNA sequencing analysis R package Seurat.19 Briefly, gene counts are converted into 100 principal components using the

irlba package.38 k nearest neighbors in PCA space are identified and a network graph is constructedwhere cells are nodes and edges

between any two cells are givenweight equivalent to the jaccard index between shared nearest neighbors (defined below as J). For all

analyses, k was set to 20 and the graph was pruned of any edges with weight less than 1/15, consistent with Seurat defaults.

A size-normalized clone barcode network graph is also constructed where each cell is represented as a node, with edges drawn

between all cells with weights of 0 for cells that are not in the same clone cluster (i.e. do not share a barcode) or 1/n for cells that are in

the same clone cluster (i.e. do share a barcode), where n is equal to the total number of cells assigned to that barcode (size of the

clone cluster.) We found that size normalization is necessary to prevent the highly interconnected larger clone clusters from exerting a

dominant effect on graph modularity and final clustering compared to smaller clone clusters.

The transcriptome and clone graph edge weights are integrated using the following equation:

W = abðlin � JÞ+ J

WhereW is the final output edge weight between two cells, a is a chosen parameter ranging from 0 to 1, b is a chosen parameter from

0 to 1, lin is the value of the edge in the clone barcode graph {0,1/n} and J represents the edge weight in the transcriptome graph:

the jaccard index of shared nearest neighbors in transcriptome space. At a = 0, the edge weight between any two cells is therefore

equivalent to the transcriptome graph (J), and at a = 1 the edge weight is equivalent entirely to the clone barcode graph (lin).

b modifies the effect of step sizes in a, lower values of b increase the effect of a on final edge weight W at low a. For all datasets

and analyses, bwas set to 0.1. The combined graph with modified edge weights is then passed to the Louvain community detection

algorithm22 as implemented in Seurat to return cluster assignments.

Cluster assignments
Resolution for the community detection algorithmwas fixed for each sample, ranging between 0.6 and 1 across all nine replicates, with

an initial target of 8–20 clusters at a = 0. As a approaches 1, the number of clusters returned at fixed resolution approaches n, the num-

ber of unique clone barcodes present. Therefore, the ‘‘high a’’ level was identified by approximation of the a value at the inflection point

where the number of clusters rapidly increases and begins to reflect single clone clusters. The ‘‘lowa’’ level was definedas half the ‘‘high

a’’ value rounded to the nearest tenth. This gave the maximum number of clusters as 32 at the high a level in the Jiang et al.18 dataset.

Clone barcode to cluster correlation analysis and visualization
Sankey diagrams were generated using the ggalluvial R package. For Sankey diagrams inclusive of a = 1, the top 15 largest clone

clusters per sample are chosen for ease of visualization and limitation of discrete colors used. Unless otherwise specified, the com-

plete dataset is shown for Sankey diagrams. Cohen’s kwas computed at each a level per clone barcode for the hybrid cluster with the

largest proportion of the barcoded cells within it.

Cluster marker identification
Cluster markers were identified by receiver operating characteristic (ROC) using theROCR package.39 All genes present in the count

matrix were tested for classification of a cell within a cluster versus all other clusters combined. When cells are noted as ‘‘marker

positive’’, the threshold for positivity was identified from the point on the ROC curve with minimum Euclidean distance from

100% TPR and 0% FPR.

Reorganization marker and overrepresentation analysis
For each cluster of interest at a given a value, cells from each contributing cluster at the transcriptome level (a = 0) were compared to

all other cells from the contributing transcriptome cluster. ROC analysis was performed to determine the strength of genes in the

count matrix to classify cells from the contributing transcriptome cluster that reorganize to the a cluster of interest as long as the

two comparison groups contained at least 10 cells. The AUC from this analysis was termed the reorganization AUC or reorg-

AUC. Reorganization marker genes were defined as genes with reorg-AUC >80 (corresponding to a ‘‘large’’ effect size.)40 This strin-

gent threshold was chosen to eliminate potentially spurious markers and more accurately reflect the true biology, maximizing the

usefulness of downstream gene set level analyses. Each set of reorganizationmarkers for the paired hybrid a cluster and contributing

transcriptome (a = 0) cluster was used for overrepresentation analysis. Overrepresentation analysis is a gene set analysis approach

that identifies whether a given list of unranked differentially expressed genes is enriched for members of known gene sets represent-

ing biological processes or pathways, such as those from the Gene Ontology Consortium,41 compared to selection at random.When

a transcriptome cluster contributed in its entirety to an a cluster (i.e. the transcriptome cluster was a subset of the a cluster), the AUC

for overall cluster markers for the contributing transcriptome cluster was considered the reorg-AUC. Thresholds for marker positivity

for visualization were determined from the point on the ROC curve with minimum Euclidean distance from 100% TPR and 0% FPR.
e2 Cell Genomics 3, 100247, February 8, 2023
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Overrepresentation analysis was performed with the R package WebGestaltR.24 The search space included the Gene Ontology

Cellular Components and Molecular Function datasets.41 Significantly overrepresented gene sets were defined as those with

FDR <0.05. For visualization, heatmapswere created of themaximum log base 2 of the enrichment ratio for any cluster reorganization

in the sample.

Modified principal components and UMAP visualization
Uni-form manifold approximation and projection (UMAP) is a dimensionality reduction technique frequently used to visualize gross

trends in high dimensional single cell RNA sequencing data.25,42 Clustering assignments and associated markers computed from

principal component space are usually overlaid as well.6 To incorporate clone barcode information into the two dimensional

UMAP representation of data, we modified the principal components using a tunable parameter s according to the following

equation:

Ms = M � s

10
� ðM � MbÞ

WhereMs is themodified PCAmatrix passed to the UMAP algorithm,M is the PCAmatrix, s, Warp Factor, is a parameter from 0 to 10,

andMb is a matrix composed of the average value of the PCAmatrix per clone. At s = 0, the input to the UMAPwill be the PCAmatrix,

M. At s = 10, the input to the UMAP will be a matrix with the value of each principal component substituted for the corresponding

mean value per clone barcode,Mb, thus the only variation reflected in the UMAPwill be between clones (Figure S5B). The parameters

for UMAP as implemented in the uwot package were identical to the default settings of Seurat.19,42

QUANTIFICATION AND STATISTICAL ANALYSIS

Data manipulation and statistical analysis was performed in the R statistical computing language with the data.table, stats, ROCR,

WebGestaltR, and magrittr packages. Entropy was calculated with the entropy package using the Laplace method. Transcriptome

nearest neighbor graph construction and community detection was performed with the Seurat package. Data visualization used the

R packages ggplot2, pheatmap, ggalluvial, and VennDiagram. Global hypothesis testing was performed using the non-parametric

Kruskal-Wallis test with Bonferroni correction for multiple comparisons. Local testing was performed with pairwise Wilcox tests

with Bonferroni correction.
Cell Genomics 3, 100247, February 8, 2023 e3
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Figure S1, Related to Figure 1: � modi�es network graph edge weights to create Louvain clusters that
increasingly re�ect clone barcode assignments.
A. Output edge weight of the ClonoCluster model for graph edge weights between two cells for different
proportions of shared nearest neighbors in transcriptome space with �xed ß = 0.1.
B. Network graphs with modi�ed edge weights and cluster assignments at three � values for simulated data.



Figure S2, Related to Figure 1: Intrinsic vs extrinsic determinants of cell fate stratify the effect of � on clone-
cluster congruence.
A. Sankey diagrams for the 15 largest clone clusters in two samples across � values, a clonal melanoma cell line
treated with high dose (1µM) vemurafenib 1 1  with known intrinsic determinants of cell fate and directed
differentiation of induced pluripotent stem cells (iPSCs) towards a cardiomyocyte fate 1 8  with previously described
dominance of extrinsic determinants of cell fate.
B. Cohen’s � for interrater reliability for classi�cation of a cell by clone barcode and cluster assignment for the top
15 largest clone clusters across � values for the samples in (A).



Figure S3, Related to Figure 1: The number of clusters returned by community detection at �xed resolution
approaches the number of unique clone barcodes in the data as � approaches 1.
Plots showing the number of clusters returned by community detection at constant resolution with increasing �
in each dataset. At � = 1, the network graph is composed of like-barcoded cells (a clone cluster) connected only
to each other and community detection returns the number of unique clone clusters in the data as the number
of clusters.



Figure S4, Related to Figure 2:
Signi�cant marker turnover occurs
between transcriptome, low �, high �,
and clonal clusters.
Venn diagrams showing the number
and overlap of markers with
AUC > 0.70 for any transcriptome,
low �, high � or clone cluster.



Figure S5, Related to Figure 2: Top cluster marker
overall �delity is preserved across hybrid clusters
A. Heatmaps of AUC values for the union of all top
cluster markers at the transcriptome, low �, and
high � level.
B. Distributions of AUC values for the top marker per
cluster at zero, low, high, and maximum (� = 1) values
of � for the remaining samples not depicted in
Figure 2D (see Methods). “Global p” indicates the
p-value for the non-parametric Kruskal-Wallis test
with Bonferroni correction. When “global p” was less
than <0.05, pairwise Wilcox tests were performed
with Bonferroni correction. Annotations above boxes
indicate the corrected Wilcox test p-value compared to
� = 0 (n.s. - not signi�cant, * - p < 0.05, *** - p < 0.001). 



Figure S6, Related to Figure 4: Increasing Warp Factor, s, reduces the variation of principal component values
around clone barcode means.
A. Histograms colored by clone barcodes demonstrating the distribution of PC values for two principal
components for simulated data for 3,000 cells with four clone barcode assignments. Vertical dashed lines
represent the mean values for each clone barcode at s = 0, equivalent to the unmodi�ed PC means. At s = 10,
modi�ed PC values are equivalent to the assigned clone barcode means. Modi�ed PC values are then passed
to the UMAP implementation for visualization as in Figure 4.
B. Mean variation of all PCs in simulated data within and between clone barcodes strati�ed by values of s.



Figure S7, Related to Figure 5: Low � clusters reduce entropy of clustering for multiple hematopoietic cell types.
Laplace entropy was calculated for the distribution of known cell types in hematopoiesis data12 across
transcriptome-only clusters, low �, and high �. Entropy is shown in bits, error bars represent 95% con�dence
intervals using the Monte Carlo method with 1,000 samplings of 33% of the cells.
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