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Referees’ reports, first round of review 
  
Reviewer #1: My review is rather short since the manuscript is already in an excellent shape. The authors 
used a computationally costly but straightforward ABC approach to estimate the time and strength of 
selection based on frequencies reconstructions from ancient DNA from Europe. The main strength is that the 
authors clearly understand that it is ok if their arguably arbitrary cutoff of 1% from neutral simulations 
results in including false positives, because false positive occur randomly and will never create on their own 
the very impressive immune functional enrichments discovered by the authors. In this respect this work 
must be praised because it reveals the true extent of recent, pervasive pathogen-driven adaptation. 
Previous approaches with ancient DNA that tried to reduce false positives at all cost did it at the expense of 
genome-wide statistical power and forgot the fact that false positives will not occur at specific functions in 
the genome. This is an extremely common mistake that is made repeatedly and has led some to erroneously 
conclude that recent positive selection was rare. This manuscript provides very strong, biological, empirical 
evidence that it is not the case and that very clear functional immune patterns appear once reaching a 
better statistical compromise between specificity AND power. It might be the case that other reviewers will 
complain about false positives as they often do. Again, false positives do not magically know where loci with 
immune functions are located in the genome, and thus cannot create the very strong immune enrichments 
discovered by the authors. Saying otherwise is to make a very severe, basic statistics error. 
 
I have a few technical concerns that I believe the authors will be able to address. 
 
P6L4. Please mention that you check statistical significance of enrichment using a single gene per locus to 
control for gene clustering. 
 
P6L28. "This result cannot be explained by differences in detection power, as our approach has a higher 
power for variants with selection beginning at earlier timepoints". Is this true if the selection started at 
earlier time points but then remained only for a few thousand years? Here I am wondering if the apparent 
higher number of more recent selection candidates could instead reflect the fact that pathogen selective 
pressures are overall short-lived and that results in less power to detect older events that were not 
sustained all the way to close to the present. The authors should try if possible to test it, and if not possible 
to discuss the fact that they cannot exclude the possibility. One way to look at it would be to first use the 
population simulations to estimate the power to detect selection events that started early but where 
selection lasted only for a few thousand, maybe around 3,000 years since it seems to be the average age of 
a lot of selection events found by the authors. Second, the authors could look at actual frequency 
trajectories of older selection events that they detected to see if some start with an increase early but then 
plateau after a few thousand years. 
 
P31L7. "Taking LD and derived allele frequency (DAF) (r 2 32 < 0.6) into account, we found that candidate 
variants were enriched in cis-eQTLs in whole blood, particularly for strong eQTL associations". This is a very 
interesting and compelling result, but given that eQTLs tend to be clustered together even in rather large 
regions in LD, I would like to know more about what the authors mean by taking LD into account, and I 
would like to know if this means or not that clustering of eQTLs was taken into account since it will increase 
the null expected variance for the encrihment. Can the authors do as they did when they used a single gene 
per locus to estimate gene clustering-aware enrichments? 
 
In the Methods you need to give explicitely the population sizes simulated at different times. 



 

 

 
The authors need to give more details about what recombination patterns were simulated for the ABC. 
Uniform recombination? To what level? Recombination patterns reproducing the known recombination 
patterns at a given tested locus? This requires much more detail about what was done and about how 
having simulated recombination patterns that differ from the real recombination map could have created 
biases. 
 
 
 
Reviewer #2: M&M 
 
Empirical p value computation 
 
A) You mention that the significance thresholds are influenced by the frequency of the variants and, 
therefore, you group the markers according to certain frequency bins. However, despite your sentence "We 
identified the bin to which a variant belonged by calculating, for each variant, the CI for allele frequency 
estimation at each epoch, according to an approximation to the normal distribution of the 95% binomial 
proportion CI."; it is still unclear how the boundaries of these frequency bins were defined and why the bins 
are not consistent between positive ([0.025-0.2]; [0.2-0.6] and [0.6-0.8]) and negative ([0.025-0.05]; 
[0.05-0.1]; [0.1-0.2] and [0.2-0,8]) selection analyses. Furthermore, according to the explanation provided, 
one would expect 1) the existence of different frequency bins in each epoch (apart from those used). 2) It is 
possible that for a given frequency bin different sizes (number of members) might be expected for each 
epoch... and, consequently, different null distributions that might be appropriate for normalization 
purposes..... 
How were these issues addressed to avoid biasing the results? 
 
B) Based on your text: "We ended up with 21,129 candidate variants for positive selection, and 27,591 for 
negative selection (psel <0.01)", it appears that your results showed an inflated number of significant 
markers. Could this also be in part due to the lack of multiple testing correction?, because it appears that it 
has not been applied. 
 
C)You say that "approximated the empirical null distribution with a known theoretical distribution, to 
improve discrimination between very small p values.". Why did you not use this approach to create the 
frequency intervals or their quantiles to identify possible significant markers? 
 
Time of selection onset for positively selected loci 
A) One of your goals here was, as you put it, "We investigated whether the frequency trajectories based on 
both ancient and modern DNA samples resulted in biased T estimations, due to differences in genotype 
calling between datasets" However, further on you say: "We thus repeated the ABC estimation for frequency 
trajectories, but we excluded the last epoch corresponding to current frequencies." Given all this, it is not 
clear how you treated the modern data set, since, according to the text, the last epoch was removed: 
"current" frequencies, i.e. those from modern DNA samples. I would appreciate an extended explanation of 
the treatment of the modern data and why the use of pseudo-haplotypes instead of full SNP-calls was not 
investigated as potential T estimate bias. 
 
 
Results 
 
Genetic adaptation has occurred principally since the Neolithic period 
B) Typically, for Figure 4 (A) one would expect to see significant points above a certain p-value threshold 
(ideally marked as a line on the graph). However, the points marked as significant are at the bottom with a 
-log10(p) close to 0 (meaning a p-value ≈ 1). The same unexpected effect is observed in the selection 
coefficient estimates. Therefore, this graph is counterintuitive, suggesting that the significant markers are 
not significant and are not the ones with the highest selection coefficient (in this case it should be placed as 
the lowest since it is negative selection). Could you explain why this issue and/or find a way to better 
display your results. 
 
Figure 3B, the timing and the ancestral components here cannot fit. In the period 10000-7500 BP there are 



 

 

no individuals north of the Alps in Western Europe that carry an Anatolian genetic component. There seems 
to be a general problem with the time slices presented here. 

  

 
Authors’ response to the first round of review 
Reviewer #1: 
My review is rather short since the manuscript is already in an excellent shape. The authors 
used a computationally costly but straightforward ABC approach to estimate the time and 
strength of selection based on frequencies reconstructions from ancient DNA from Europe. 
The main strength is that the authors clearly understand that it is ok if their arguably arbitrary 
cutoff of 1% from neutral simulations results in including false positives, because false 
positive occur randomly and will never create on their own the very impressive immune 
functional enrichments discovered by the authors. In this respect this work must be praised 
because it reveals the true extent of recent, pervasive pathogen-driven adaptation. Previous 
approaches with ancient DNA that tried to reduce false positives at all cost did it at the 
expense of genome-wide statistical power and forgot the fact that false positives will not 
occur at specific functions in the genome. This is an extremely common mistake that is made 
repeatedly and has led some to erroneously conclude that recent positive selection was rare. 
This manuscript provides very strong, biological, empirical evidence that it is not the case and 
that very clear functional immune patterns appear once reaching a better statistical 
compromise between specificity AND power. It might be the case that other reviewers will 
complain about false positives as they often do. Again, false positives do not magically know 
where loci with immune functions are located in the genome, and thus cannot create the very 
strong immune enrichments discovered by the authors. Saying otherwise is to make a very 
severe, basic statistics error. 
 
We thank the Reviewer for their positive appraisal and their comments, which have been all 
considered during the revision and have considerably improved the clarity of the manuscript. 
Point by point responses are provided here below. 
 
I have a few technical concerns that I believe the authors will be able to address. 
P6L4. Please mention that you check statistical significance of enrichment using a single gene 
per locus to control for gene clustering. 
 
RESPONSE: As suggested by the reviewer we have now rephrased the sentence as follows: 
“These 89 loci were also enriched in a curated list of immunity genes whether we considered 
all candidate genes (OR = 1.6, p = 8.0 Å~ 10-3) or, to account for gene clustering, a single 
gene per locus (28/89 loci; OR = 1.6, p = 0.049)” (p. 6 l. 8-9 of the revised manuscript). 
 
P6L28. "This result cannot be explained by differences in detection power, as our approach 
has a higher power for variants with selection beginning at earlier timepoints". Is this true if 
the selection started at earlier time points but then remained only for a few thousand years? 
Here I am wondering if the apparent higher number of more recent selection candidates could 
instead reflect the fact that pathogen selective pressures are overall short-lived and that results 
in less power to detect older events that were not sustained all the way to close to the present. 
The authors should try if possible to test it, and if not possible to discuss the fact that they 



 

 

cannot exclude the possibility. One way to look at it would be to first use the population 
simulations to estimate the power to detect selection events that started early but where 
selection lasted only for a few thousand, maybe around 3,000 years since it seems to be the 
average age of a lot of selection events found by the authors. Second, the authors could look 
at actual frequency trajectories of older selection events that they detected to see if some start 
with an increase early but then plateau after a few thousand years. 
Response to Reviewers 
2 
RESPONSE: We agree with the Reviewer that transient selection is a very likely scenario in 
the context of infectious diseases. Following their advice, we have now assessed whether such 
transitory episodes of selection may partly explain the observed higher number of recent 
selection events (p. 7, l. 5-9, Figures S3C-D). To this end, we first simulated 80,000 
positively-selected variants (0.01< s < 0.05) for which selection started at time Tstart, sampled 
from a uniform distribution bounded by 0 and 10,000 years, but lasting for only 3,000 years 
(i.e., selection ends at Tend = max(0, Tstart – 3,000)). We then used these simulations as 
pseudoempirical data and tested if short-lived events of selection were detectable using our ABC 
approach assuming continuous, ongoing selection. This analysis showed that 49.8% of the 
detected selective events have an estimated onset of selection before the start of the Bronze 
Age, and the remaining 50.2%, after the start of the Bronze Age (new Figure S3D). Since the 
Bronze Age spans half of the study timeframe, these results indicate that we have the same 
power to detect transient selection events starting before or after the beginning of the Bronze 
Age. Therefore, our new analysis indicates that the excess of post Bronze Age events of 
positive selection is not due to reduced power to detect short-lived events of selection 
starting in the Neolithic (e.g., in the case of epidemics caused by extinct pathogens). 
 
Furthermore, to assess whether old short-lived events of selection have T estimates biased 
downwards, we simulated 30,000 positively-selected variants (0.01< s < 0.05) for which 
selection started at Tstart, randomly chosen between 6,000 and 10,000 years ago, and, once 
more, has lasted for only 3,000 years. We show that the estimated onset of selection is not 
biased downwards and is consistent with the simulated time of onset of selection (new Figure 
S3C). Finally, we show that most detected variants under positive selection are not plateauing 
after a first increase in frequency in the study timeframe. On average, our top 89 variants 
(Table S2) show constant increases in frequency with time (mean and 95% CI shown in the 
left panel of the new Figure S3B), even though for the few events of selection dating to the 
Neolithic (including for example LCT and SLC45A2), the relative increase seems to slow 
down slightly over the last two millennia (mean and 95% CI shown in the right panel of the 
new Figure S3B). This suggests that most of these variants have increased in frequency until 
recently, and that their frequency trajectory is consistent with the estimated time of onset of 
selection. 
 
In the revised Results section ‘Genetic adaptation has occurred principally since the Neolithic 
period’ (p. 7, l. 5-9), we now report that the higher number of selection candidates after the 
Bronze Age is not due to a lower detection rate of old short-lived events of selection, and 
briefly discuss this topic in the Discussion (p. 14 l. 1-2). We have also added the new 
supplementary panels B-D to Figure S3 and changed the legend accordingly. 
 



 

 

P31L7. "Taking LD and derived allele frequency (DAF) (rÇ < 0.6) into account, we found that 
candidate variants were enriched in cis-eQTLs in whole blood, particularly for strong eQTL 
associations". This is a very interesting and compelling result, but given that eQTLs tend to be 
clustered together even in rather large regions in LD, I would like to know more about what 
the authors mean by taking LD into account, and I would like to know if this means or not 
that clustering of eQTLs was taken into account since it will increase the null expected 
variance for the enrichment. Can the authors do as they did when they used a single gene per 
locus to estimate gene clustering-aware enrichments? 
 
RESPONSE: We agree with the Reviewer that a clarification is needed regarding the 
approach used to account for LD, when testing for enrichments. As stated in the methods 
section ‘Enrichment analyses for positively selected loci’: “We used independent variants to 
determine enrichment, by pruning variants in LD with the plink command --indep-pairwise 
100 10 0.6 --maf 0.01, on our aDNA dataset, thus removing variants with r2 > 0.6 in 100 kb 
windows, using sliding windows of 10 variants. For the HLA region, considered to lie 
between hg19 coordinates 27,298,200 and 34,036,446 of chromosome 6, we used a more 
conservative LD pruning method considering 1,000 kb rather than 100 kb windows (plink 
command --indep-pairwise 1000 100 0.6 --maf 0.01), for variants with a minor allele 
frequency (MAF) >1%. Where indicated, we also matched the DAF distribution of the pruned 
dataset to that of the studied group of variants (e.g., eQTLs or GWAS variants), using 5% 
frequency bins.” Therefore, we tested enrichment by determining, among independent 
variants in the aDNA data defined either as candidates for selection (psel <0.01) or not 
(psel ≥ 0.01), the proportion of these independent variants that are also significantly 
associated with gene expression. As a result, the contingency table used to test for 
enrichment does not include eQTL variants in strong LD. 
 
In addition to this section in the Methods, we have now clarified in the main text how we 
accounted for LD among eQTL variants (p. 8 l. 5-7). Furthermore, we have added to the 
revised Methods section ‘Enrichment analyses for positively selected loci’ details about the 
eQTLGen consortium used to retrieve whole blood cis-eQTLs for this analysis (p. 26 l. 14- 
16). 
 
In the Methods you need to give explicitly the population sizes simulated at different times. 
 
RESPONSE: We thank the Reviewer for pointing this out. Although we stated that simulated 
sample sizes per epoch are equal to those of the observed aDNA data (Methods section 
‘Allele frequency trajectories across epochs’), we did not explicitly mention that our 
simulations reproduced the same sample sizes per epoch. 
 
In the revised text, we have now clarified in the Methods section ‘Forward-in-time 
simulations’ (p. 22 l. 11-13) that we have simulated the same sample sizes per epoch as in the 
observed data, i.e., 729 samples for the Neolithic, 893 for the Bronze Age, 319 for the Iron 
Age, 453 for the Middle Ages and 503 for the present epoch. 
 
More generally, we also agree that we should report all the parameters of the simulated 
demographic model, including effective population sizes. Thus, we have now included a new 



 

 

supplementary table reporting all simulated demographic parameters, including effective 
population sizes (new Table S10), that we cite p. 21 l. 26. 
 
The authors need to give more details about what recombination patterns were simulated for 
the ABC. Uniform recombination? To what level? Recombination patterns reproducing the 
known recombination patterns at a given tested locus? This requires much more detail about 
what was done and about how having simulated recombination patterns that differ from the 
real recombination map could have created biases. 
 
RESPONSE: We estimated selection parameters and tested for selection at each variant by 
using only the temporal trajectory of allele frequencies for the corresponding variant. 
Therefore, our ABC approach does not require information from nearby sites. Since it is 
unnecessary in our analysis and computationally costly to simulate linked variation forward in 
time, variants were simulated one at a time. 
 
In the revised text, we have now clarified in the Methods section ‘Forward-in-time 
simulations’ (p. 22 l. 16-18) that variants were simulated one at a time. 
 
Reviewer #2: 
We thank the Reviewer for their comments and suggestions, which have been all considered 
during the revision and have considerably improved the quality and clarity of the manuscript. 
Point by point responses are provided here below. 
M&M 
Empirical p value computation 
A) You mention that the significance thresholds are influenced by the frequency of the 
variants and, therefore, you group the markers according to certain frequency bins. However, 
despite your sentence "We identified the bin to which a variant belonged by calculating, for 
each variant, the CI for allele frequency estimation at each epoch, according to an 
approximation to the normal distribution of the 95% binomial proportion CI."; it is still 
unclear how the boundaries of these frequency bins were defined and why the bins are not 
consistent between positive ([0.025-0.2]; [0.2-0.6] and [0.6-0.8]) and negative ([0.025-0.05]; 
[0.05-0.1]; [0.1-0.2] and [0.2-0,8]) selection analyses. Furthermore, according to the 
explanation provided, one would expect 1) the existence of different frequency bins in each 
epoch (apart from those used). 2) It is possible that for a given frequency bin different sizes 
(number of members) might be expected for each epoch... and, consequently, different null 
distributions that might be appropriate for normalization purposes..... 
How were these issues addressed to avoid biasing the results? 
 
RESPONSE: We agree with the Reviewer that this section can benefit from more detailed 
explanations. In brief, we grouped variants in different bins of derived allele frequency and 
obtained, for each bin, the null distribution (without selection) of sl, i.e., the lower bound of 
the confidence interval of the positive (and negative) selection coefficient s. We used these 
null distributions to test for positive (and negative) selection. The rationale for using bins of 
frequency that differ between negative and positive selection is that the estimation accuracy 
for the s parameter and, therefore, the power to detect selected alleles depends on the mode of 
selection (see differences between negative and positive selection in new Figure S2B) and on 



 

 

allele frequency (see differences between left and right panels of Figures S1 and S2B-C). For 
example, low-frequency variants under negative selection are hard to identify as they can be 
confused with low-frequency neutral variants dropping in frequency by chance. To calibrate 
bin boundaries, we therefore used cross-validation to assess the accuracy of the estimation 
(Figure S1) and verified that accuracy was good (high correlation between true and estimated 
values, r2 > 0.8). We also excluded variants in the [0-0.025] bin, because estimation accuracy 
was poor for this bin, in both selection scenarios. Then, for each frequency bin, we computed 
the distribution of sl from simulated neutral variants. To obtain the null distribution from 
which to derive significance thresholds, the simulated neutral variants were matched to the 
allele frequency spectrum of the aDNA dataset at each bin, to closely reproduce the empirical 
data (null distributions were obtained from a similar [same order of magnitude] number of 
simulations across frequency bins). We have now clarified further our approach in the 
Methods section. 
 
Furthermore, we have conducted new analyses to justify further our approach. These analyses 
show that (i) using less frequency bins reduces power to detect selection and (ii) using the 
same number of bins with different boundaries does not affect results. Regarding the 
aforementioned point (i), for the analysis of negative selection, we have now computed type I 
errors using either a single significance threshold for all tested variants (without using 
frequency bins) or various thresholds of significance computed from each frequency bin, as 
done in this work (see new Figure S2D). We show that, when using a single significance 
threshold, type I errors are strongly inflated for low frequency bins, whereas they are 
well calibrated at different nominal values when using significance thresholds by 
frequency bins. 
 
Regarding the aforementioned point (ii), we have estimated power by shifting the boundaries 
of our frequency bins. For positive selection, instead of using [0.025-0.2]; [0.2-0.6] and [0.6- 
0.8], we have now used [0.025-0.1]; [0.1-0.5] and [0.5-0.8]. We found no differences in 
power to detect positive selection between the two analyses (new Figure S2C). Furthermore, 
we obtained very similar Manhattan plots when using different frequency bin boundaries on 
the empirical data (Figure 1A below). The overlap of positive selection candidates between 
the two analyses (highlighted loci in the Manhattan plots with a black contour) is high, ~80% 
(78/102). Finally, we performed a similar analysis for negative selection, by shifting bin 
boundaries from [0.025-0.05]; [0.05-0.1]; [0.1-0.2]; [0.2-0.8] to [0.035-0.065]; [0.065-0.115]; 
[0.115-0.3]; [0.3-0.8]. By doing so, we found 49 out of the 50 highlighted variants in Figure 4 
and only one additional variant (see Figure 1B below). These results demonstrate the 
insensitivity of our method to the definition of frequency bin boundaries. 
 
In the revised Methods section ‘Empirical p value computation’, we have now added several 
clarifications regarding our rationale and how frequency bins were defined (p. 23-24 l. 32- 
33;1-18), as well as included the new panels C and D to Figure S2 (cited in p.5 l. 13-15). 
These new panels show that power remains the same when shifting the boundaries of 
frequency bins and that type I errors are well calibrated for the frequency bin boundaries used, 
but not when reducing the number of bins. In addition to statistical power for positive 
selection, we have now included the power for negative selection in the updated Figure S2B. 
 



 

 

Figure 1: Comparison of Manhattan plots for different frequency bin boundaries 

 

 
B) Based on your text: "We ended up with 21,129 candidate variants for positive selection, 
and 27,591 for negative selection (psel <0.01)", it appears that your results showed an inflated 
number of significant markers. Could this also be in part due to the lack of multiple testing 
correction?, because it appears that it has not been applied. 
 
RESPONSE: The reviewer is correct in that we found a larger number of significant markers 
for both positive and negative selection than expected under the null hypothesis of no 
selection. Indeed, if all variants were neutral, 1% of the tested variants would be expected to 
have a p value <1% (psel < 0.01), while we find ~ 3% (21,129/712,344) of SNPs with a 
significant signal of positive selection. These results suggest either an uncontrolled bias (i.e., 
unaccounted demographic changes) or the presence of true signals. In the latter case, we 
expect that ~70% of our significant signals are likely due to selection, a scenario supported by 
the fact that we replicate previously detected loci under selection (Table S1). 
 
To exclude that the demographic model used to obtain null distributions is causing this signal, 
we conducted a battery of enrichment analyses (carefully accounting for LD). We found an 
enrichment of positive selection signals among missense mutations, whole blood cis-eQTLs 
(Figures 2A-B) and several immune-related traits (Figures 2C-D), an unlikely observation if 



 

 

the 3% of significant markers were only false positives. We have also included a new 
supplementary table showing enrichment of missense and low-frequency variants among 
candidate negatively-selected variants (new Table S6). Importantly, the loci detected to be 
under positive selection by our method include the 12 loci previously shown to be subject to 
positive selection in Europe (Mathieson et al., Nature 2015). Together, these results provide 
empirical evidence that variants with psel < 0.01 are enriched in true positives. 
 
To further address the Reviewer’s concern, we now show QQ-plots for the neutral and 
observed distributions of the lower bound of the confidence interval of the positive (and 
negative) selection coefficient (sl), used to detect significant markers (see new Figures S2EF). 
Similarly to QQ-plots of p values, these plots enable the detection of biases (i.e., 
systematically larger observed sl values, relative to neutral values) or the presence of true 
positives (i.e., sl observed values larger than expected in the right tail of the distribution only). 
This analysis shows the absence of systematic biases and indicates instead the presence of 
true positives. Finally, we have now determined how many variants show a significant signal 
of positive selection, when applying a Bonferroni correction (SNPs with psel < 10-7). Again, 
we observed an excess of significant SNPs, even after excluding SNPs in LD and keeping the 
lowest p value in each detected regions: 3 SNPs out of 712,344 remain significant after 
multiple testing correction (the red dots with psel < 10-7 in the Figure 1 above), whereas 
712,344 Å~ 10-7 = 0.07 ≈ 0 is expected. 
 
In the revised Results section ‘Searching for the footprints of time-dependent negative 
selection’, we have now included a new supplementary table showing the enrichment of 
negative selection signals in missense and low-frequent variants (Table S6; p. 11 l. 17). 
Furthermore, we have included additional panels to Figure S2 (E and F) showing neutral and 
observed sl distributions for both positive and negative selection. These panels are now cited 
in revised main text (p. 5 l. 27 and p. 11 l. 14). 
 
C) You say that "approximated the empirical null distribution with a known theoretical 
distribution, to improve discrimination between very small p values.". Why did you not use 
this approach to create the frequency intervals or their quantiles to identify possible 
significant markers? 
 
RESPONSE: We agree with the Reviewer that using a known theoretical null distribution to 
create the frequency intervals or their quantiles could have been an alternative approach to 
test for significance. However, in this study, we used an ABC approach that allows both 
parameter estimation and testing for selection, throughout the use of null distributions of the 
parameter estimates (here sl) obtained by simulations assuming no selection. Our approach 
has three main advantages: 
- First, ABC enables the estimation of the selection parameters, which is a major aim of this 
study. Using ABC, we systematically estimate the age of selection and show an enrichment of 
positive selection events postdating the beginning of the Bronze Age. We also provide formal 
estimations of the intensity and the age of negative selection at many variants across the 
genome. These novel results would not have been achieved using the statistical approach 
proposed by the Reviewer. 
- Second, ABC enables to account for uncertainty in the parameter estimation, a key step to 



 

 

properly assess selection significance. Indeed, powered by extensive simulations and the use 
of nuisance evolutionary parameters, our null distribution also accounts for the uncertainty on 
the recent European demographic history. 
- Finally, this ABC approach uses five time points across time, leading to a more 
informative analysis than any using only two time points. 
 
For all these reasons, we favored ABC, even though this approach is known to be 
computationally intensive. Of note, we did fit a theoretical distribution on the distribution of 
sl, estimated by ABC, but only for practical considerations. Indeed, the empirical p values 
derived from sl (psel) are bounded by a minimum value dependent on the number of 
simulations conducted to estimate the empirical null distribution. Conversely, fitting a 
theoretical distribution to the empirical null distribution allows to discriminate between small 
p values and enables more direct comparisons of our results with previous approaches using 
theoretical distributions (Mathieson et al., Nature 2015) (Figure 1A). 
 
As the Reviewer can appreciate in Figure 1A and Figure 4A, p values might slightly differ 
when using the approximate theoretical and empirical null distributions. Thus, as suggested 
by the Reviewer in a following comment, we have now updated these two figures in the 
revised version of the manuscript (see answer to the corresponding comment for details). 
 
Time of selection onset for positively selected loci 
A) One of your goals here was, as you put it, "We investigated whether the frequency 
trajectories based on both ancient and modern DNA samples resulted in biased T estimations, 
due to differences in genotype calling between datasets" However, further on you say: "We 
thus repeated the ABC estimation for frequency trajectories, but we excluded the last epoch 
corresponding to current frequencies." Given all this, it is not clear how you treated the 
modern data set, since, according to the text, the last epoch was removed: "current" 
frequencies, i.e. those from modern DNA samples. I would appreciate an extended 
explanation of the treatment of the modern data and why the use of pseudo-haplotypes instead 
of full SNP-calls was not investigated as potential T estimate bias. 
 
RESPONSE: We thank the reviewer for pointing this out, and we realize that our previous 
explanations might have been unclear. We used the 503 unrelated European samples of the 
1000 Genomes project to obtain current frequency estimates for each variant of the aDNA 
dataset. For the present epoch, allele frequency estimates were thus obtained from diploid 
data. Consistently, to obtain current frequency estimates in our simulations, we simulated 503 
diploid European individuals at the last generation of the simulated population and obtained 
frequency estimations from them. In contrast, as frequency estimations for past epochs were 
obtained from publicly available pseudo-haploid aDNA data 
(https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypespresent- 
day-and-ancient-dna-data), frequency estimations for the simulated aDNA samples 
were obtained by computing allele frequencies from the random sampling of one chromosome 
per individual, mimicking pseudo-haploid data. This being said, the rationale for testing 
whether the combination of modern and aDNA can lead to T estimation biases is not due to 
the combination of allele frequencies obtained from pseudo-haploid and diploid data, as 
explained below, but to the fact that the 1000 Genomes project dataset and the aDNA dataset 



 

 

were processed with different pipelines, which may induce biases in the estimated allele 
frequency trajectories. One example is how variants near indels are called (see Methods 
section ‘Variant filtering’ and Table S9). To test whether such differences in genotype calling 
pipelines lead to T estimation biases, we verified that removing the present epoch (i.e., current 
frequencies from 1000 Genomes project) in our ABC approach does not affect the estimation 
of T (see new Figure S3E). As we find no significant differences, we conclude that onsets of 
selection are estimated similarly using either the aDNA dataset alone or in combination with 
modern DNA data. 
 
With respect to the second part of the Reviewer’s comment, we would like to clarify that we 
have actually tested the use of pseudo-haploid data as a potential source of bias in T and s 
estimation, but we agree with the Reviewer that we should have explicitly discussed these 
results in the manuscript. Indeed, we have compared T and s ABC estimates from 
pseudoempirical data with their true values, by cross-validation (Figure S1). We simulated the 
pseudo-empirical data by sampling diploid individuals at their radiocarbon dates and 
generated pseudo-haploid data by sampling one allele at each locus, to closely reproduce the 
observed pseudo-haploid data used in this study (see Methods section ‘Forward-in-time 
simulations’). If pseudo-haploid data would bias T or s estimates, we would expect the ABC 
estimation to be biased when comparing true to estimated values. However, cross-validation 
tests (Figure S1), power analyses to detect selection (new Figure S2B-C) and type I error 
estimates (new Figure S2D) based on these pseudo-empirical data show that parameter 
estimation is accurate and unbiased and that our power to distinguish selection from neutral 
processes is substantial. In addition, when simulating 100 sets of 89 independent variants 
(pseudo-empirical data) using a uniform T distribution, and matching the allele frequencies 
and selection strengths of each of the 89 positively selected variants detected in our analysis, 
we show that the resulting 100 distributions of 89 T ABC estimates did not exhibit an excess 
of low T estimates (Figure S3). Collectively, our results clearly show that the use of 
ancient pseudo-haploid data did not bias T or s estimation and thus, they cannot explain 
the observed excess of selection events postdating the beginning of the Bronze Age. 
 
Following the reviewer’s comment, we have now explicitly mentioned in the revised section 
‘Genetic adaptation has occurred principally since the Neolithic period’ of the main text that 
no intrinsic methodological bias is observed due to the nature of the data used (p. 7 l. 4-5). 
We have also added a new section in the revised methods called ‘Simulation-based evaluation 
of the ABC approach’ in which we carefully detail the analyses that were conducted assessing 
the performance of our ABC approach (p. 22-23 l. 33;1-9). 
 
Results 
Genetic adaptation has occurred principally since the Neolithic period 
B) Typically, for Figure 4 (A) one would expect to see significant points above a certain pvalue 
threshold (ideally marked as a line on the graph). However, the points marked as 
significant are at the bottom with a -log10(p) close to 0 (meaning a p-value ≈ 1). The same 
unexpected effect is observed in the selection coefficient estimates. Therefore, this graph is 
counterintuitive, suggesting that the significant markers are not significant and are not the 
ones with the highest selection coefficient (in this case it should be placed as the lowest since 
it is negative selection). Could you explain why this issue and/or find a way to better display 



 

 

your results. 
 
RESPONSE: We thank the Reviewer for pointing this out and agree that Figure 4A can be 
confusing, as it is not meant to highlight the most negatively-selected variants among all 
variants. Instead, Figure 4A highlights negatively-selected variants that (i) have a psel < 0.01, 
(ii) are missense variants, and (iii) are located at conserved positions of the genome (GERP > 
4), which represent only 0.16% of the tested variants. The rationale of this conservative 
approach was to find candidate pathogenic variants, so that we restricted our analysis to 
variants predicted to affect proteins. This being said, the reason why some p values have - 
log10(p) < 2 (i.e., p > 0.01) is that we have used a theoretical approximation of the empirical 
null distribution to estimate p values. While this approximation allows to discriminate well 
between low p values, it does a worse job for less significant p values as the fit is better at the 
tail of the distribution. Thus, an empirical p value of ~ 1% can be falsely transformed into a p 
value slightly above 1% using the theoretical distribution. To address the Reviewer’s 
comment, we have now modified Figures 1A and 4A to represent the minimum between the 
p value obtained from the empirical null the distribution and that obtained from the theoretical 
approximation. We have also added a dashed line at -log10(p) = 2, indicating that variants 
above that line have a p value < 0.01. 
 
In addition to changes in Figure 1A and Figure 4A, we have also added new experimental 
data to our work. As the Reviewer mentioned, our candidate pathogenic negatively-selected 
variants are not among the most significant ones so one might wonder about their clinical 
relevance. We have thus tested, in addition to the tested TYK2 P1104A and LBP D283G, the 
IL23R R381Q and TLR3 L412F variants, which we already speculated to be associated to 
immune phenotypes in the Discussion section. Now, 4 out of the 6 detected candidate 
pathogenic variants in this work have been tested experimentally. By combining 
overexpression system models, the use of patient cells and RNA-sequencing techniques, we 
tested the impact of these variants on immune-related pathways and confirmed that they 
impair either the expression and/or the function of the targeted genes, suggesting an overall 
impact on immunity and infection. 
 
Following the Reviewer’s suggestions, we have now modified Figures 1A and 4A as 
explained above. Furthermore, we have included new experimental data for variants IL23R 
R381Q and TLR3 L412F in the Results section (p. 12-13 l. 15-32;1-15), and modified the 
corresponding Methods (p. 30-31 l. 6-34;1-28) and Discussion sections (p. 14 l. 22-32) 
accordingly, as well as updated Figure 5 and the corresponding legend. 
 
Figure 3B, the timing and the ancestral components here cannot fit. In the period 10000-7500 
BP there are no individuals north of the Alps in Western Europe that carry an Anatolian 
genetic component. There seems to be a general problem with the time slices presented here. 
 
RESPONSE: We thank the Reviewer for noticing this issue. Indeed, there are no individuals 
north of the Alps in Western Europe who carry the Anatolian genetic component more than 
7.5 kya. The only individuals with such a component and within such a timeframe are from 
Turkey (n=39), Bulgaria (n=12), Croatia (n=3), Greece (n=2), Italy (n=4), Hungary (n=8), 
North Macedonia (n=1), Romania (n=1) and Serbia (n=2), as can be seen from Table S8. This 



 

 

figure was made with the ‘bleiglas’ package of R version 3.6.2, which provides smooth 
estimates (in this case of the PRS) and accounts for uncertainty in the age and location of the 
samples by considering the age and geographic location of each individual as normal random 
variables with means given by the provided values and standard deviations estimated from the 
data. As the algorithm iterates over different values of such distributions, it obtains smooth 
estimates of the Crohn’s Disease polygenic score over time and space. This approach is useful 
as it accounts for the inherent uncertainty in the estimates of the parameters of the aDNA 
samples. However, we made a mistake and we thank again the reviewer for pointing this out. 
Indeed, we took the individual’s age and geographic location of one of these iterations instead 
of taking the actual observed values. For example, one of the samples displayed in France in 
the 7,500-10,000 ya panel is actually subject ‘CHA001~merged’ which is from Spain and 
dates back to 7,127 ya (Table S8). 
 
In the revised Figure 3B, we now display the estimated age and known geographic location 
of each sample, so that the figure is consistent with the observed data. 
 
Editor’s comments complementing those of Reviewer 2: 
 
I also want to provide a slightly edited version of reviewer’s 2 comments for you to address as 
I don’t think all of these aspects were relayed in their review: 
 
There is the problem that the authors work with pseudo-haplotype calls, which allow an 
estimation of trends but do not necessarily reflect the true frequencies. 
 
RESPONSE: We respectfully disagree with this comment, as explained in the specific 
answer to Reviewer 2. We have implemented our ABC approach to efficiently manage 
ancient pseudo-haploid data, a required procedure since the ancient data consist of 
pseudohaploid calls. Briefly, we simulated ancient samples by sampling diploid individuals at 
their estimated radiocarbon dates and generating pseudo-haploid data by randomly sampling one 
allele at each locus, closely reproducing the pseudo-haploid empirical aDNA data used in this 
study (see Methods section ‘Forward-in-time simulations’). We then used a simulation-based 
procedure to evaluate the performance of our ABC approach, and compared parameter 
estimates to simulated values. Importantly, simulated pseudo-empirical data closely match 
real empirical data used in this study: they reproduce pseudo-haploid calls, the genetic drift 
intensity and admixture events characterizing recent European history (from Anatolian and 
Yamnaya-related migration waves; see new Figure S2A), without which the evaluation of 
our method would have been inaccurate and/or biased. For example, we show that both the 
simulations used for our ABC estimations and the pseudo-empirical data match closely 
ancestry proportions estimated from empirical data, suggesting no demographic biases in 
terms of admixture proportions, and, thus, that our simulations account for the different 
admixture events occurring in Neolithic and Bronze Age Europe (new Figure S2A). 
 
Based on these pseudo-empirical datasets, we showed by cross-validation tests (Figure S1), 
power analyses to detect selection (new Figures S2B-C) and type I error assessments (new 
Figure S2D) that both T and s estimates are accurate and unbiased, and that power to 



 

 

discriminate selected SNPs is substantial. Together, these results clearly show that the use of 
ancient pseudo-haploid data is not problematic. Finally, it is important to highlight that 
pseudo-haploid calls do much better than “an estimation of trends”. At equal number of 
chromosomes, estimations of allele frequencies based on diploid or haploid data are expected 
to be equivalent (see Figure 2A below). Moreover, at equal number of individuals (i.e., the 
diploid data includes twice more chromosomes than the haploid data), allele frequencies tend 
to show small variances when estimated from either the haploid or diploid data, as sample 
sizes increase towards those used in this work (Figure 2B below). 
 
All these elements demonstrate that our approach efficiently manages the use of pseudohaploid 
calls, a common practice in evolutionary studies based on ancient DNA data, thus, preventing 
from biases in the inference of selection parameters. 

 
 
In addition, the grouping or dating of the sample groups is problematic. Due to these two 
factors, it is difficult to determine the reason for the change in frequency of variants, it is 
difficult to distinguish whether it is really a matter of selection, drift or simply admixture 



 

 

processes during the Neolithic. 
 
RESPONSE: As mentioned above, by analyzing pseudo-empirical data, which closely 
reproduces genetic drift and admixture (new Figure S2A), we found that our ABC approach 
has no inflated type I errors (new Figure S2D), high accuracy (Figure S1) and substantial 
power to discriminate neutrality from selection (new Figures S2B,C). This simulation-based 
evaluation of our ABC approach was conducted by grouping simulated ancient individuals 
across the same time periods (Neolithic, Bronze Age, Iron Age, Middle Ages and present) 
used to analyze empirical data. As explained below, these analyses show that the sample 
groups used in this study are not problematic and that our ABC approach can efficiently 
distinguish whether the increase (or decrease) in frequency of a given variant across the 
predefined time periods is consistent with selection, drift or admixture. 
 
Regarding the grouping or dating of sample groups: In the empirical data, and also in the 
simulated pseudo-empirical datasets used to evaluate our ABC approach, the allele frequency 
trajectories were computed by grouping ancient individuals according to the widely-used time 
periods defined by cultural and/or demographic changes in European history (Neolithic, 
Bronze Age, Iron Age and Middle Ages, see e.g. Skoglund and Mathieson, 2018; 
Childebayeva, A. et al., 2022; Mathieson and Terhorst, 2022; Feldman et al., 2019), and using 
the corresponding estimated radiocarbon date of each sample 
(https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypespresent- 
day-and-ancient-dna-data). Across simulations, ancient individuals were simulated 
according to these estimated radiocarbon dates. Finally, the same time periods were used to 
compute the allele frequency trajectories in the ABC simulations, subsequently used to 
analyze real and pseudo-empirical data. 
 
Regarding how our approach discriminates between selection, drift and admixture: We 
have used an ancestry-aware approach, where ancestries were indeed accounted for and 
tracked within our simulation method. This is done by matching ancestry proportions of the 
simulated aDNA samples to the ancestry proportions of the real aDNA samples (we have now 
included, as mentioned to Reviewer 2, a new figure explicitly showing this match; see new 
Figure S2A). Therefore, the simulated allele frequency trajectories account for (i) the 
ancestry of the observed samples, (ii) the intensity of genetic drift (we simulated effective 
population sizes expected in Europe at different epochs using previously published 
parameters [Gravel et al., PNAS 2011]) and (iii) the fluctuation of ancestry due to admixture 
of local Europeans with individuals carrying Anatolian and Yamnaya-related ancestry. In 
other words, our simulations approximate the expectation and variance of an allele frequency 
trajectory conditioned on many evolutionary parameters, such as its selection coefficient s, its 
time of onset of selection T, ancestry, genetic drift and admixture. Consequently, our 
estimation of the selection parameters s and T (and thus our method to detect selection) 
well-accounts for the intensity of genetic drift and admixture expected in Europe since 
the Neolithic. Of note, if our method was not able to discriminate between selection, drift and 
admixture, our s estimation would be in turn inaccurate, i.e., true and estimated s values 
would strongly differ, and type I errors would exceed expectations at nominal values. 
However, once more, we showed by cross-validation that true and estimated s values are 
strongly correlated, and we show now that type I errors are controlled at different nominal 



 

 

values. Lastly, note that the loci detected to be under positive selection by our method include 
the 12 loci previously shown to be subject to positive selection in Europe, using a different 
admixture-aware approach (Mathieson et al., Nature 2015). 
 
Collectively, these results demonstrate that our approach can distinguish selection from drift 
in the presence of recent admixture. 
 
The transfer of polygenic risk scores (PRS) to prehistoric societies is also problematic. These 
are established for modern European populations, for example, and are therefore difficult to 
transfer to other populations. The population genetic analyses and the authors clearly show 
that prehistoric populations differ from modern populations. Therefore, there is no evidence 
that a PRS is transferable to them. These are exciting findings but need more data to support 
them. 
 
RESPONSE: We agree with this comment, reason by which we already acknowledged, in the 
Methods section ‘Calculations of polygenic scores’, that the transfer of PRS from modern to 
prehistoric populations is not completely straightforward (“We acknowledge that the PRS 
obtained are proxies for the actual PRS across time because associated variants may have 
changed in frequency due to drift or admixture”). Furthermore, PRS might be slightly over or 
underestimated because effect sizes can also change following environmental changes or 
shifts in the genetic background of past versus modern individuals. Having said that, we can 
notice that the variants used here to construct PRS are lead variants (genome-wide significant) 
in GWAS analyses of heritable traits. Thus, their effect size on disease is often less dependent 
on the genetic background of the individual than other classically studied traits such as height. 
 
More importantly, in the context of the present study, we did not seek to obtain accurate 
estimates of the PRS of ancient individuals. Our main objective was instead to show that 
variants that increase genetic susceptibility to infectious diseases and autoimmune disorders 
nowadays have, on average, significantly decreased and increased in frequency, respectively, 
over the last 10,000 years. In other words, we use PRS as a methodological tool to show that 
disease-associated variants in the current generation have significantly fluctuated in frequency 
over time. More specifically, we tested the hypothesis of directional selection acting on 
variants affecting such traits, for which PRS are well admitted, convenient statistics as they 
weight variants by their effect sizes. As a complementary analysis to the test of this 
hypothesis, we now show that the larger the odds-ratio of GWAS variants associated with 
autoimmune disease risk, the larger their median selection coefficient (see new Figure S5B). 
Conversely, the larger the odds-ratio of GWAS variants associated with infectious disease 
risk, the lower their median s. Of note, the absolute median selection coefficient of the 
variants that most contribute to the PRS of either disease is higher than the 1% significant 
threshold used in this work. This new analysis thus confirms the feature already captured 
by PRS, that is that variants contributing to the PRS of autoimmune and infectious 
diseases have, in average, significantly increased and decreased in frequency due to 
selection, with a magnitude of selection intensity (s) correlated with the GWAS effect 
sizes of the studied variants. 
 
In the revised Methods section ‘Calculations of polygenic scores’ (p. 27 l. 10-16) and in the 



 

 

section ‘Limitations of the study’ (p. 15 l. 13-16), we now clarify further the use of PRS for 
our analysis and caution that PRS estimated on ancient genomes should not be interpreted as 
suitable estimates of disease genetic risk per se, since PRS are not directly transferable from 
modern to prehistoric populations. Yet, we state explicitly that variation of PRS here is only 
used as a tool to measure changes in allele frequency of variants associated with some 
immune related traits, to address questions relating to directional selection on these traits. 
Finally, we formally show with new Figure S5B that variants contributing to the PRS have 
been, on average, under natural selection, consistent with the direction proposed (increase in 
risk for autoimmune disorders and decrease in risk for infectious traits). We also discuss new 
Figure S5B in the revised Results section of the main text (p. 10 l. 7-9). 

 

Referees’ report, second round of review 
Reviewer #1: The authors have addressed my concerns. This is a very valuable contribution to better 
understand human genomic adaptation. 

 

 

 
 
Authors’ response to the second round of review 

none 
 


