Supporting information for

Quantification of dolichyl phosphates using phosphate methylation and reverse-phase liquid chromatography-high resolution mass spectrometry

Dipali Kale ^{1#*}, Frauke Kikul ¹, Prasad Phapale ², Lars Beedgen ³, Christian Thiel ³, and Britta Brügger ^{1*}

¹Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany

²Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany

³Centre for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany

[#]Current address: Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany

*Authors to whom correspondence should be send:

britta.bruegger@bzh.uni-heidelberg.de, dipali.kale@isas.de

Table of contents

Additional experimental information and results on validating the novel approach for MS-based DoIP analysis.

Figure S1	DolP synthesis in mammals.
Figure S2	nESI-DIMS analysis of (A) un-methylated and (B) methylated DoIP standard.
Figure S3	nESI-DIMS analysis of methylated PoIP C60 standard.
Figure S4	RPLC-MS characteristics of di-methylated PoIP C60 standard.
Figure S5	EICs of [M+NH ₄] ⁺ ions of the major DoIP species in the DoIP standard before and after methylation.
Figure S6	Linearity curves for the RPLC-MS analysis of DoIP C70-105 species (on column) in the DoIP standard.
Figure S7	RPLC-MS characteristics of endogenous di-methylated DoIP C95 from HeLa cells.
Figure S8	EICs of DoIP species from extracts of (A) HeLa cells and (B) <i>S. cerevisiae</i> after methylation, analysed by RPLC-MS.
Table S1	DolP and PolP molecular compositions and positive ion mode RPLC-MS characteristics of annotated di-methylated analyte species.
Table S2	Theoretical m/z list of un-methylated (+0 Me), mono-methylated (+1 Me), di-methylated (+2 Me) ions of C80-C95 species in DoIP standard.
Table S3	Relative methylation efficiency (in %) of C80-C95 species in DoIP standard in nESI-DIMS analyses.
Table S4	Relative distribution (in %) of C80-C95 species in DoIP standard with and without RPLC separation and/or methylation, followed by MS detection.
Table S5	Relative composition (in %) of C70-C105 species in methylated DoIP standard, calibration curve parameters, instrumental limit of detection (LOD) of the RPLC-MS method for the simultaneous determination of targeted DoIP species.
Table S6	Results from intra- and inter-day accuracy and precision of RPLC-MS analysis of DolP standard in HeLa cells extracts.
Table S7	Results from determination of extraction recovery (n=3) in blank solvent and post-preparation stability of RPLC-MS analysis of DoIP standard in HeLa cells extracts in autosampler for 20h (n=3).

Experimental Section

Reagents and chemicals

Potassium hydroxide (KOH), dichloromethane, and TMSD (#362832, 2 M in hexane) were obtained from Sigma-Aldrich. LC-MS grade water, isopropanol, methanol (MeOH), acetonitrile, ammonium acetate, and formic acid were from Fisher Scientific.

Cell culture

For *S. cerevisiae* (strain W303-1B, derived from strain W303 [42]) sample preparations, approximately 5x10^A7 cells were cultured in YPD medium and harvested from cultures grown to mid-log phase with an OD600 value of 0.8. Fibroblasts from human patients were obtained with the patients' parents written informed consent. This study was performed in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty Heidelberg (S-904/2019). The cells were maintained at 37 °C in a humidified atmosphere under 5% CO₂. Patient and control fibroblasts were cultured in Dulbecco's modified Eagle's medium (high glucose; Life Technologies) supplemented with 10% FCS (PAN Biotech, Aidenbach, Germany), 100 U/mL penicillin, and 100 µg/mL streptomycin. HeLa or fibroblast cell monolayers with 80 to 90% confluence in a T75 flask were washed twice with PBS and harvested using 2 mL 0.25% (v/v) trypsin-EDTA solution. All cell pellets were shock-frozen in liquid nitrogen and stored at -80 °C until lipid extractions were performed.

Safety considerations for handing TMSD

TMSD must be handled with care, as its inhalation may cause lung damage or central nervous system depression. It was used with the appropriate safety procedures and personal safety protective equipment inside the fume hood. Excess TMSD in the hood atmosphere was neutralized with acetic acid.

Method validation

The methylated DoIP standard was reconstituted in methanol, and a dilution series was prepared from 0.05 to 800 pg/µL. For each DoIP species, the linearity was assessed by plotting the analyte-to-internal standard peak area against the nominal concentration of individual species calculated based on their mol% distribution in the DoIP standard (Table S5, Fig. S6). Calibration curves (n=3) consisting of four to seven calibrator levels were constructed by simple linear regression analysis. For each DoIP species, the lower limit of detection (LOD) was chosen as the calibration concentration when a signal-to-noise ratio is at least 5:1.

Validation of the method was assessed at three-level quality control (QC), at low (50), medium (200), and high (500) pg/µL of methylated DoIP standard mixture. The intra- and inter-day assays were determined by analyzing the prepared samples on the same day and on three consecutive days. For precision and accuracy evaluations, samples were prepared by spiking the QC levels to the methylated Hela cells extracts (n=3). Accuracy is assessed as an agreement between the back-calculated concentration of individual analyte species in the spiked samples and their nominal concentrations, whereas precision is expressed as the coefficient of variation (%CV) for both intra-day and inter-day analysis values are shown in Table S6. For DoIP species extraction recovery (Table S7), samples were prepared as pre-spikes and post-spikes at high and low QC levels in a pure solvent. The samples were extracted as described in the main text experimental section. The post-preparative stability (Table S7) was determined at low and high QC levels. These QC levels were spiked to methylated HeLa cell extracts, kept at 4 °C for 20 h in an autosampler. The results were compared to conditions using freshly prepared samples with the same nominal concentration.

Figure S1. DoIP synthesis in mammals.

Figure S2. nESI-DIMS analysis of (A) un-methylated and (B) methylated DoIP standard. For theoretical m/z values of ammonium adducts of these un-, mono-, di-methylated DoIP ions please see Table S2.

Figure S3. nESI-DIMS analysis of the ammonium adduct of methylated PoIP C60 standard.

Figure S4. RPLC-MS characteristics of di-methylated PoIP C60 standard. **A**, EIC (\pm 5 ppm) of the [M+NH₄]⁺ ion, with corresponding MS spectrum and theoretical fragmentation pattern. **B**, MS/MS spectrum resulting from low collision-induced dissociation (NCE 10%), showing the dimethylated phosphate head group fragment ion. In B, the letters A and B refer to the illustration of the fragmentation pattern shown in (A).

Figure S5. EICs of [M+NH₄] ⁺ ions of the major DoIP species in the DoIP standard mixture before and after methylation.

Figure S6. Linearity curves for the RPLC-MS analysis of C70-105 species (on column) in DoIP standard mixture.

Figure S7. RPLC-MS characteristics of endogenous di-methylated DoIP C95 from HeLa cells. **A**, EICs (\pm 5 ppm) of the [M+NH₄]⁺ ions, with corresponding MS spectrum. **B**, MS/MS spectrum resulting from low collision-induced dissociation (NCE 10%), with fragmentation pattern showing the di-methylated phosphate head group ion and other product ions.

Figure S8. EICs of DoIP species from extracts of (A) HeLa cells and (B) *S. cerevisiae* after methylation, analysed by RPLC-MS.

Analyte species	Isoprene units (n)	Molecular formula	Theoretical m/z	Observed m/z	Mass error (ppm)	RT (min)	RRTª
PoIP C60	12	$C_{62}H_{103}O_4P$	960.7932	960.7924	-0.8	19.1	1.00
DoIP C65	13	C ₆₇ H ₁₁₃ O ₄ P	1030.8715	1030.8711	-0.4	20.0	1.05
DoIP C70	14	C ₇₂ H ₁₂₁ O ₄ P	1098.9341	1098.9360	1.7	20.6	1.08
DoIP C75	15	C ₇₇ H ₁₂₉ O ₄ P	1166.9967	1166.9976	0.8	21.2	1.11
DoIP C80	16	$C_{82}H_{137}O_4P$	1235.0593	1235.0613	1.6	21.8	1.14
DoIP C85	17	$C_{87}H_{145}O_4P$	1303.1219	1303.1229	0.8	22.3	1.17
DoIP C90	18	$C_{92}H_{153}O_4P$	1371.1845	1371.1854	0.7	22.9	1.20
DoIP C95	19	$C_{97}H_{161}O_4P$	1439.2471	1439.2476	0.3	23.5	1.23
DoIP C100	20	$C_{102}H_{169}O_4P$	1507.3097	1507.3127	2.0	24.1	1.26
DoIP C105	21	C ₁₀₇ H ₁₇₇ O ₄ P	1575.3720	1575.3724	0.3	24.7	1.29

Table S1. DoIP and PoIP molecular compositions and positive ion mode RPLC-MS characteristics of annotated di-methylated analyte species (as $[M+NH_4]^+$ ions) in this study.

^a RRT, ratio of the retention of the peak relative to PoIP C60

Table S2. Theoretical m/z list of un-methylated (+0 Me), mono-methylated (+1 Me), dimethylated (+2 Me) $[M+NH_4]^+$ ions of C80-C95 species in DolP standard.

DoIP species	m/z list of species in DoIP standard					
chain length	+0 ª Me	+1 ª Me	+2ª Me			
C80	1207.0280	1221.0436	1235.0593			
C85	1275.0906	1289.1062	1303.1219			
C90	1343.1532	1357.1688	1371.1845			
C95	1411.2158	1425.2314	1439.2471			

^a Number of methylations in DolP

Table S3. Relative methylation efficiency (in %) of C80-C95 species in DoIP standard in nESI-DIMS analyses.

DoIP species	% ^a of methylated compounds ^c			
chain length	+0 ^b Me	+2 ^b Me		
C80	0 ± 0.34	100 ± 0		
C85	0.82 ± 0.46	99.02 ± 0.16		
C90	0.33 ± 0.57	99.06 ± 0.2		
C95	0 ± 0	100 ± 0		

а

% of methylation efficiency =
$$\left(1 - \frac{\text{Intensity of intact DolP species after methylation}}{\text{Intensity of intact DolP species before methylation}}\right) * 100\%$$

^b Number of methylations in DoIP

° Values are mean ± SD, (n = 3)

Table S4. Relative distribution (in %) of C80-C95 species in DoIP standard with and without RPLC separation and/or methylation, followed by MS detection.

DoIP species	% ^a Distribution of species in DoIP standard					
chain length	without methylation	thylation				
.	nESI-DIMS	nESI-DIMS	^b RPLC-MS			
C80	11.1 ± 0.2	11.0 ± 0.3	10.4 ± 0.3			
C85	38.4 ± 0.3	36.8 ± 0.5	37.1 ± 1.5			
C90	38.3 ± 0.1	39.3 ± 0.3	40.4 ± 1.1			
C95	12.2 ± 0.3	12.9 ± 0.5	12.2 ± 0.3			

^a Values represent peak areas of species, normalized to total peak area and are expressed as mean ± SD of n=3 independent measurements.

^b For detailed distribution of methylated species following RPLC-MS analysis refer to Table S4.

Table S5. Relative composition (in %) of C70-C105 species in methylated DoIP standard, calibration curve parameters, instrumental limit of detection (LOD) of the RPLC-MS method for the simultaneous determination of targeted DoIP species.

DoIP species chain length	% Distribution ^a in DolP standard	Calibration range ^a (pg on column)	LODª (pg on column)	r ²	Calibration Curve equation
C70	0.2 ± 0 ^b	3 - 160	1	0.99	y = 0.036x - 0.0001
C75	1.4 ± 0.1 ^b	4 - 1120	1	1.00	y = 0.041x - 0.0004
C80	9.1 ± 0.3	7 - 7280	2	1.00	y = 0.036x - 0.0016
C85	34.4 ± 1.4	7 - 27520	2	1.00	y = 0.022x + 0.0060
C90	39.4 ± 1.0	8 - 31520	2	1.00	y = 0.021x + 0.0042
C95	12.5 ± 0.3	10 - 10000	2	1.00	y = 0.025x - 0.0012
C100	2.5 ± 0.0 ^b	8 - 2000	2	1.00	y = 0.028x - 0.0006
C105	0.5 ± 0.1 ^b	6 - 400	2	1.00	y = 0.028x - 0.0003

^a Amount of different species in the DoIP standard, expressed as the ratio of the peak area of each DoIP species to the total area of all DoIP species, determined in three independent methylation experiments and represent mean ± SD.

^b Additional DoIP species detected in RPLC-MS but not in nESI-DIMS analyses.

DolP		Accuracy (n=3)		Precision (n=3)		Observed nominal	
species	QC level	Inter-day	Intra-day	Inter-day	Intra-day	concentration (pm	ol/10 ⁶
chain	(pg/µL)		, , , , , , , , , , , , , , , , , , ,	,	mara aay	cells) in Hela cells (n=3)	
length		(Mean ± SD,%)	(Mean ± SD,%)	(CV,%)	(CV,%)	(Mean ± SD, %)	(CV,%)
C70	Low 50	107.2 ± 4.6	104.5 ± 4	3.8	4.3		
	Middle 200	98.5 ± 3.7	96.1 ± 3	3.2	3.8	0.03 ± 0.0	21.4
	High 500	102.7 ± 0.9	102.5 ± 1.1	1.1	0.9		
C75	Low 50	105 ± 1	103.3 ± 2.9	2.8	0.9		
	Middle 200	96.4 ± 4.4	96.6 ± 3.4	3.5	4.6	0.03 ± 0.0	14.8
	High 500	100.1 ± 2.5	101.7 ± 1.9	1.9	2.5		
C80	Low 50	99.2 ± 1.5	99.8 ± 2.8	2.8	1.5		
	Middle 200	95 ± 5.2	96.6 ± 1.8	1.9	5.5	0.05 ± 0.0	2.8
	High 500	99.5 ± 3.2	101.7 ± 2	1.9	3.2		
C85	Low 50	99.8 ± 3.4	98.9 ± 3.7	3.8	3.4		
	Middle 200	96.7 ± 5.9	97.3 ± 1.3	1.3	6.1	0.18 ± 0.0	8.4
	High 500	100.5 ± 0.6	102.2 ± 2.2	2.2	0.6		
C90	Low 50	100.3 ± 3	99.3 ± 4.1	4.1	3.0		
	Middle 200	95.7 ± 4.4	97.4 ± 2.6	2.6	4.6	1.36 ± 0.2	15.9
	High 500	100.1 ± 1.7	104.9 ± 4.3	4.1	1.7		
C95	Low 50	104.5 ± 11.7	105.1 ± 4.1	3.9	11.2		
	Middle 200	98.3 ± 4.4	101.2 ± 4	4.0	4.5	3.56 ± 0.6	17.5
	High 500	98 ± 0.5	106.7 ± 7.6	7.1	0.5		
C100	Low 50	102.2 ± 11.4	101.6 ± 4.8	4.8	11.2		
	Middle 200	100.9 ± 4	103.5 ± 3.6	3.5	4.0	1.28 ± 0.3	19.1
	High 500	99.6 ± 0.6	109.1 ± 8.3	7.6	0.6		
C105	Low 50	110.4 ± 5.5	108.0 ± 7.5	6.7	7.7		
	Middle 200	103.7 ± 3.6	106.2 ± 2.7	3.4	3.4	0.1 ± 0.0	35.4
	High 500	100.7 ± 1.9	110.3 ± 8.3	7.9	1.6		

Table S6. Results from intra- and inter-day accuracy and precision of RPLC-MS analysis of DoIP standard in HeLa cells extracts.

DoIP species	QC level	Extraction recovery (n=3) Stability (n=3		=3)	
chain length	(pg/µL)	(Mean ± SD,%)	(CV,%)	(Mean ± SD,%)	(CV,%)
C70	Low (50)	95.5 ± 1.8	1.9	119.6 ± 0.8	0.7
	High (500)	106.4 ± 2.6	2.4	119.3 ± 1.6	1.3
C75	Low (50)	103.6 ± 8.2	7.9	121.7 ± 1.4	1.2
	High (500)	111.2 ± 4.5	4.1	118.5 ± 3.2	2.7
C80	Low (50)	103.9 ± 8.9	8.5	120.5 ± 0.1	0.1
	High (500)	115.3 ± 4.5	3.9	118.8 ± 2.3	2
C85	Low (50)	112.2 ± 8.5	7.6	122.2 ± 1	0.8
	High (500)	123.4 ± 6	4.8	124.9 ± 6.4	5.1
C90	Low (50)	118 ± 9.1	7.7	123.8 ± 2	1.6
	High (500)	125.6 ± 5.9	4.7	118.9 ± 7.3	6.1
C95	Low (50)	123.3 ± 11.9	9.7	123.6 ± 3.2	2.6
	High (500)	123.4 ± 6.2	5	113.8 ± 3.2	2.9
C100	Low (50)	134.6 ± 12.8	9.5	122.3 ± 4.1	3.4
	High (500)	121.6 ± 8	6.6	100.1 ± 2	2
C105	Low (50)	ND ^a	0	92.4 ± 15.9	17.2
	High (500)	95.5 ± 1.8	1.9	99.9 ± 4.8	4.8

Table S7. Results from determination of extraction recovery (n=3) in blank solvent and postpreparation stability of RPLC-MS analysis of DoIP standard in HeLa cells extracts in autosampler for 20h (n=3).

ND^a = Not detected