Supporting information

Cellulose fibre rejects as raw material for integrated production of *Pleurotus* spp. mushrooms and activated biochar for removal of emerging pollutants from aqueous media

Alejandro Grimm^{1,*}, Feng Chen¹, Glaydson Simões dos Reis¹, Van Minh Dinh², Santosh Govind Khokarale², Michael Finell¹, Jyri-Pekka Mikkola^{2,3}, Malin Hultberg⁴, Guilherme L. Dotto⁵, Shaojun Xiong¹

¹ Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden

² Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-901 87, Umeå, Sweden

³ Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Åbo-Turku, Finland

⁴ Department of Biosystems and Technology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden

⁵ Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, BR 97105-900, RS, Santa Maria, Brazil

* Corresponding author.

E-mail address: Alejandro.Grimm@slu.se

Figure S1. Photograph of the cyclone dryer experimental setup.

Figure S2. Structural formula of acetaminophen and amoxicillin. pKa values are indicated in the figures.

 $Figure \ S3. \ Diagrammatic \ scheme \ of \ the \ adsorption \ mechanism$

Kinetic of adsorption models

Pseudo-first-order:
$$q_t = q_e (1 - \exp^{-k_1 \cdot t})$$
 S1

pseudo-second-order:
$$q_t = \frac{k_2 \cdot q_e^2 \cdot t}{1 + q_e \cdot k_2 \cdot t}$$
 S2

General order:
$$q_t = \left(q_e - \frac{q_e}{\left[k_N.(q_e)^{n-1}.t.(n-1) + 1\right]^{1/(1-n)}}\right)$$
 S3

where, *t* denotes the contact time (min); q_t , q_e are the adsorption capacities at time *t* and at equilibrium, respectively (mg/g); k_1 is the pseudo-first-order rate constant (L/min); k_2 is the pseudo-second-order rate constant (g/mg min); k_N is the general-order constant rate [(g/mg)ⁿ⁻¹)/min], and **n** is the dimensionless general-order adsorption rate.

Equilibrium of adsorption isotherms

Langmuir:
$$q_e = \frac{q_{max} \cdot K_L \cdot C_e}{1 + K_L \cdot C_e}$$
 S4

Freundlich:
$$q_e = K_F . C_e^{1/n_F}$$
 S5

Sips:
$$q_e = \frac{q_{max} K_S C_e^{1/n_S}}{1 + K_S C_e^{1/n_S}}$$
 S6

where, \mathbf{q}_{e} denotes the amount of adsorbate adsorbed at the equilibrium (mg/g); C_{e} is the adsorbate concentration at equilibrium (mg/L); q_{max} is the maximum adsorption capacity of the adsorbent (mg/g); \mathbf{K}_{L} and \mathbf{K}_{s} are the Langmuir and Sips equilibrium constant (L/mg), respectively; \mathbf{K}_{F} is the Freundlich equilibrium constant [(mg/g) (mg/L)^{-1/n}_F]; \mathbf{n}_{F} and \mathbf{n}_{S} are the dimensionless exponents of the Freundlich and Sips model, respectively.