SUPPLEMENTARY MATERIAL FOR

Attenuation of LPS-induced inflammatory responses through inhibition of NF-κB pathway and increased NRF2 level by a flavonol-enriched *n*-butanol fraction from *Uvaria alba*

Kin Israel R. Notarte,^{a,b} Mark Tristan J. Quimque,^{a,c} Imee T. Macaranas,^d Abbas Khan,^e Adriel M. Pastrana,^d Oliver B. Villaflores,^f Hans Christian P. Arturo,^a Delfin Yñigo H. Pilapil IV,^a Sophia Morgan M. Tan,^a Dong-Qing Wei,^e Arlette Wenzel-Storjohann,^g Deniz Tasdemir,^{g,h} Chia-Hung Yen,ⁱ Seon Yeong Ji,^j Gi-Young Kim,^k Yung Hyun Choi,^{j*} and Allan Patrick G. Macabeo^{a*}

^aLaboratory of Organic Reactivity, Discovery & Synthesis (LORDS), Research Center for Natural & Applied Sciences, University of Santo Tomas, 1015 España, Manila, Philippines ^bDepartment of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

[°]Chemistry Department, College of Science and Mathematics, Mindanao State University -Iligan Institute of Technology, Tibanga, 9200 Iligan City, Philippines

^dFaculty of Medicine & Surgery, University of Santo Tomas, 1015 España, Manila, Philippines ^eDepartment of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, China, 200240

^fLaboratory of Phytochemistry, Research Center for Natural & Applied Sciences, University of Santo Tomas, 1015 España, Manila, Philippines

^gGEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany ^hFaculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany ⁱNational Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

Department of Biochemistry, Dongeui University College of Korean Medicine, 52-57,

Yangjeong-ro, Busanjin-gu Busan 47227, Republic of Korea

^kDepartment of Marine Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, Republic of Korea

*corresponding authors: E-mail: agmacabeo@ust.edu.ph (APG Macabeo); choiyh@deu.ac.kr (YH Choi)

LIST OF SUPPORTING INFORMATION

Page

Figure S1. LC chemical profile of <i>Uvaria alba</i> dichloromethane (DCM) fraction (negative-ion mode MS detection).	S3
Figure S2. HR-ESIMS-QToF spectrum of compound 1 (t_R = 12.2 min).	S4
Figure S3. HR-ESIMS-QToF spectrum of compound 3 (t_R = 12.7 min).	S5
Figure S4. HR-ESIMS-QToF spectrum of compound 5 (t_R = 13.1 min).	S6
Figure S5. HR-ESIMS-QToF spectrum of compound 6 (t_R = 11.5 min).	S7
Figure S6. LC chemical profile of <i>Uvaria alba</i> DCM fraction (positive-ion mode MS detection).	S8
Figure S7. HR-ESIMS-QToF spectrum of compound 2 (t_R = 12.7 min).	S9
Figure S8. HR-ESIMS-QToF spectrum of compound 4 (t_R = 13.1 min).	S10
Figure S9. HR-ESIMS-QToF spectrum of compound 7 (t_R = 11.6 min).	S11
Figure 10. Secondary metabolites 1–7 detected in the n-butanol fraction of <i>U. alba</i> .	S12
Table S1. Gene primer sequence.	S13
Table S2. PCR reaction data.	S14
Table S3. Data of RNA quantification.	S15
Table S4. Secondary metabolites detected in the n-butanol fraction of <i>U. alba</i> (UaB). Table S5. List of antibodies used in this study.	S16 S17
References	S18

Figure S1. LC chemical profile of *Uvaria alba* dichloromethane (DCM) fraction (negative-ion mode MS detection).

Cmpd 1, 12.2 min

Figure S2. HR-ESIMS-QToF spectrum of compound **1** (t_R = 12.2 min).

Figure S3. HR-ESIMS-QToF spectrum of compound **3** (t_R = 12.7 min).

Figure S4. HR-ESIMS-QToF spectrum of compound **5** (t_R = 13.1 min).

Figure S5. HR-ESIMS-QToF spectrum of compound **6** (t_R = 11.5 min).

Figure S6. LC chemical profile of Uvaria alba DCM fraction (positive-ion mode MS detection).

Figure S7. HR-ESIMS-QToF spectrum of compound 2 (t_R = 12.7 min).

Cmpd 4, 13.1 min

Figure S8. HR-ESIMS-QToF spectrum of compound **4** (t_R = 13.1 min).

Figure S9. HR-ESIMS-QToF spectrum of compound 7 (t_R = 11.6 min).

Figure S10. Secondary metabolites 1–7 detected in the n-butanol fraction of *U. alba*.

Table S1. Gene primer sequence.

Gene	Primer sequence	Annealing temperature
iNOS	Forward 5'-ATG TCC GAA GCA AAC ATCAC-3'	54°C
	Reverse 5'-TAA TGT CCA GGA AGT AGG TG-3'	54 C
COX-2	Forward 5'-CAG CAA ATC CTT GCT GTT CC-3'	F 400
	Reverse 5'-TGG GCA AAG AAT GCA AAC ATC-3'	54°C
TNF-α	Forward 5'-TCT CAT CAG TTC TAT GGC CC-3'	5700
	Reverse 5'-GGG AGT AGA CAA GGT ACA AC-3'	57-0
IL-1β	Forward 5'-GGG CTG CTT CCA AAC CTT TG-3'	E 49C
	Reverse 5'-GCT TGG GAT CCA CAC TCT CC-3'	54°C
IL-6	Forward 5'-AAG TGC ATC ATC GTT GTT TTCA-3'	6496
	Reverse 5'-GAG GAT ACC ACT CCC AAC AG-3'	61°C
GAPDH	Forward 5'-AGG CCG GTG CTG AGT ATG TC-3'	55°C
	Reverse 5'-TGC CTG CTT CAC CAC CTT CT-3'	55°C

Table S2. PCR reaction data.

	Temperature	Time
One cycle		
Reverse transcription reaction	45°C	30 min
Denaturation of RNA	94°C	5 min
3-step cycle		
Denaturation	94°C	30 sec
Annealing	54-61°C	30 sec
Extension	72°C	1 min
Repeat cycles 30 to 45		
One cycle		
Final extension	72°C	5 min

Table S3. Data of RNA quantification.

Sample ID	User name	Date and Time	Nucleic Acid Conc.	Unit	A260	A280	260/280	260/230	Sample Type	Factor
	Choi	2021-08-19 오후 3:13:22	3139.0	ng/µl	78.475	39.447	1.99	1.82	RNA	40.00
	Choi	2021-08-19 오후 3:13:54	1407.9	ng/µl	35.198	17.383	2.02	1.52	RNA	40.00
	Choi	2021-08-19 오후 3:14:20	2213.0	ng/µl	55.325	28.303	1.95	1.12	RNA	40.00
	Choi	2021-08-19 오후 3:14:46	2424.8	ng/µl	60.621	30.667	1.98	1.58	RNA	40.00
	Choi	2021-08-19 오후 3:15:27	3150.6	ng/µl	78.765	39.459	2.00	1.82	RNA	40.00
	Choi	2021-08-19 오후 3:15:51	1500.8	ng/µl	37.520	18.421	2.04	1.43	RNA	40.00
	Choi	2021-08-19 오후 3:16:17	2207.7	ng/µl	55.191	28.294	1.95	1.08	RNA	40.00
	Choi	2021-08-19 오후 3:16:39	2410.7	ng/µl	60.267	30.429	1.98	1.55	RNA	40.00

Sample ID	User name	Date and Time	Nucleic Acid Conc.	Unit	A260	A280	260/280	260/230	Sample Type	Factor
	Choi	2021-08-09 오후 2:25:41	9315.4	ng/µl	232.885	116.483	2.00	1.94	RNA	40.00
	Choi	2021-08-09 오후 2:26:20	3416.5	ng/µl	85.412	42.802	2.00	1.89	RNA	40.00
	Choi	2021-08-09 오후 2:26:59	2983.8	ng/µl	74.596	37.376	2.00	1.73	RNA	40.00
	Choi	2021-08-09 오후 2:27:29	3245.8	ng/µl	81.146	40.618	2.00	1.93	RNA	40.00
	Choi	2021-08-09 오후 2:28:31	9248.3	ng/µl	231.208	115.364	2.00	1.95	RNA	40.00
	Choi	2021-08-09 오후 2:28:50	3403.0	ng/µl	85.074	42.594	2.00	1.88	RNA	40.00
	Choi	2021-08-09 오후 2:29:10	2964.5	ng/µl	74.113	37.198	1.99	1.70	RNA	40.00
	Choi	2021-08-09 오후 2:29:38	3226.5	ng/µl	80.662	40.346	2.00	1.91	RNA	40.00

Sample ID	User name	Date and Time	Nucleic Acid Conc.	Unit	A260	A280	260/280	260/230	Sample Type	Factor
	Choi	2021-09-13 오후 2:25:44	2488.8	ng/µl	62.221	31.366	1.98	2.12	RNA	40.00
	Choi	2021-09-13 오후 2:26:26	2824.9	ng/µl	70.624	35.806	1.97	2.18	RNA	40.00
	Choi	2021-09-13 오후 2:26:57	1918.4	ng/µl	47.961	24.229	1.98	2.12	RNA	40.00
	Choi	2021-09-13 오후 2:27:27	1415.0	ng/µl	35.376	18.257	1.94	2.17	RNA	40.00
	Choi	2021-09-13 오후 2:27:55	2435.0	ng/µl	60.875	30.681	1.98	2.12	RNA	40.00
	Choi	2021-09-13 오후 2:28:20	2812.6	ng/µl	70.314	35.330	1.99	2.18	RNA	40.00
	Choi	2021-09-13 오후 2:28:44	1915.4	ng/µl	47.884	24.107	1.99	2.10	RNA	40.00
	Choi	2021-09-13 오후 2:29:11	1412.6	ng/µl	35.315	18.143	1.95	2.16	RNA	40.00

Cpd	Retention Time (t _R , min)	Molecular ion (<i>m/z</i>)	Calculated Mass	Molecular Formula	Compound Identity	Reported Biological Activity
1	12.2	449.2404 [M-H] ⁻	466.1111	C21H20O11	Quercetin-3- <i>L</i> - rhamnoside (quercitrin)	Anti-inflammatory ²
2	12.7	303.0503 [M+H]⁺	302.0427	$C_{15}H_{10}O_7$	5,7,3′,4′-flavon-3-ol (quercetin)	Anti-inflammatory(Tang et al., 2019), Antioxidative ^{3,5} , and Antimicrobial ⁴
3	12.7	609.1471 [M-H] ⁻	610.5210	C27H30O16	Quercetin 3- rutinoside (rutin)	Antioxidative ^{7,8} , Anti- inflammatory ^{8,9}
4	13.1	287.0551 [M+H]⁺	286.2390	C15H10O6	Kaempferol	Anti- inflammatory ^{10,11,12,} Antio xidative ^{12,13} , Antimicrobial ^{12,13} , Anticancer ^{12,13}
5	13.1	593.1522 [M-H] ⁻	594.5220	C ₂₇ H ₃₀ O ₁₅	Kaempferol 3- <i>O</i> - rutinoside	Anti-inflammatory ^{14,15}
6	11.5	401.1465 [М-Н] ⁻	402.1526	C ₁₈ H ₂₆ O ₁₀	methyl 3-(3,5-dime thoxy-4-((3,4,5- trihydroxy-6-(hydroxy methyl)tetrahydro- 2H-pyran-2-yl)oxy) phenyl)propanoate	No reported activity
7	11.6	146.1521 [M+H]⁺	146.0368	$C_9H_6O_2$	1-benzopyran-2-one (coumarin)	Antihelminthic ¹

 Table S4.
 Secondary metabolites detected in the n-butanol fraction of U. alba (UaB).

Table S5. List of antibodies used in this study.

Antibody	Supplier	Product number	Dilution
iNOS	BD Biosciences (San Jose, CA, USA)	610328	1:1,000
COX-2	Cayman Chemical Company (Ann Arbor, MI, USA)	160126	1:500
TNF-α	Santa Cruz Biotechnology, Inc. (Dallas, TX, USA)	sc-52746	1:1,000
IL-6	Santa Cruz Biotechnology, Inc.	sc-28343	1:1,000
IL-1β	Santa Cruz Biotechnology, Inc.	sc-7884	1:1,000
NF-κB p65	Santa Cruz Biotechnology, Inc.	sc-8008	1:500
lκB	Cell Signaling Technology (Beverly, MA, USA)	#9242	1:500
Laminin B	Santa Cruz Biotechnology, Inc.	sc-374015	1:1,000
Actin	Santa Cruz Biotechnology, Inc.	sc-47778	1:1,000

REFERENCES

(1) von Son-de Fernex, E.; Alonso-Díaz, M. Á.; Valles-de la Mora, B.; Mendoza-de Gives, P.; González-Cortazar, M.; Zamilpa, A. Anthelmintic Effect of 2H-Chromen-2-One Isolated from Gliricidia Sepium against *Cooperia punctata*. *Exp. Parasitol.* **2017**, *178*, 1–6. https://doi.org/10.1016/j.exppara.2017.04.013.

(2) Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In Vivo Quercitrin Anti-Inflammatory Effect Involves Release of Quercetin, Which Inhibits Inflammation through down-Regulation of the NF-KB Pathway. *Eur. J. Immunol.* **2005**, *35* (2), 584–592. https://doi.org/10.1002/eji.200425778.

(3) Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. *BioMed Res. Int.* **2019**, *2019*. https://doi.org/10.1155/2019/7039802.

(4) Xiong, G.; Ji, W.; Wang, F.; Zhang, F.; Xue, P.; Cheng, M.; Sun, Y.; Wang, X.; Zhang, T. Quercetin Inhibits Inflammatory Response Induced by Lps from Porphyromonas Gingivalis in Human Gingival Fibroblasts via Suppressing Nf-b Signaling Pathway. *BioMed Res. Int.* **2019**, *2019*. https://doi.org/10.1155/2019/6282635.

(5) Ozdal, Z. D.; Sahmetlioglu, E.; Narin, I.; Cumaoglu, A. Synthesis of Gold and Silver Nanoparticles Using Flavonoid Quercetin and Their Effects on Lipopolysaccharide Induced Inflammatory Response in Microglial Cells. *3 Biotech*, **2019**, *9* (6). https://doi.org/10.1007/s13205-019-1739-z.

(6) Anand David, A. V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. *Pharmacogn. Rev.* **2016**, 84–89. https://doi.org/10.4103/0973-7847.194044.

(7) Zhao, B.; Zhang, W.; Xiong, Y.; Zhang, Y.; Zhang, D.; Xu, X. Effects of Rutin on the Oxidative Stress, Proliferation and Osteogenic Differentiation of Periodontal Ligament Stem Cells in LPS-Induced Inflammatory Environment and the Underlying Mechanism. *J. Mol. Histol.* **2020**, *51* (2), 161–171. https://doi.org/10.1007/s10735-020-09866-9.

(8) Nadella, V.; Ranjan, R.; Senthilkumaran, B.; Qadri, S. S. Y. H.; Pothani, S.; Singh, A. K.; Gupta, M. L.; Prakash, H. Podophyllotoxin and Rutin Modulate M1 (INOS+) Macrophages and Mitigate Lethal Radiation (LR) Induced Inflammatory Responses in Mice. *Front. Immunol.* **2019**. https://doi.org/10.3389/fimmu.2019.00106.

(9) Gullón, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. *Trends Food Sci. Technol.* **2017**, 220–235. https://doi.org/10.1016/j.tifs.2017.07.008.

(10) Tang, X. L.; Liu, J. X.; Dong, W.; Li, P.; Li, L.; Hou, J. C.; Zheng, Y. Q.; Lin, C. R.; Ren, J. G. Protective Effect of Kaempferol on LPS plus ATP-Induced Inflammatory Response in Cardiac Fibroblasts. *Inflammation*, **2015**, *38* (1), 94–101. https://doi.org/10.1007/s10753-014-0011-2.

(11) Zhu, L.; Wang, P.; Yuan, W.; Zhu, G. Kaempferol Inhibited Bovine Herpesvirus 1 Replication and LPS-Induced Inflammatory Response. *Acta Virol.* **2018**, *62* (2), 220–225. https://doi.org/10.4149/av 2018 206.

(12) Shields, M. Chemotherapeutics. In *Pharmacognosy: Fundamentals, Applications and Strategy*, **2017**, 295–313. https://doi.org/10.1016/B978-0-12-802104-0.00014-7.

(13) Saldanha, E.; Saxena, A.; Kaur, K.; Kalekhan, F.; Venkatesh, P.; Fayad, R.; Rao, S.; George, T.; Baliga, M. S. Polyphenols in the Prevention of Ulcerative Colitis: A Revisit. A Revisit. In *Dietary Interventions in Gastrointestinal Diseases: Foods, Nutrients, and Dietary Supplements*, **2019**, 277–287. https://doi.org/10.1016/B978-0-12-814468-8.00023-5. (14) Hua, F.; Zhou, P.; Liu, P. pei; Bao, G. H. Rat Plasma Protein Binding of Kaempferol-3-O-Rutinoside from Lu'an GuaPian Tea and Its Anti-Inflammatory Mechanism for Cardiovascular Protection. *J. Food Biochem.* **2021**, *45* (7). https://doi.org/10.1111/jfbc.13749.

(15) Hwang, D.; Kang, M. J.; Kang, C. W.; Kim, G. Do. Kaempferol-3-O-β-Rutinoside Suppresses the Inflammatory Responses in Lipopolysaccharide-Stimulated RAW264.7 Cells via the NF-KB and MAPK Pathways. *Int. J. Mol. Med.* **2019**, *44* (6), 2321–2328. https://doi.org/10.3892/ijmm.2019.4381.