
Table S1 Full search strategy used for literature search 

Search attempt Combination of keywords 

1 Artificial intelligence [MeSH terms] AND trauma [MeSH terms] AND bleed [MeSH terms] 

2 Artificial intelligence AND trauma AND bleeding 

3 Artificial intelligence AND trauma AND hemorrhage 

4 Artificial intelligence AND trauma AND hemorrhaging 

5 Artificial intelligence AND trauma AND haemorrhage  

6 Artificial intelligence AND trauma AND haemorrhaging 

7 Artificial intelligence AND trauma AND coagulopathy 

8 Artificial intelligence AND trauma AND coagulopathic 

9 Artificial intelligence AND trauma AND mortality 

10 Artificial intelligence AND trauma AND outcome 

11 Artificial intelligence AND trauma AND severe injury 

12 Artificial intelligence AND trauma AND transfusion 

13 Artificial intelligence AND trauma AND triage 

14 Artificial intelligence AND trauma AND triaging 

15 Artificial intelligence AND trauma AND soldiers 

16 Artificial intelligence AND trauma AND resuscitation 

17 Artificial intelligence AND trauma AND combat 

18 Artificial intelligence AND trauma AND combat casualty care 

19 Artificial intelligence AND trauma AND remote care 

20 Machine learning AND trauma AND bleed 

21 Machine learning AND trauma AND bleeding 

22 Machine learning AND trauma AND hemorrhage 

23 Machine learning AND trauma AND hemorrhaging 

24 Machine learning AND trauma AND haemorrhage  

25 Machine learning AND trauma AND haemorrhaging 

26 Machine learning AND trauma AND coagulopathy 

27 Machine learning AND trauma AND coagulopathic 

28 Machine learning AND trauma AND mortality 

29 Machine learning AND trauma AND outcome 

30 Machine learning AND trauma AND severe injury 

31 Machine learning AND trauma AND transfusion 

32 Machine learning AND trauma AND triage 

33 Machine learning AND trauma AND triaging 



34 Machine learning AND trauma AND soldiers 

35 Machine learning AND trauma AND resuscitation 

36 Machine learning AND trauma AND combat 

37 Machine learning AND trauma AND combat casualty care 

38 Machine learning AND trauma AND remote care 

39 AI AND trauma AND bleed 

40 AI AND trauma AND bleeding 

41 AI AND trauma AND hemorrhage 

42 AI AND trauma AND hemorrhaging 

43 AI AND trauma AND haemorrhage  

44 AI AND trauma AND haemorrhaging 

45 AI AND trauma AND coagulopathy 

46 AI AND trauma AND coagulopathic 

47 AI AND trauma AND mortality 

48 AI AND trauma AND outcome 

49 AI AND trauma AND severe injury 

50 AI AND trauma AND transfusion 

51 AI AND trauma AND triage 

52 AI AND trauma AND triaging 

53 AI AND trauma AND soldiers 

54 AI AND trauma AND resuscitation 

55 AI AND trauma AND combat 

56 AI AND trauma AND combat casualty care 

57 AI AND trauma AND remote care 

58 ML AND trauma AND bleed 

59 ML AND trauma AND bleeding 

60 ML AND trauma AND hemorrhage 

61 ML AND trauma AND hemorrhaging 

62 ML AND trauma AND haemorrhage  

63 ML AND trauma AND haemorrhaging 

64 ML AND trauma AND coagulopathy 

65 ML AND trauma AND coagulopathic 

66 ML AND trauma AND mortality 

67 ML AND trauma AND outcome 

68 ML AND trauma AND severe injury 

69 ML AND trauma AND transfusion 



70 ML AND trauma AND triage 

71 ML AND trauma AND triaging 

72 ML AND trauma AND soldiers 

73 ML AND trauma AND resuscitation 

74 ML AND trauma AND combat 

75 ML AND trauma AND combat casualty care 

76 ML AND trauma AND remote care 

77 Artificial intelligence AND trauma AND hemorrhage AND military 

78 Artificial intelligence AND trauma AND hemorrhage AND soldiers 

79 Artificial intelligence AND trauma AND hemorrhage AND transfusion 

80 Artificial intelligence AND trauma AND hemorrhage AND coagulopathy 

81 Artificial intelligence AND trauma AND hemorrhage AND resuscitation 

82 Artificial intelligence AND trauma AND hemorrhage AND triage 

77 Machine learning AND trauma AND hemorrhage AND military 

78 Machine learning AND trauma AND hemorrhage AND soldiers 

79 Machine learning AND trauma AND hemorrhage AND transfusion 

80 Machine learning AND trauma AND hemorrhage AND coagulopathy 

81 Machine learning AND trauma AND hemorrhage AND resuscitation 

82 Machine learning AND trauma AND hemorrhage AND triage 

83 AI AND trauma AND hemorrhage AND military 

84 AI AND trauma AND hemorrhage AND soldiers 

85 AI AND trauma AND hemorrhage AND transfusion 

86 AI AND trauma AND hemorrhage AND coagulopathy 

87 AI AND trauma AND hemorrhage AND resuscitation 

88 AI AND trauma AND hemorrhage AND triage 

89 ML AND trauma AND hemorrhage AND military 

90 ML AND trauma AND hemorrhage AND soldiers 

91 ML AND trauma AND hemorrhage AND transfusion 

92 ML AND trauma AND hemorrhage AND coagulopathy 

93 ML AND trauma AND hemorrhage AND resuscitation 

94 ML AND trauma AND hemorrhage AND triage 

Three combinations were mainly used for searches in all fields through PubMed and Google Scholar databases with the aim 

of finding studies using artificial intelligence (AI) and machine learning (ML) relating to some forms of traumatic 

hemorrhage.



Table S2 Research articles using machine learning to predict various problems in hemorrhagic trauma care 

Type Study design AI machine learning Prediction performance/Main findings Reference 

TO Data from 3401 adult patients ere collected 

from different ICUs (surgical, trauma, 

coronary, cardiac) to train models for 

predicting mortality.  

Data from patients younger than 18 years old 

was excluded.  

LDA, GNB, KNN, DT (CART), and DNN model (Deep-

FLAIM). Models were also compared with other mortality 

prediction tools. 

Data was split into 70% training and 30% testing for CV 

AUROC (LDA = 0.830, GNB = 0.836, KNN = 0.818, 

CART = 0.784, Deep-FLAIM = 0.912, ISS = 0.790, 

TRISS = 0.903, APACHE II = 0.770, LODS= 0.882, 

SOFA = 0.815, OASIS = 0.652, SAPS II = 0.786); 

Accuracy (LDA = 0.8184, GNB = 0.8007, KNN = 

0.8494, CART = 0.8959, Deep-FLAIM = 0.9225); 

Sensitivity (LDA = 0.7217, GNB = 0.6783, KNN = 

0.6696, CART= 0.6348, Deep-FLAIM = 0.7913, ISS 

= 0.639, APACHE II = 0.412, SOFA = 0.6493, OASIS 

= 0.6493, SAPS II = 0.627); Specificity (LDA = 

0.8325, GNB = 0.8125, KNN = 0.8756, CART = 

0.9340, Deep-FLAIM = 0.9416, ISS = 0.857, 

APACHE II = 0.627, SOFA = 0.785, OASIS = 0.558, 

SAPS II = 0.871); PPV (LDA = 0.396, GNB = 0.3529, 

KNN = 0.44, CART = 0.584, Deep-FLAIM = 0.6642); 

NPV (LDA = 0.9535, GNB = 0.9457, KNN = 0.9478, 

CART = 0.946, Deep-FLAIM = 0.9687); 

Deep-FLAIM was the best model with a high accuracy 

on test data. 

Features with statistical significance to the model 

accuracy were Sodium, Chloride, bicarbonate, 

creatinine, glucose, anion gap, lactate, platelets, PTT 

were features that showed statistical significance to 

trauma outcome 

[1]  



Data of 129,786 patients that arrived alive to 

the ED was used to create models for 

predicting outcomes following traumatic 

injuries  

DT, RF, ANN (Scaled conjugate gradient backpropagation, 

Levenberg-Marquardt backpropagation and Bayesian 

regularization backpropagation), SVM, LR, and Evidential 

Reasoning (ER) algorithms. 

Data was split into a 10-fold CV (performed 3 times and averaged 

for results) 

AUROC [DT = 0.8833, ANN (Scaled conjugate 

gradient backpropagation) = 0.9074, ANN 

(Levenberg-Marquardt backpropagation) = 0.9076, 

ANN (Bayesian regularization backpropagation) = 

0.9068, RF = 0.9022, SVM = 0.7186, LR = 0.904, ER 

= 0.8797]; Accuracy [DT = 0.9411, ANN (Scaled 

conjugate gradient backpropagation) = 0.8416, ANN 

(Levenberg-Marquardt backpropagation) = 0.9555, 

ANN (Bayesian regularization backpropagation) = 

0.9556, RF = 0.9428, SVM = 0.9418]. 

Levenberg-Marquardt and Bayesian Regularization 

backpropagated ANN algorithms provided best result 

[2] 

Data of 177,014 patients that arrived alive to 

the ED was used to create models for 

predicting outcomes following traumatic 

injuries 

Feature extractions using ER, RF, and ReliefF were done, after 

which SVM models were developed.  

Data was split into a 10-fold CV (performed 3 times and averaged 

for results) 

AUROC (SVM:ER = 0.895, SVM:RF = 0.885, 

SVM:ReliefF = 0.825). 

Feature Selection using ER improved the AUROC of 

the SVM model 

[3] 

Data from 1564 trauma patients were taken. 

Any data that did not fulfill the United 

Kingdom TARN (UKTARN) inclusion criteria 

or any missing value within the dataset was 

excluded 

United Kingdom Trauma and Injury Severity Score (UKTRISS) 

was compared with an ANN model. 

The dataset was divided into 70% training 30% testing for cross 

validation 

Variables used for developing the model were AIS for each body 

region, RR, SBP, GCS, oxygen, saturation, and HR  

AUROC (ANN = 0.921, UKTRISS = 0.941); 

Sensitivity (ANN = 0.869, UKTRISS = 0.9167); 

Specificity (ANN = 0.8571, UKTRISS = 0.9167). 

Head injury, age and chest injury were significantly 

important predictors for provided a better model fit 

[4] 



Data from 2,007,485 trauma patients with 

complete ED vitals and a valid outcome was 

used. 

Different XGBoost models were created with different age 

demographics (children, adults, all ages). 

Variables employed to develop the model were from the 

following categories: ED vitals, injury type, injury mechanism, 

comorbidities, arrival mode, arrival status and outcome. 

The dataset was divided into 70% training 30% testing for cross 

validation 

AUROC [child model = 0.91, adult model = 0.89, all 

ages model = 0.90]; Prevision = PPV [child model = 

0.09, adult model = 0.12, all ages model = 0.10]; NPV 

[child model = 0.998, adult model = 0.993, all ages 

model = 0.995]; Sensitivity [child model = 0.80, adult 

model = 0.79, all ages model = 0.84]; Specificity 

[child model = 0.92, adult model = 0.84, all ages model 

= 0.80]. 

XGBoost as a model showed a high AUROC for all 

age groups. It was noted that excluding fall injuries 

lowered the AUROC for the children model, but 

increased the AUROC for the adult model. The model 

involving all age groups was unchanged 

[5] 

Data from 1658 trauma Audit patients treated 

at the North Staffordshire Hospital were taken.  

Predicting whether a trauma patient will die 

given the various factors such as type of trauma 

incident, length of stay (LOS) etc. 

Artificial NN (ANN) performed with 5-fold cross validation. 

Logistic regression modelling was performed using the dataset.  

Accuracy (ANN = 0.8, LR = 0.77); Precision = PPV 

(ANN = 0.55, LR = 0.49); NPV (ANN = 0.89, LR = 

0.92). 

While the ANN overall predictive accuracy is better 

than that of the logistic regression model, the logistic 

regression model is better at predicting death than all 

4 ANN models 

[6] 

Cohort data from 1494 severely injured trauma 

patients from emergency department 

admissions was used. Patients that met criteria 

for the highest triage activation level were 

included, whereas patients less than 15 years, 

pregnancy, incarceration, transfer from outside 

hospital were excluded. 

Data with missing outcomes was excluded. 

Ensemble Machine learning Algorithm (SuperLearner) trained 

with data collected at admission, 2, 3, 4, 6, 12, 24, 48, 72, 96, 120 

h after injury. Performance was measured for different variables 

to assess variable importance. 

5-fold CV was employed for cross validation 

AUROC (death = 0.94 – 0.97, multi-organ failure = 

0.84 – 0.90, transfusion = 0.87 – 0.90, acute 

respiratory distress syndrome = 0.84 – 0.89, venous 

thromboembolism = 0.73 – 0.83, coagulopathic 

trajectory = 0.48 – 0.88); 

SuperLearner fit showed an excellent performance 

using the variables death, multi-organ failure, and 

transfusion 

[7] 

Dataset from 64 patients requiring damage 

control surgery. 

Any data with missing feature values was 

removed 

Decision tree (using recursive partitioning algorithm), Naive 

Bayes Classifier. 

Features that were used to train the models were patient 

Characteristics, features of prehospital care, physical and lab 

findings in ER, operating room and ICU. 

10-fold CV was conducted 

AUROC (DT = 0.849, NB = 0.882); Accuracy (DT = 

0.824, NB = 0.794); Sensitivity (DT = 0.822, NB = 

0.8); Specificity (DT = 0.696, NB = 0.826). 

NB classification model performed better based on a 

higher    

[8] 



Cohort data of 260,505 trauma patients aged 65 

years and older were included in validating a 

Trauma outcome predictor (TOP) by Maurer et 

al. for geriatric cases 

TOP model is a developed using an optimal classification tree 

algorithm. 

Relevant features that were used from the data included patient 

demographics, comorbidities, type and mechanism of injury, 

Injury Severity Score (ISS), AIS, pre-hospital and emergency 

department (ED), vital signs, diagnoses, complications, and 

mortality 

Results for specific outcomes using the TOP algorithm  

AUROC (Acute respiratory distress syndrome = 0.75, 

cardiac arrest = 0.75, deep surgical site infection= 

0.95, organ space surgical site infection = 0.84). 

Results for these specific outcomes using TOP 

highlight high predictive performance 

[9] 

Retrospective data from prehospital, 

emergency of 10,609 trauma patients from 

January 1993 to December 1996 was used 

Feed-forward back-propagation NN (ANN) was developed. The 

model's performance was compared with Trauma and Injury 

Severity Score (TRISS)-MTOS derived coefficient, and Injury 

Severity Score (ISS).  

Input Variables used: GCS, SBPHR, RR, temperature, 

hematocrit, age, sex, intubation status, ICD-9-CM Injury E-code, 

and ISS. 

Data was divided throughout the years. The models and the 

scoring system were trained using the 1993-1994/1995 datasets 

and tested using the 1995/1996 

AUROC (ANN = 0.912, TRISS = 0.895, ISS = 0.766). 

ANN showed good data clustering, and good 

separation between survivors and non-survivors. The 

ANN model surpassed TRISS in non-survivor 

predictability. 

Implementation of ISS and GCS as features increased 

the AUROC of the ANN model (0.891 without GCS 

and 0.894 without ISS) 

[10] 

Two Dataset were used to train the model - the 

National Trauma Data Bank (NTDB) and the 

Nationwide Readmission Database (NRD). 

Risk prediction was identified as a binary 

outcome (alive or dead before discharge). 

Patients were included on the following 

criteria: (1) patient had at least one ICD-9 code 

between 800-959.9 recorded during hospital 

visit, (2) Patient admission must be an 

emergency admission with valid E-code, (3) 

patient discharge status was not due to transfer 

to a different ED 

Machine learning model - Trauma Severity Model (TSM), 

compared with other risk prediction model: Bayesian Logistic 

Injury Severity Score (BLISS), Harborview Assessment for Risk 

of Mortality (HARM), and the Trauma Mortality Prediction 

Model (TMPM). TSM is a stacked generalization algorithm 

(ensemble algorithm using NN, RF, GBM methods). 

Two sets of models were created - one using the IC-9 codes as 

input variables, the other using IC-9, patient demographics, 

general trauma assessments as input variables (augmented 

models). 

Cross validation was done using the out-of-sample validation 

method  

Models developed using ICD-9 codes: AUROC (TSM 

= 0.912, BLISS = 0.900, HARM = 0.866, TMPM = 

0.898); Accuracy (TSM = 0.968, BLISS = 0.967, 

HARM = 0.965, TMPM = 0.966); F-measure (TSM = 

0.404, BLISS = 0.369, HARM = 0.299, TMPM = 

0.336). 

Augmented models: AUROC (TSM = 0.965, BLISS 

= 0.957, HARM = 0.955, TMPM = 0.958); Accuracy 

(TSM = 0.976, BLISS = 0.975, HARM = 0.973, 

TMPM = 0.973); F-measure (TSM = 0.621, BLISS = 

0.601, HARM = 0.564, TMPM = 0.573). 

TSM performed very well considering everything. 

Statistically Significant variables: ICD-9 models - 

intracranial hemorrhage, subdural hemorrhage and 

concussion Augmented - GCS eye score of 1, GCS 

verbal score, patient’s age.  

Variables pertaining to the head trauma was an 

important information in predicting patient outcomes 

[11] 



A database containing records of 15,055 

trauma patients was used to improve the TRISS 

method to assess the probability of survival of 

patients admitted to trauma units. 

If the outcome variable was missing then data 

was discarded 

The Trauma Injury Severity Score (TRISS), a model that re-

optimized TRISS coefficients (re-optimized TRISS), LR, and 

Multilayer Perceptron NN models were implemented.  

Two LR model were developed: (1) using age, revised trauma 

score (RTS), ISS and injury type and (2) using age, revised 

trauma score (RTS), ISS.  

A 50:50 training test data split was implemented for cross 

validation 

AUROC [TRISS = 0.9411, Re-optimized TRISS = 

0.9426, LR (1) = 0.9534, LR (2) = 0.9521, NN = 

0.9548] 

[12] 

Data of 628 patients from a trauma patient 

dataset were randomly selected for a model 

A feed-forward, back propagation NN model was developed with 

a total of 186 input layers. 

Variables from the following categories were utilized in training 

the model: location of Trauma, Injury etiology, 

respirator/ventilator assistance  

Accuracy = 0.91; Sensitivity = 0.78; Specificity = 

0.94; PPV = 0.73; NPV = 0.95 

[13] 



Data pertaining to the last 150 trauma patients 

at a surgical ICU is used for model training and 

evaluation. The aim of the study was to 

evaluate the importance of resuscitation and its 

impact on mortality prediction. 

A fuzzy logic inference system is developed, which includes 

SBP, GCS, and changes after 1hr of resuscitation. This system is 

compared with common scoring methods such as ISS, RTS, 

ASCOT and TRISS [(1) using coefficients from Major Trauma 

Outcome Study (MTOS) and (2) using coefficients from the 

National Trauma Data Bank (NTDB)] 

At ER arrival: AUROC [RTS = 0.811, TRISS (1) = 

0.899, TRISS (2) = 0.886, ASCOT = 0.886]; Accuracy 

[RTS = 0.787, TRISS (1) = 0.86, TRISS (2) = 0.873, 

ASCOT = 0.82]; Precision = PPV [RTS = 0.706, 

TRISS (1) = 0.821, TRISS (2) = 0.885, ASCOT = 

0.75]; NPV [RTS = 0.797, TRISS (1) = 0.869, TRISS 

(2) = 0.871, ASCOT = 0.833]. 

At 1 h: AUROC [RTS = 0.916, TRISS (1) = 0.978, 

TRISS (2) = 0.967, ASCOT = 0.961]; Accuracy [RTS 

= 0.907, TRISS (1) = 0.913, TRISS (2) = 0.92, ASCOT 

= 0.887]; Precision = PPV [RTS = 0.879, TRISS (1) 

= 0.906, TRISS (2) = 0.886, ASCOT = 0.923]; NPV 

[RTS = 0.915, TRISS (1) = 0.915, TRISS (2) = 0.93, 

ASCOT = 0.879]. 

At ICU: AUROC [RTS = 0.903, TRISS (1) = 0.968, 

TRISS (2) = 0.966, ASCOT = 0.96]; Accuracy [RTS 

= 0.92, TRISS (1) = 0.92, TRISS (2) = 0.927, ASCOT 

= 0.913]; Precision = PPV [RTS = 0.88, TRISS (1) = 

0.886, TRISS (2) = 0.912, ASCOT = 0.93.3]; NPV 

[RTS = 0.93, TRISS (1) = 0.93, TRISS (2) = 0.931, 

ASCOT = 0.908]; ISS (AUROC = 0.903, Accuracy = 

0.88, PPV = 0.818, NPV = 0.897); Fuzzy Logic 

(AUROC = 0.925, Accuracy = 0.86, PPV = 0.781, 

NPV = 0.881). 

The response to resuscitation has a significant impact 

on the mortality prediction. 

[14] 

Trauma patient data from the NTDB was 

extracted to develop an automated decision-

making algorithm for remote triaging. Patients 

who suffered blunt or penetrating trauma 

injuries were included. Missing value data was 

excluded 

LR, RF, DNN models were developed, using HR, SBP, RR, age, 

simplified consciousness score (SCS) and/or GCS as the input 

variables. The models were also compared with other trauma 

scoring methods like RTS and TRISS. 

10-fold validation was implemented as a cross-validation method 

AUROC (RTS = 0.78, LR = 0.88, RF = 0.87, DNN = 

0.89, TRISS = 0.90). 

SCS was the most important feature observed for 

survival prediction, and SBP was the second most 

important.  

The DNN model (with SCS as the input variable) 

performed best out of all three models 

[15] 



Data from 1190 trauma patients who were 

directly sent to the ED after an accident was 

used. Data was included based on the following 

criteria: (1) the five vital signs were recorded 

upon ED arrival (2) corresponding in-hospital 

data was retrievable. Missing data values were 

excluded 

Rule-based inference methodology using the evidential reasoning 

approach (RIMER) was used to develop a decision model to 

predict probability of in-hospital death. RIMER was compared 

with other commonly used methods, such as SVM, ANN, and 

LR. Relevant variables for model development were pulse rate 

(PR), SBP, RR, Temperature, Consciousness. 

5-fold validation was implemented as a cross-validation method 

AUROC (RIMER = 0.952, LR = 0.885, SVM = 0.821, 

ANN= 0.79); 

Out of the three, LR shows a statistically significant 

correlation for an outcome. However, the RIMER 

model outperforms the three models 

[16] 

Trauma Data collected from the Hellenic 

Trauma and Emergency Surgery Society 

(HTESS) to develop models for trauma 

outcome prediction. Patients who arrived dead 

or died at the ER were excluded 

Multi-layer Perceptron (MLP), Radial Basis Function NNs 

(RBFN), Classification and Regression Trees (CART), and 

compared with LR. The metrics of the two NNs (MLP and 

RBFN) are mentioned together. 

Variables used to train were: weight, age, GCS, PR, SBP, DBP, 

Hematocrit, haemoglobin, White cell count, glucose, creatinine, 

amylase, ISS, RTS. 

The data was split 50% for training, 25% for testing and 25% for 

cross validation 

AUROC (NN = 0.887, LR = 0.913, TRISS = 0.682, 

RTS = 0.641); Accuracy (CART = 0.9897, NN = 

0.992, LR = 0.989, TRISS = 0.98864, RTS = 0.98641); 

Sensitivity (CART = 0.1, NN = 0.83, LR = 0.648); 

Specificity (CART = 0.9892, NN = 0.993, LR = 

0.995); PPV (CART = 0.7889, NN = 0.43, LR = 

0.685); NPV (CART = 0.1, NPV = 0.999, LR = 

0.994).The NN models showed a high accuracy and 

AUROC, and outperformed the other models  

[17] 

Data from motorcycle riders who were 

hospitalized was collected to develop ML 

models for mortality prediction of motorcycle 

riders. Only patients who sustained injuries 

from motorcycle accidents were included 

SVM, DT (CART) models were developed to predict mortality 

outcome of these subjects. Relevant features included sex, 

whether a helmet was worn, AIS, GCS, ISS.  

10-fold validation was implemented as a cross-validation method 

AUROC (SVM = 0.9534, LR = 0.9528, DT = 0.8872); 

Accuracy(SVM = 0.9862, LR = 0.9864, 0.9892); 

Sensitivity (SVM = 0.6207, LR = 0.5931, DT = 

0.6276); Specificity (SVM = 0.9948, LR = 0.9956, DT 

= 0.9977). 

All models had a high accuracy, although SVM had 

the higher sensitivity even when sample set was 

reduced. Both LR and SVM had a high AUC, in 

mortality prediction 

[18] 

Data from 2232 patients with severe trauma 

injuries was used in building an automated 

decision-based early prognostic model based 

on admission. Patients > 16 years old were 

included into the cohort 

An XGBoost algorithm was used to build the model as it was seen 

to have the highest accuracy.  

GCS, HR, RR, MAP prehospital cardiac arrest, AIS of head and 

neck, thorax, and abdomen, and ED interventions. 

The data was split 80:20 Training: Test/validation 

Accuracy = 0.94; Sensitivity = 0.98; Specificity = 

0.548; PPV = 0.954; NPV = 0.742.  

The XGBoost model had a high accuracy, sensitivity 

and PPV at predicting mortality. Only features that 

could be determined within the first 2 h of admission 

were used 

[19] 



All patients in the ACS-TQIP database were 

used. Patients who died in the emergency 

department were excluded.  

Missing data was imputed using the ML 

method Optimal Impute 

Optimal Classification Trees (TOP) was developed and 

validated.  

An 80:20 training: validation split was done to the dataset. 

Models for blunt and penetrating trauma were developed and 

compared.  

Variables used for model development were demographics, vital 

signs (SBP, HR, RR, SpO2, GCS, temperature), comorbidities, 

and injury characteristics  

AUROC [TOP (B) = 0.88, TRISS(B) = 0.866, TOP(P) 

= 0.941, TRISS(B) = 0.935]. 

The TOP algorithm was accurate at predicting 

mortality in penetrating and blunt injuries and has a 

higher performance than TRISS models 

[20] 

Retrospective study that used the data of 7688 

trauma patients admitted to the Swedish 

Medical Center 

NN model designed using five input vars and one output. RTS 

and RPS scores were used for comparison. 

Significant variables were RTS, GCS, SBP, RR, PR 

Accuracy = 0.91. 

Performance was too sensitive to require refinements. 

RTS and RPS was not effective as they had low 

sensitivity and low specificity 

[21] 

Data of 116,000 trauma patients (patients with 

an ICD-9-CM score between 800 and 959.9) 

were obtained from the North Carolina 

Medical Database (NCMD). 

The inclusion criteria involved patients 

admitted to the hospitals in North Carolina for 

at least 1 d 

 

A Predictive Hierarchical Network Model was developed. ISS 

derived using the technique described by MacKenzie 

Abbreviated Injury Score (AIS), was used to compare the 

network. 

 The database of 116,000 patients was randomly split into 

training and evaluation subsets. 

Relevant features used: AIS and body system maximum AIS 

scores, mortality risk ratios derived from the ICD-9-CM primary, 

secondary, and tertiary diagnoses, primary and secondary 

procedures as described in previous work, age and gender  

Accuracy (Network = 0.983, ISS = 0.90); Sensitivity 

(Network = 0.994, ISS = 0.919, TRISS = 0.992, 

0.993);  

Specificity (ISS = 0.455, Network = 0.502, TRISS = 

0.588, ASCOT = 0.633). 

The network was the better predictor of outcome than 

the ISS, and was almost as accurate, sensitive, and 

specific as reported values for TRISS and A Severity 

Characterization of Trauma (ASCOT) without access 

to physiologic information 

[22] 



Patient data from the North Carolina Trauma 

Registry (NCTR) with an 

International Classification of Diseases 

Supplementary Classification of Diagnosis 

score (ICISS) between 800 and 959.9 were 

used.  

All patients with missing values or incomplete 

results were excluded 

A special type of NN, known as polynomial neural nets, was 

used, and was compared with other trauma ranking scores like 

ISS, RTS, TRISS, and ICSS.  

The data was divided into training and testing dataset  

AUROC (ISS =0.667, TRISS = 0.877, ICSS = 0.916, 

RTS = 0.95, NN = 0.98); R-squared (ISS = 0.0849 for 

hospital charges/0.052 for hospital length of stay, 

TRISS = 0.1449 for hospital charges/0.0559 for 

hospital length of stay, ICSS = 0.5116 for hospital 

charges/0.2499 for hospital length of stay, RTS = 

0.5353 for hospital charges/0.2974 for hospital length 

of stay, NN = 0.7521 for hospital charges/0.5345 for 

hospital length of stay). 

ICISS-derived predictions of survival, hospital 

charges, and hospital length of stay consistently 

outperformed those of ISS and TRISS. The neural 

network- augmented ICISS was even better 

[23] 

Patient data from the Royal Melbourne 

Hospital (RMH). Blunt trauma cases from the 

Victorian State Trauma Registry (VSTR) were 

used for validation. 

Patients with complete data are included. 

Penetrating trauma cases were excluded 

LR, DT using recursive Partitioning, ANN were developed by 

different authors. All authors were blinded to the validation 

dataset when developing models. 

Age, SBP, RR and pulse rate, Injury severity score, GCS were 

relevant features for model development  

Performance for ICU stay/survival: AUROC (LR = 

0.79/0.91, ANN = 0.78/0.83); Precision = PPV 

(0.37/0.18, DT = 0.44/0.15, ANN = 0.39/0.14);  

NPV = 0.92/0.99, DT = 0.86/0.99, ANN = 0.90/0.98); 

Sensitivity (LR = 0.90/0.77, DT = 0.70/0.61, ANN = 

0.84/0.70); Specificity (LR = 0.46/0.83, DT = 

0.68/0.85, ANN = 0.52/0.80). 

Performance of the three models for ICU stay was 

similar; Logistic regression performed slightly better 

than the other two methods for survival prediction 

[24] 

Study data was taken from the NTDB.  

Missing values were excluded 

Multilayer perceptron (MLP) methodology was used to create 

ANN model algorithms.  

85% of the data (1,217,125) were randomly selected as a training 

set, and 15% (215,899) were used as the test set. 

SBPRR, AIS Ability to obey simple commands and age were 

features used for model development 

RMSE (ANN = 0.1999) 

Models performed well in predicting mortality 

compared to standard outcome predictors (Revised 

Trauma Score and the TRISS Probability of Survival) 

[25] 



Study data was taken from the NTDB dataset 

to develop models to predict complications 

during patient hospitalization 

Tiberius Software created the ANN model.  

No ventilation/intubation, in ICU ward for 2+ d, SBPRR, Age, 

Sex with an ICU bed for more than 2 d were most important 

features for model development 

RMSE (ANN for ARDS = 13.84, ANN for VAP = 

14.42, ANN for UTI = 26.39); 

The basic ANN is accurate for those likely to contract 

ARDS though with a high rate of false positives. The 

ANN ability to predict VAP is less effective, though 

better at producing fewer false positives. Predicting 

UTI cases is not good 

[26] 

Study participants were recruited from 

wounded US service members evacuated from 

Iraq and Afghanistan.  

Adult, active duty service members who 

sustained penetrating extremity injuries during 

combat operations abroad were included. 

Participants with pre-morbid confounding 

inflammatory conditions, including immune 

deficiency and connective tissue 

disorders, or any medical illness requiring 

immunosuppressive therapy were excluded 

These prospective studies analyzed various combat casualties 

using stepwise machine-learned BBN and step-wise LR. 

Models were evaluated using 10-fold cross-validation.  

Likelihood of nosocomial infection can be estimated a priori 

using serum albumin, injury severity score (ISS), and initial 

transfusion requirement; impaired wound;  

Healing can be estimated a priori using ICU admission; and 

likelihood of ICU admission can be estimated using initial 

transfusion requirement and Acute Physiology and Chronic 

Health Evaluation II (APACHE II) score. 

In the second step of each equation, four biomarkers were 

entered: (Interleukin) IL-6, IL-8, IL-12 p40, and MCP1 

Performance for models with biomarkers for impaired 

wound healing/ICU admission/nosocomial infection: 

AUROC (LR = 0.91/0.97/0.81, BBN = 

0.71/0.81/0.79). 

Performance for models without biomarkers for 

impaired wound healing/ICU admission/nosocomial 

infection: AUROC (LR = 0.91/0.97/0.81, BBN = 

0.79/0.76/0.76); Accuracy (LR = 0.857/0.93/0.73, 

BBN = 0.767/0.80/0.76); Precision = PPV (LR = 

0.10/0.87/0.55, BBN = 0.40/0.72.7/0.75); NPV (LR = 

0.81/0.99/0.84, BBN = 0.95/0.842/0.682); 

Sensitivity(LR = 0.61/0.98/0.67, BBN = 

0.80/0.727/0.538); Specificity (LR = 0.10/0.93/0.75, 

BBN = 0.76/0.842/0/882). 

BBN model is indeed performed as robust and these 

results were re-affirmed by stepwise LR modeling 

using features identified by the BBN  

[27] 

Patients recorded in the NTDB with one or 

multiple injuries with filled screening tests 

were used. 

Missing or out-of-range values were excluded 

BDT models for 1-20 injuries were developed and compared with 

TRISS. 

The most important contribution is made by age, thorax severity, 

and BP. By contrast, gender, Glasgow Eye Coma Score, and neck 

severity are least important or redundant 

AUROC (BDT = 0.954, TRISS = 0.948); Accuracy 

(BDT = 0.971, TRISS= 0.968); Sensitivity = (BDT = 

0.474, TRISS = 0.528); Specificity (BDT = 0.994, 

TRISS = 0.988). 

The Bayesian Decision Tree model outperforms the 

TRISS model in terms of goodness-of-fit and 

classification accuracy 

[28] 



Consecutive patients admitted to an 

urban Level I Trauma Center were used to 

develop models for mortality prediction of 

trauma patients.  

Patients were excluded if they have only one 

time point with measurements 

LR with elastic net regularization was used to accommodate large 

numbers of missing values as well as highly correlated time-

course data. 

Data was randomly split into 80% training data and 20% testing 

data for evaluation. 

Features were excluded if they have ≥30% missing values across 

all included measurements 

AUROC = 0.67; TPR = 0.66; TNR = 0.89. 

Temporal importance-adjustment model for predicting 

mortality, which incorporates both time-dependent 

and missing value indicator functions in a logistic 

regression model with elastic net regularization 

[29] 

Study data was taken from a trauma 

management report with admission dates 2005 

through 2006. 

Patients who arrived dead or died at the ER of 

each hospital were excluded from the analysis.  

Missing data values was handled using 

Multiple imputation (MI) 

Two NN algorithms were tested: MLP and RBFN. These two 

models were compared with LR, TRISS and RTS.  

Dataset was split 50% training: 25% testing: 25% validation. 

Pearson's chi-square statistical test was used for feature selection 

AUROC (NN = 0.869, LR = 0.922, RTS = 0.634, 

TRISS = 0.671); Accuracy (NN = 0.9902, LR = 

0.986); Precision (NN = 0.40, LR = 0.333); NPV (NN 

= 0.998, LR = 0.996); Sensitivity (NN = 0.80, LR = 

0.555); Specificity (NN = 0.991, LR = 0.99). 

A comparison was also made between the abilities of 

TRISS and RTS to predict fatalities showing that the 

ANN (MLP) outperformed the logistic regression at 

correctly classifying cases in a training, testing and 

validity test 

[30] 

The records of almost 2 million patients 

hospitalized with traumatic injuries from the 

US National Trauma Data Bank (NTDB) was 

used. 

Records having missing or out-of-range values, 

or patients having no ISS were excluded  

Various models are developed for predicting outcome: KNN, 

unpruned C4.5 DT, multinomial LR model with ridge estimator, 

NB classifier, ANN, PART decision list, RF, TRISS, SVM with 

SMO.  

Seventeen different features were used- 15 numerical and 2 

nominals (gender and injury type) 

 

AUROC (KNN = 0.8103, DT = 0.90173, LR = 

0.94638, NB = 0.93008, ANN = 0.95122, PART = 

0.92654, RF = 0.95352, TRISS = 0.94907, SVM = 

0.93061); Accuracy (KNN = 0.968, DT = 0.9726, LR 

= 0.9693, NB = 0.9397, ANN = 0.9718, PART = 

0.971, RF = 0.9774, TRISS = 0.9647, SVM = 0.9693); 

Sensitivity (KNN = 0.9848, DT = 0.9922, LR = 

0.9925, NB = 0.9503, ANN = 0.9936, PART = 0.9919, 

RF = 0.9944, TRISS = 0.9812, SVM = 0.9968); 

Specificity (KNN = 0.6042, DT = 0.5479, LR = 0.467, 

NB = 0.7101, ANN = 0.4992, PART = 0.5189, RF = 

0.6101, TRISS = 0.6072, SVM = 0.3758); RF can 

outperform the TRISS methodology 

[31] 

Blunt and penetrating trauma injuries cases (n 

= 47,702) from TARN were used to develop 

the FIS model 

The FIS analysis examined the manner single and multiple 

trauma injury factors that influenced the probability of survival. 

Age and sex, AIS and GCS values, BP, HR, RR 

The fuzzy logic compares injury information about a 

case with those in the database to determine the 

likelihood of the survival. 

Work is currently ongoing to complete the FIS 

knowledge base 

[32] 



The participants are 20,207 adult trauma 

patients with, or at risk of significant 

bleeding who were generally within 8 h of 

injury. 

Missing values or constant values were 

replaced with null 

LR and NB models are developed and compared for 

mortality/ICU admission prediction. 

10-fold cross-validation was used. The data is split into 90:10 

training and testing sets and repeated for each of the 10-folds. 

age, GCS, SBP, RR, capillary refill time, HR were used for model 

development 

Model performance for mortality/ICU admission: 

AUROC (LR = 0.8316/0.7429, NB = 0.7524/0.7275, 

NN = 0.8176/0.7558, RF = 0.8254/0.7818). 

There is no clear winner between the presented 

prediction models 

[33] 

Dataset of 18,811 trauma patients was used in 

the retrospective study. 

The data is split into 70:30 training and testing sets.  

Thirty-one variables were used for imputation in the ML 

classifiers 

AUROC (LR = 0.958, SVM = 0.964, NN = 0.944, 

TRISS = 0.93); Accuracy (LR = 0.978, SVM = 0.978, 

NN = 0.975, TRISS = 0.976); Sensitivity (LR = 0.993, 

SVM = 0.992, NN = 0.986, TRISS = 0.989); 

Specificity (LR = 0.385, SVM = 0.408, NN = 0.515, 

TRISS = 0.415). 

TRISS exhibited significantly worse performance in 

predicting survival than the three remaining models 

[34] 

Trauma data of 316 patients were collected 

from the Royal London Hospital 

BA was used as a principled approach to optimal classifier 

systems using Decision Tree technology in which a confidence 

rating can be associated with every predicted result.  

The data is split into 65:35 training and testing sets.  

Sixteen features: age, gender, Injury, Head injury, Facial injury, 

Chest injury, Abdominal injury, Limbs, External injury, RR, 

SBP, GCS (eye, motor, verbal), Oximetry, HR  

all the included techniques have nearly the same 

misclassification rates within 5-fold cross-validation 

when comparing archetypal DTs (ADT) with the 

Bayesian averaging (BA) and the maximum a 

posteriori (MAP) techniques 

[35] 

Prospective data collection, level I trauma 

centre were included.  

Patients admitted with complete data were 

included. 

Patients with missing prediction data for 

TRISS calculation or WATSON criteria, as 

well as polytrauma patients without 

temperature taken before the shock room were 

excluded 

the WATSON-based visual analytics tool for polytrauma patients 

is based on a local trauma data bank. 

Age, temperature, ISS, and presence of head injury by the GCS. 

The WATSON Trauma Pathway Explorer could act as a 

supporting tool in clinical decision-making. However, the visual 

analytics tool is not meant to be a piece of advice, and no clinical 

recommendation about the current patient is made 

AUROC (WATSON for SIRS/Sepsis/Early death = 

0.77/0.71/0.90). 

The goodness of fit of WATSON was superior to that 

of TRISS based on Brier score (0.06 vs. 0.11 points) 

[36] 



Intracranial hemorrhage cases of 248,536 

patients in the National Trauma Data Bank 

(NTDB) from 2012 to 2016 were collected 

Patients with a diagnosis code associated with 

Traumatic intracranial hemorrhage (tICH) are 

included.  

Records with missing data were excluded 

Linear SVM with recursive feature elimination (RFE), LR, DTC, 

KNN, NB, LDA were developed and compared.  

The data split into 80:20 training testing sets. 10-fold cross 

validation implemented. 

demographic information, SBP blood alcohol level (BAL), GCS, 

ISS, presence of epidural/subdural/subarachnoid/ 

intraparenchymal hemorrhage, comorbidities, complications, 

trauma center level, and trauma center region 

Accuracy (linear SVM with RFE = 0.827, LR = 0.801, 

DTC = 0.792, KNN = 0.81, NB = 0.744, LDA = 

0.812); AUROC (Linear SVM = 0.831); Precision 

(Linear SVM = 0.309); Sensitivity (Linear SVM = 

0.75); Specificity (Linear SVM = 0.831). 

In comparing the performance of a logistic regression, 

linear SVM, performance was highest with the linear 

SVM model  

[37] 

968,665 unique patient data were collected 

from the NTDB. 

Patients with more than 2 feature sets missing 

were excluded. 

An iterative imputation method was used to 

impute the missing values  

The data was split into 85:15 sets.  

Twenty-two features, a number further reduced to only 8 features 

via the permutation importance method. Importantly, the 8 

features can all be readily determined at admission: SBPHR, RR, 

temperature, oxygen saturation, gender, age and GCS 

Gradient Boosting model: AUROC (comorbidities/no 

comorbidities = 0.931/0.924); Accuracy = 0.924. 

The gradient boosting method exhibited a ROC-AUC 

that exceeded that of various NNs and other machine 

learning models 

[38] 

1,611,063 adult patients from NTDB were used 

for model development.  

Patients with codes for burns, 

drowning/submersion, environmental or 

exertional injuries were excluded to maintain 

homogeneity. Patients transferred to another 

hospital or missing survival information, were 

excluded 

XGBoost, LR models were developed and compared with ISS, 

TMPM, ICD10 scores.   

The data was split into 50:50 sets, 10-fold cross validation was 

implemented. 

Major laceration of heart with hemopericardium and Major 

laceration of abdominal aorta were important features 

AUROC (XGBoost = 0.863, LR = 0.845, ISS = 0.828, 

TMPM-ICD10 = 0.861); Precision (XGBoost = 

0.895, LR = 0.819, ISS = 0.509, TMPM-ICD10 = 

0.852); Sensitivity (XGBoost = 0.308, LR = 0.295, 

ISS = 0.101, TMPM-ICD10 = 0.300); 

XGBoost demonstrated superior performance and 

calibration compared to logistic regression, ISS and 

TMPM-ICD10 

[39] 

Trauma patient data from the NTDB were used 

to develop and compare ML model. 

Patients with one or more injuries were 

included.  

Patients with missing data were excluded 

BDT models versus TRS.  BDT implemented with Markov chain 

Monte Carlo. 

Age, Gender, Injury type, BPRR, GCS Eye, GCS erbal, GCS 

Motor, Head severity, Face severity, Neck severity, Thorax 

severity, Abdomen severity, Spine severity, Upper extremity 

severity, Lower extremity severity, External severity were 

important features 

AUROC (BDT = 0.954, TRS = 0.948); Accuracy 

(BDT = 0.971, TRS = 0.68); Sensitivity (BDT = 

0.474, TRS = 0.528); Specificity (BDT = 0.994, TRS 

= 0.988); 

BDT has outperformed TRS in terms of prediction 

accuracy 

[40] 



Rates of amputation performed because of 

nonviable limb tissue was investigated using 

trauma patient data from the US joint trauma 

and UK-JTTR 

A 10-predictor BN prognostic model was developed using data 

from the US joint trauma and was compared to the mangled 

extremity severity score (MESS). 

Prognostic performance was estimated by 10-fold cross-

validation in the internal validation dataset.  Performance in new 

participants was externally validated using data from the UK-

JTTR 

AUROC (BN = 0.97, MESS = 0.70); Sensitivity 

(MESS = 0.539); Specificity (MESS = 0.774); 

The BN had significantly better performance than 

MESS at predicting the outcome of limb 

revascularization 

[41] 

Trauma data from the Mayo Clinic Intensive 

Care Unit (ICU) consisting of 23,744 ICU 

admissions and 18,349 unique patients were 

used 

Four ML algorithms were considered for the development of the 

Trauma Triage Treatment and Training Decision Support 

(4TDS): random forests, logistic regression, support vector 

machines, and gradient boosting.  

HR, RR, SpO2, Non-invasive BP, Arterial BP, temperature were 

important features used 

4TDS: PPV = 0.25; NPV = 0.97; Sensitivity = 0.73; 

Specificity = 0.80 

The machine learning algorithm based on LR 

performed best among other algorithms we tested and 

was able to predict shock onset 90 minutes before it 

occurred with better than 75% accuracy in the test 

dataset 

[42] 

A retrospective analysis of a trauma registry 

was used to identify patients admitted to a level 

1 trauma center for >24.  

Patients with no EDI values before discharge 

were excluded 

EDI was constructed from 125 objective patient measures within 

the electronic health record.  

External validation using EHR from a trauma registry OF 1,325 

patients admitted to a level 1 trauma center. 

EDI include but are not limited to age, SBPHR, RR, oxygen 

saturations, oxygen requirement, cardiac rhythm, blood pH, 

sodium, potassium, blood urea nitrogen, white blood cell count, 

hematocrit, platelet count, and neurologic assessments including 

GCS 

Performance after 24 h for mortality/unplanned ICU 

admission: AUROC (Max EDI = 0.98/0.52, EDI slope 

= 0.85/0.66, ISS = 0.89, NISS = 0.91); Precision (Max 

EDI = 0.23, EDI slope= /0.86); NPV (Max EDI = 0.99, 

EDI slope = 0.02); Sensitivity (Max EDI = 0.93, EDI 

slope = 0.06); Specificity (Max EDI = 0.94, EDI slope 

= 0.60); 

EDI Index appears to perform strongly in predicting 

in-patient mortality similarly to ISS and New ISS 

(NISS). In addition, it can be used to predict unplanned 

ICU admissions 

[43] 



U.K. military service personnel who had 

sustained a perineal injury over an 8-year 

period were used in the development of the 

classifier model 

A NB classifier model was built using optimal anatomical and 

physiological parameters. The classifier was compared against 

the performance of ISS, NISS, TRISS, and RTS. 

10-fold cross validation was implemented 

The physiological variables included the following: SBP and 

DBP, HR, RR, oxygen saturations, temperature, and white cell 

count. The severity of anatomical injuries in the pelvis, penis, 

testes, scrotum, and anorectum 

AUROC (NB = 0.906, ISS = 0.844, NISS = 0.88, 

TRISS= 0.859, RTS = 0.851); Accuracy (NB = 0.906, 

ISS = 0.842, NISS = 0.882, TRISS = 0.859, RTS = 

0.848); Precision = PPV (NB = 0.894, ISS = 0.858, 

NISS = 0.891, TRISS = 0.784, RTS = 0.788); 

Sensitivity (NB = 0.909, ISS = 0.80, NISS = 0.857, 

TRISS  = 0.954, RTS = 0.929); Specificity ( NB = 

0.903, ISS = 0.879, NISS = 0.905, TRISS = 0.761, 

RTS = 0.774). 

The NB model significantly out-performed Injury 

Severity Score (ISS), Trauma ISS, New ISS, and the 

Revised Trauma Score in virtually all areas 

[44] 

RA/IS Data from 262 patients from a trauma vitals 

database was taken.  

Data was included if patient suffered both blunt 

and penetrating injuries 

Commercially available Feed-forward back propagation ANN 

model. 

10-fold cross-validation was implemented 

AUROC (ANN = 0.868) [45] 

Patient data from 73 soldiers with extremity 

wounds for cases of nosocomial pneumonia  

RF using BE and Logistic Regression (LR) models were 

developed. 2 sets of variables were chosen using Backward 

elimination (BE): (1) Injury Severity Score (ISS), AIS chest, and 

cryoprecipitate given within the first 24 h; (2) FGF-basic, IL-2R, 

and IL-6.  

Leave-one-out CV was employed to test the accuracy of the 

model. 

Forty-four variables were collected to train the dataset: AIS for 

different body regions, ISS, Transfusion of blood variables 

(RBC, WBC, platelets, fresh frozen plasma, cryoprecipitate) 

AUROC (RF with variable set 1 = 0.97, LR with 

variable set 1 = 0.86, RF with variable set 2 = 0.87, LR 

with variable set 2 = 0.75); NPV (RF with variable set 

1 = 1.0, LR with variable set 1 = 0.89, RF with variable 

set 2 = 0.78, LR with variable set 2 = 0.73). 

Sensitivity (RF with variable set 1 = 0.89, LR with 

variable set 1 = 0.87, RF with variable set 2 = 0.97, LR 

with variable set 2 = 0.76). 

RF algorithm using the variable set 1 (ISS, AIS chest, 

and cryoprecipitate given within the first 24 hours) 

presented an AUROC higher than both LR cases 

[46] 

A cohort of 104 patients that were transferred 

to a level 1 trauma center in Houston Texas.  

Vitals, GCS, and HRC of the patients were 

taken for further analysis and model training 

for prediction of LSI 

Multivariate Logistic Regression (including GCS and excluding), 

perceptron model (using mean HR, GCS score, HRC as inputs) 

models were developed 

AUROC (LR including GCS = 0.94, LR excluding 

GCS = 0.81, Perceptron model = 0.99). 

Perceptron model yielded the best results and had 

improved performance than the multivariate LR 

models 

[47] 



A cohort of 79 prehospital patient records were 

taken from the TV database.  

The data was included based on three criteria’s: 

(1) Availability of vital signs and patient status 

summary scores, (2) BP measurements over a 

minimum of 15 min, (3) HR measurements 

uncorrupted by electromechanical noise 

Multilayer perceptron (activation function= sigmoid) (MLP), 

logistic regression, ANN, DT, SVM models were developed. The 

top two models were tested and reported.  

10-fold CV was conducted 

Accuracy (MLP = 0.898); R-squared (MLP = 0.6516, 

LR = 0.3214); RMSE (MLP = 0.2251, LR = 0.3887) 

[48] 

Trauma patient data from the NTDB was 

extracted to develop an automated decision-

making algorithm for triaging in mass casualty 

situations. Patients > 18 years, with blunt or 

penetrating trauma injuries were included.  

The following exclusion criteria was used: (1) 

Data with missing vital signs or GCS values; 

(2) abnormal vital signs or GCS value; (3) 

Injury type grouped as burned; (4) vitals 

recorded in EMS 

LR, RF, DNN models were developed using 5 input variables: 

age, HR, SBP, shock index (SI), SCS. 

10-fold validation was implemented as a cross-validation 

method. 

AUROC (LR = 0.844, RF = 0.882, DNN = 0.883); F1-

score (LR = 0.673, RF = 0.783, DNN = 0.784); MMAE 

(LR = 0.387, RF = 0.297, DNN = 0.298). 

DNN performed best out of all three models. An 

automated decision-support model provides a quick 

method of triaging patients during mass casualty 

incidents based on their degree of risk. 

[49] 

A simulation-based study using NTDB and 

SweTrau data to develop models for triaging 

based on degree of risk. The inclusion criteria 

was any patient above 15 years of age. Missing 

values, unrealistic vitals (SBP > 300, RR > 67) 

and any uncertain readings (SBP = 0) were 

excluded 

XGBoost model was compared with LR to assess its performance 

to appropriate triage trauma cases.  

Model performances were assess using overt-and undertriaging 

(Overtriaging was defined as FP, and undertriaging was defined 

as FN). 

Variables used to build the models were SBP, RR, GCS, and age 

Using SweTrau data: AUROC (XGBoost = 0.725, LR 

= 0.725); Overtriaging (XGBoost = 0.322-0.319, LR 

= 0.323-0.321); Undertriaging (XGBoost = 0.314-

0.324, LR = 0.312-0.321). 

Using NTDB: AUROC (XGBoost = 0.611, LR = 

0.614); Overtriaging (XGBoost = 0.463, LR = 0.468); 

Undertriaging (XGBoost = 0.406, LR = 0.395). 

The over- and undertriaging rates for the two models 

were similar in performance – LR required a smaller 

training set to obtain a robust response 

[50] 



Data obtained from the NTDB on trauma 

patients was used to develop a novel triage 

decision assisting model.  Only blunt and 

penetrating trauma cases were included 

LR (CAPSO) and NN (NN-CAPSO) were developed, and 

compare with other commonly used trauma scoring methods  

Features used: GCS, age, PR, SBP, SpO2  

AUROC (NN-CAPSO = 0.921, CAPSO = 0.904, RTS 

= 0.851, NTS = 0.898, MGAP = 0.898, GAP = 0.897, 

TRIAGES = 0.903, TRISS = 0.934); Accuracy (NN-

CAPSO = 0.578, CAPSO = 0.515, RTS = 0.873, NTS 

= 0.418, MGAP = 0.476, GAP = 0.406, TRIAGES = 

0.380, TRISS = 0.594); Sensitivity (NN-CAPSO = 

0.951, CAPSO = 0.960, RTS = 0.760, NTS = 0.938, 

MGAP = 0.952, GAP = 0.967, TRIAGES = 0.976, 

TRISS = 0.959); Specificity (NN-CAPSO = 0.559, 

CAPSO = 0.492, RTS = 0.879, NTS = 0.391, MGAP 

= 0.451, GAP =0.377, TRIAGES = 0.349, TRISS = 

0.575). 

NN-CAPSO outperformed the other trauma scores, 

and was able to more accurately classify patients to the 

right risk groups 

[51] 

Adult trauma patients with “medium 

activation” presenting via helicopter to a level 

1 trauma center from May 2007 to May 2009 

were used.  

(A “medium activation” trauma patient was 

defined as alert and hemodynamically stable on 

scene with either subnormal vital signs or 

accumulation of risk factors that may indicate 

a potentially serious injury; patients with burns 

as a major complaint, and patients aged < 18, 

and patients who arrived with the “highest 

activation” were excluded) 

One thousand six hundred fifty three patients were included in 

the RF model.  

Data was split into 70:30 for training and testing purposes. 

The final model was externally validated using the same set of 

variables on a naive data set.  

Eighty-three attributes relating to demographics and injury data 

such as mechanism of injury, incident details, triage accuracy, 

patient management characteristics (analgesia and crystalloid 

administration), bleeding status, pulse character, anatomic site of 

injury, type of injury at that anatomic site, range of vital signs as 

expressed by minimum and maximum values, prehospital fluid, 

medications, vitals (SBP, DBP, HR, SpO2, RR), GCS collected 

as individual components  

Precision = PPV = 0.34; NPV = 0.92; Sensitivity = 

0.89; Specificity = 0.42. 

In the testing set, there was an over triage rate of 66%, 

whereas using the RF, we decreased the over triage 

rate to 42% and 50% overall both better than our 

current practice 

[52] 

Data on patients with traumatic hemorrhagic 

shock from the PLA General Hospital 

Emergency Rescue Database (PLAGH-ERD) 

and Medical Information Mart for Intensive 

Care III (MIMIC III) was used 

XGBoost and LR models were developed. For the XGBoost 

models, the best hyperparameters were determined by grid search 

with 10-fold CV. For LR, Lasso method was used to prevent 

overfitting.  

The dataset was split into 80:20 training and testing sets 

Performance at 0.5 h: AUROC [LR = 0.875, XGBoost 

= 0.935]. 

The XGBoost model performance was significantly 

better than the logistic regression 

[53] 



ICU patient stay data was collected from the 

Mayo Clinic Electronic Health Record for 

development of a decision support system 

Trauma Triage Treatment and Training Decision Support (4TDS) 

system was built through a literature review, rapid prototyping, 

and design requirements review and combined features of two 

Decision Support Systems: Cooperative Communication System 

and Ambient Warning and Response Evaluation 

Algorithms will be compared with actual clinical 

decisions in a ‘silent test’. 

HR, RR, SpO2 and BP showed statistical significance 

in the high model performance 

[54] 

Through the Michigan Trauma Quality 

Improvement Program (MTQIP) 22,069 

trauma patients were used for model 

development。 

Patients directly admitted or who arrived dead 

were excluded 

Four classifiers were developed: (a) logistic regression, (b) 

random forest, (c) Boosted Tree (d) and support vector machines 

Three feature selection methods used to reduce the number of 

input variables to those most useful for the model: (a) all features, 

(b) generalized local learning, (c) recursive feature elimination; 

19 variables were considered: age, gender, firearm injury, 

insurance, legal intervention, penetrating injury, fall injury, 

unintentional injury, central gunshot wound, field GCS, field 

SBP, field pulse, ED temperature, transport time < 15 min, 

transport time < 30 min, and evening arrival,  

Boosted Tree: AUROC = 0.85. 

The best feature selection and classifier combination 

was using all features with the boosted tree to 

accurately predict the need for a full trauma team 

activation using NEI-6 as the definition of major 

trauma. 

The final model included age, gender, insurance, 

firearm injury, legal intervention, penetrating injury, 

fall injury, unintentional injury, central gunshot 

wound, field GCS, field SBP, field pulse, ED 

temperature, transport time < 15 min, transport time < 

30 min, and evening arrival 

[55] 

Pediatric Emergency Care Applied Research 

Network (PECARN) data between May 2007 

and January 2010 was used 

Various models were developed and compared: GLM, LDA, RF, 

SVM, SVMR, RPART, Naïve. 

Data was split into 60:40 training testing sets. 

SMOTE was used for balancing the datasets. 

Nineteen clinical variables including emesis, dyspnea, GCS score 

of < 15, visible thoracic or abdominal trauma, seatbelt sign, 

abdominal distension, tenderness or rectal bleeding, peritoneal 

signs, absent bowel sounds, flank pain, pelvic pain or instability, 

sex, age, HR, and RR 

Low-Risk model: AUROC (GLM = 0.96, RF = 0.99, 

SVM = 0.99, LDA = 0.90, SVMR = 0.8, PART = 

0.75);  

High-Risk model: AUROC (GLM = 0.96, RF = 0.99, 

SVM = 0.99, LDA = 0.96, SVMR = 0.99, RPART = 

0.88); 

All models except SVM had superior predictive power 

for identifying low-risk children compared with the 

naive rate.  By both ROC and sensitivity, the fitted RF, 

SVMR, and SVM algorithms performed the best for 

identifying high-risk children 

[56] 



All the trauma patients of over 16 years were 

included in the study。 

Patients with incomplete data and victims who 

were dead on arrival were excluded of the 

study. 

Missing age values were filled to the median 

value. The missing HR data were filled with 

mean. Missing data on the airway specificity of 

the injuries were filled with mode 

SVM, KNN, Bagging, Adaboost, NN algorithms were 

developed. 

 Data was split into 70:30 training testing sets. 

The most-fitted variables were GCS score, base deficit, and DBP 

In all the ranked sets, the index after resuscitation included GCS, 

HCT, DBP, Base excess, pH, PO2 and HCO3 with high ratings 

Accuracy (SVM = 0.9924, KNN = 0.694, Bagging = 

0.9967, Adaboost = 0.7581, NN = 0.516); Sensitivity 

(SVM= 0.694, KNN = 0.7427, Bagging = 0.9804, 

Adaboost = 0.721, NN = 0.5769); F-Measure (SVM 

= 0.764, KNN = 0.7056, Bagging = 0.9896, Adaboost 

= 0.722, NN = 0.6045). 

Bagging algorithm has the best result among the 

algorithms used, followed by the SVM method to 

predict illness of patients 

[57] 

Gunshot wound patient data were collected 

from ACS-TQIP 

A Dirichlet-deep NN (field artificial intelligence triage) was 

developed. 

Data was split into 80:20 training testing sets 

Field artificial intelligence triage outperformed all 

other tested methods ML algorithms, including logistic 

regression, k-nearest neighbors, support vector 

machines, random forests (RFs), and conventional 

deep NNs (DNN-CE)) on all prediction tasks 

[58] 

Subjects for the present study were healthy, 

non-smoking, normotensive males or non-

pregnant females, with ages ranging from 18 

years to 55 years 

LBNP was conducted on subjects to simulate hemorrhage in 

humans. Continuous waveform data were collected at 500 Hz 

using WinDaq data acquisition software. 

The test subject data were termed test data, and data from all other 

subjects were termed learning data, with no mixing between the 

two sets.  

The CRI models were built using Finometer waveform data from 

183 LBNP subjects and were tested on the 184th. This process 

was repeated 184 times 

This study identified several waveform features that 

can be used in the CRI algorithm and to develop a 

human model of severe acute blood loss 

[59] 

Data from soldiers who were evacuated from 

Iraq/Afghanistan after sustaining injuries to 

one or more extremities to develop a decision 

supporting tool to guide the timing of wound 

closures.  

Participants were included if they had at least 

one extremity wound > 75 cm2 with negative 

pressure wound therapy 

RF (all features), RF (10 most important features), BBN (12 

features), and LR (using LASSO and requiring 8 features) models 

were developed. 

Features (Biomarkers) that were statistically significant to wound 

outcome - Serum IL7, Effluent IL4, Serum IL1a, Serum MCP-1, 

Effluent IL-6, Genitourinary trauma and the transfusion 

requirement. 

10-fold CV was implemented for cross validation and the data 

was split into 90:10 training testing sets 

AUROC [RF (all) = 0.72, RF (10) = 0.79, BBN = 0.74, 

LR = 0.62] 

RF (using 10 features) performed best and was 

associated with the highest net benefit. Use of this 

model would improve clinical outcomes as it would 

reduce any unnecessary surgical procedures. The 

model presents ability to predict accurately in a 

generalizable setting (civilians and military) 

[60] 



Trauma patients triaged based on the 

recommendations of the French Society of 

Emergency Medicine (SFMU). 

Patients who experienced a cardiac arrest 

before arrival; Patients with missing data on the 

first HR. Other missing vital signs were 

manageable as they could be representative of 

patient severity 

Developing a DT model to provide early clinical decision-

making for identification of care based on injury severity. 

The model is compared with the Mechanism, GCS, age and 

arterial pressure (MGAP) score. 

10-fold cross-validation were employed 

AUROC [MGAP (threshold 22) = 0.59, DT = 0.82]; 

Sensitivity = [MGAP = 0.26, DT = 0.94]; Specificity 

[MGAP = 0.91, DT = 0.48]. 

DT model with a threshold of 0.345 resulted in a 

higher sensitivity and lower specificity than a 

threshold of 0.634 

[61] 

Three hundred and thirty-eight cases (minor 

injury, 

114 cases; moderate injury, 82 cases; serious 

injury, 74 cases; and critical injury and death, 

68 cases) complete with the available data to 

form the test set 

The RF, XGBoost, and NB models and DNN model were trained 

with the same training set and then tested with the same real 

samples.  

Synthetic samples were used as the training set with 22 features, 

real samples as the test set. A war trauma severity scoring 

algorithm (WTSS) was used for data augmentation 

Performance for WTSS method/MA method: 

Accuracy (WTSS-DNN = 0.8443/0.7124 RF = 

0.8146/0.6939, XGBoost =0.8208/ 0.6886, NB = 

0.6408/0.5386); Precision = PPV (WTSS-DNN = 

0.9007/0.7266, RF = 0.8506/0.7021, XGBoost 

=0.8200/0.6912, NB = 0.6860/0.5520); Sensitivity = 

(WTSS-DNN = 0.8844/0.7081 RF = 0.8301/0.7047, 

XGBoost = 0.8507/0.7007, NB = 0.0.6356/0.5341); F-

Measure (WTSS-DNN = 0.8925/0.7034, RF = 

0.0.8402/0.7034, XGBoost =0.8351/0.6959, NB = 

0.6598/0.5429).WTSS algorithm outperformed the 

manual evaluation (MA) method for each of the 

models. WTSS-DNN was the best performing ML 

model 

[62] 



T A retrospective study of 1371 adult patients 

with external trauma admitted to the 

Emergency Department to develop and 

compare ML models that predict whether 

blood transfusion is needed after trauma 

Statistical logistic regression (LR), machine learning decision 

tree algorithm [classification and regression tree (CART) and 

XGBoost] for prediction of RBC demand. 

The numerical variables were extracted directly, including 

Non-invasive vital sign parameters, and invasive laboratory test 

results, trauma severity classification (first level, second level 

and third level), endotracheal intubation and vasoactive drugs and 

information related to blood transfusion in the database 

Non-invasive parameters: AUROC (LR = 0.72, 

CART = 0.69, XGBoost = 0.71); Accuracy (LR = 

0.55, CART = 0.48, XGBoost = 0.75); Sensitivity = 

(LR = 0.86, CART = 0.89, XGBoost = 0.66); 

Specificity (LR = 0.77, CART = 0.50, XGBoost = 

0.42). 

The trauma location and shock index are important 

prediction parameters.  

For all the prediction parameters: AUROC (LR = 

0.80, CART = 0.82, XGBoost = 0.94); Accuracy (LR 

= 0.72, CART = 0.89, XGBoost = 0.83); Sensitivity = 

(LR = 0.80, CART = 0.69, XGBoost = 0.94); 

Specificity (LR = 0.70, CART = 0.92, XGBoost = 

0.82). 

Haematocrit (Hct) is an important prediction 

parameter. 

For non-invasive parameters, LR was best, and for all 

parameters, XGBoost was best 

[63] 

Retrospective Data from patients who 

sustained traumatic injuries were used to 

develop ML models to predict need for 

transfusion 

LR, SVM, NN, RF models were used. Important variables used 

are age, gender, mechanism of injury, involvement in explosion, 

vital signs.  

70:30 training testing split. 

AUROC (LR = 0.9637, RF = 0.984, SVM = 0.9677, 

NN = 0.9489); Accuracy (LR = 0.9087, RF = 0.9598, 

SVM = 0.9219, NN= 0.9042); Precision (LR = 

0.8991, RF = 0.9537, SVM= 0.9065, NN = 0.8879); 

Specificity (LR = 0.8871, RF = 0.949, SVM =0.8941, 

NN = 0.8724); (LR = 0.9287, RF = 0.9698, SVM = 

0.9476, NN = 0.9355); NPV (LR = 0.9199, RF = 

0.9667, SVM = 0.9403, NN = 0.9237); F1-Score (LR 

= 0.9137, RF = 0.9617, SVM = 0.9266, NN = 0.9102). 

All models displayed high performance metrics; RF 

outperformed the other models  

[64] 

An observational study of patients meeting the 

trauma center activation criteria at a level 1 

trauma center were observed. Subjects were 

included on whom the trauma team was 

activated. Patients < 18 years, prisoners, and 

pregnant women were excluded form the study. 

The CRI device is worn by the subject to allow 

for a wide time analysis 

The CRI device uses a ML algorithm to analyse and evaluate the 

subject’s arterial waveform.  

Subjects who were experiencing hemorrhage had significantly 

higher length of stay, ISS, injury care length of stay.  

LR analyses were built to predict hemorrhage between CRI < 

0.70 and SBP < 110 

AUROC (SBP = 0.62, CRI = 0.83); Sensitivity (SBP 

= 0.25, CRI = 0.83); Specificity (SBP = 0.94, CRI = 

0.60); PPV (SBP = 0.60, CRI = 0.43); NPV (SBP = 

0.77, CRI = 0.91).  

CRI demonstrated a better performance at being able 

to predict posttraumatic hemorrhaging than SBP 

[65] 



Retrospective study using the UK Joint Theatre 

Trauma Registry to develop a decision rule for 

on-hospital arrival patients suffering battlefield 

trauma. Subjects were included if vital sign 

data was available at some point during their 

resuscitation. Children < 16 years of age were 

excluded 

Three categories of variables were used to develop the binary LR 

model (MASH): (1) Clinical variables – PR, SBP, GCS, RR, and 

temperature; (2) Injury patterns - type of injury); (3) Pre-Hospital 

data – tourniquet, use of hemostatic agents 

Performance for a score of 3: AUROC = 0.93; 

Sensitivity = 0.827; Specificity = 0.888; PPV = 0.35; 

NPV = 0.99. 

MASH score has a higher sensitivity and specificity 

than other previous military prediction tools, with no 

reliance on lab investigative information  

[66] 

Data from all trauma patients were used to 

develop a model that can accurately predict 

massive transfusion cases 

A predictive model using the least absolute shrinkage and 

LASSO regression. 

80:20 training and testing split.  

10-fold CV. 

LASSO was used for data balancing, preventing biasing and 

overfitting 

AUROC = 0.96; Accuracy = 0.956 [67] 

Data using the PROMMTT dataset was used on 

patients who were transfused at least one unit 

of pRBCs upon hospital arrival  

Validation of the model using the different definitions of MT (Mt 

1-6). These results were compared with other commonly used 

MTP prediction models like ABC and TASH.   

Variables collected include patient demographics, SBP, HR, ISS, 

mechanism of injury, transfusion details, and survival  

AUROC (Mt1 = 0.694, Mt2 = 0.698, Mt3= 0.711, Mt4 

= 0.700, Mt5 = 0.696, Mt6 = 0.694, ABC = 0.620, 

TASH = 0.527). 

The app models using all 6 definitions of MT all 

outperformed the other MT prediction models 

[68] 

Trauma patient data collected during 

transportation to hospital was used to train and 

analyse the various models for transfusion 

prediction.  

Patients with continuous vital sign data during 

pre-hospital transfer was included. Patients 

who died within 15 min of admission was 

excluded 

Bleeding Risk Index (BRI) was developed, and compared with 

RTS, SI, and ABC.  

The model was compared on its ability to predict Critical 

Administration Threshold (CAT), and Massive Transfusion 

(MT).  

CAT was defined as ≥ 3 units of pRBC in the first hour after 

admission. 

MT was defined as ≥10 units of pRBC in the first 24 h 

Performance for CAT prediction/MT prediction: 

AUROC (BRI = 0.91/0.92, ABC = 0.77/0.8, SI = 

0.85/0.83, RTS = 0.78/0.78); PPV (BRI = 0.31/0.16, 

ABC = 0.25/0.12, SI = 0.32/0.14, RTS = 0.18/0.08); 

NPV (BRI = 0.98/0.99, ABC = 0.97/0.99, SI = 

0.98/0.99, RTS = 0.97/0.99). 

BRI outperforms the other transfusion scores  

[69] 

All patients diagnosed as multiple trauma and 

adult patients with age of 18 years and older 

were included. 

Pregnant woman, patients diagnosed with 

traumatic brain injury, serious cardiovascular 

and cerebrovascular diseases or serious 

hematologic disorders were excluded 

A decision tree model was developed to predict the occurrence of 

MT. 

The dataset was split into 50:50 training testing sets. 

Shock index, injury severity score, international normalized ratio, 

and pelvis fracture were the most significant risk factors of MT.  

In the training model, 12 variables were used as input variables. 

The INR, SBP, ISS, and injury type remained in the model 

AUROC = 0.86; Accuracy = 0.89, Sensitivity = 0.80, 

Specificity = 0.90. 

A MT prediction model is established using the 

decision tree algorithm and evidently has a good 

predictive performance 

[70] 



The charts for all trauma injury patients 

admitted into the ER were used. The records of 

patient records identified patients that had 

received a transfusion of at least one type of 

blood product 

A total of 1016 patient records are used to train and test a 

backpropagation NN for predicting the transfusion requirements 

of these patients during the first 2, 2-6, and 6-24 h, and for total 

transfusions. Both one and two hidden layer ANNs trained using 

the backpropagation learning algorithm are implemented. 

Multiple multinomial LR model was used for total pRBC. 

The data was split into 70% training: 30% testing dataset. 

Nine variables were identified: age, sex, race, etiology of trauma, 

type of trauma, if safety equipment was in use, the GCS for the 

patient, RR and SBP  

Accuracy (ANN for RBC/FFP/platelet = 

0.6778/0.8264/0.705, LR for pRBC = 0.5105); 

Sensitivity (ANN for RBC/FFP/platelet = 

0.9247/0.6923/0.717, LR for pRBC = 0.7035); 

Specificity (ANN for RBC/FFP/platelet = 

0.431/0.8475/0.7035, LR for pRBC = 0.0377). 

ANNs can accurately predict most ER patient 

transfusion requirements while only using information 

available at the time of entry into the ER 

[71] 

Children (<18 years) who sustained a blunt 

solid organ injury between 2009-2018 were 

included 

For the MT model, a training set of 37 was used and a validation 

set of 440 was used. For the failure of NOM model, a training set 

of 47 and a validation set of 430 was used. For the mortality 

model, a training set of 30 and a validation set of 447 was used. 

Lastly, for the successful NOM without intervention model, a 

training set of 66 and validation set of 411 was used. 

demographics (gender, age, weight), GCS scores, clinical values 

[vital signs, shock index-pediatric adjusted (SIPA), organ 

injured, and blood products received], laboratory results 

[hemoglobin, base deficit, INR, lactate, thromboelastography 

(TEG)], and imaging findings [focused assessment with 

sonography in trauma (FAST) and grade of injury on computed 

tomography scan] from prehospital to ED settings 

4 h model predictive performance: AUROC (MT= 

0.9, Failure of NOM = 0.88, mortality = 0.96, 

successful NOM = 0.89); Accuracy (MT = 0.905, 

Failure of NOM = 0.838, mortality = 0.919, successful 

NOM = 0.903); Sensitivity (MT = 0.889, Failure of 

NOM = 0.917, mortality = 0.100, successful NOM = 

0.904); Specificity (MT = 0.905, failure of NOM = 

0.835, mortality = 0.918, successful NOM = 0.882); 

The four-hour models outperformed the 24 models for 

all outcomes 

[72] 

Trauma patients who received at least one unit 

of RBCs and/or low-titer group O whole blood 

between January 1, 2015, and December 31, 

2017 from the University of Pittsburgh 

Medical Center (UPMC) records. 

Patients who received at least one unit of RBCs 

are included. 

Patients did not have complete clinical and 

demographic data available were excluded 

A recursive partitioning algorithm was used to generate two 

decision trees for prediction of massive transfusion: (1) using 

parameters easily available during ED admission (sex, SBPHR, 

GCS, RR, FAST scan, mechanism of injury (penetrating vs. 

blunt), presence of an open or dislocated femur fracture, and 

presence of a clinically unstable pelvic fracture); (2) using same 

parameters as (1) + laboratory variables (hemoglobin, INR, pH, 

and base deficit). 

Data was split 2:1 training and validation sets. 

10-fold CV was implemented 

Accuracy (MtPitt = 0.769, MtPitt+Labs = 0.879); 

Precision (MtPitt = 0.228, MtPitt+Labs = 0.371); 

NPV (MtPitt = 0.986, MtPitt+Labs = 0.988); 

Sensitivity (MtPitt = 0.867, MtPitt+Labs = 0.867); 

Specificity (MtPitt = 0.761, MtPitt+Labs = 0.88). 

MTPitt + Labs decision tree showed the highest 

sensitivity, balanced accuracy, and Youden J index, 

compared to the MTPitt decision tree and the 

Assessment of Blood Consumption (ABC) and 

Trauma Associated Severe Hemorrhage (TASH) 

scores 

[73] 



HD Twenty-four volunteers were exposed to an 

LBNP protocol (data from 21 was used). 

Patients with linear increases in HR were 

included. Pregnant subjects were excluded 

from the study 

Subjects wore a SenseWear Pro2 Armband that measured Heat 

flux (HF), HR, skin temperature, galvanic skin response, EKG.  

A ML algorithm was used to analyse the physiological waveform 

data to detect LBNP at different stages of the exercises (1-5) 

Accuracy (exercise 1 = 0.938, exercise 2 = 0.955, 

exercise 3 = 0.960, exercise 4 = 0.946, exercise 5 = 

0.946); Precision (exercise 1= 0.926, exercise 2 = 

0.955, exercise 3 = 0.942, exercise 4 = 0.930, exercise 

5 = 0.936); Sensitivity (exercise 1= 0.952, exercise 2 

= 0.971, exercise 3 = 0.981, exercise 4 = 0.964, 

exercise 5 = 0.955); Specificity (exercise 1= 0.924, 

exercise 2 = 0.938, exercise 3= 0.940, exercise 4 = 

0.929, exercise 5 = 0.938). 

This method provides a non-invasive way of 

measuring stroke volume (SV) 

[74] 

190 healthy participants were placed in a 

Lower Body Negative Pressure device (LBNP) 

to simulate and observe the early stages of 

hemorrhage. 

Continuous non-invasively measure 

hemodynamic signals were measured from the 

subjects for developing the ML algorithm 

A linear and non-linear density model (in real time) was 

implemented into an image-based robot navigation system to 

train and predict blood volume loss  

Accuracy = 0.965; R-squared = 0.7921 [75] 

24,996 non-contrast head CT scan data from 

adult trauma patients were used to develop an 

ICH detection algorithm 

A Natural Language Processing tool was used to predict 

hemorrhaging 

Precision = PPV = 73; NPV = 94; Sensitivity = 73; 

Specificity = 94 

[76] 

Data taken from 627 trauma injured patients 

during transport to ED. The aim of the study 

was to identify a hypovolemic state in trauma 

patients. Patient records with each of the vital 

signs present during the 5 – 7 min interval of 

pre-hospital arrival were included. Patients 

who received blood but did not meet the 

document injury criteria were excluded 

Linear classifiers were implemented to discriminate between two 

classes - control and hemorrhage, which are then combined into 

an ensemble classifier. The classifier was trained using 5 vital 

sign variables – HR, RR (RR), DBP, and SBP 

AUROC = 0.76; Sensitivity = 0.69; Specificity = 

0.68.  

HR and SBP seem to be the common best features 

extracted for developing the model. 

Classification degrades slowly as variables are 

dropped in the ensemble classifier, highlighting its 

robustness. It outperforms other linear classifiers 

[77] 

CT scan data from 12 pelvic trauma patients 

(each scan having 30 – 70 images) were taken 

to develop an automatic hemorrhage detection 

and segmentation model 

An SVM model that uses pelvic anatomical information to 

segment hemorrhage accurately was developed using the CT 

scans of pelvic trauma patients. The data was validated using a 

10-fold CV mechanism. 

Accuracy = 0.9428. 

Very little missegmentation of the scans, which allows 

faster diagnostic decision (as opposed to manual 

segmentation and analysis) 

[78] 



Patient vital sign records from 492 trauma 

casualties during the 5 – 7 min interval of pre-

hospital arrival was used in developing a model 

for the detection of major hemorrhaging. 

Patients who received blood but did not meet 

the document injury criteria were excluded. 

Records with missing values were also 

excluded. 

Linear (Linear discriminant function), and non-Linear (ANN and 

SVM) were implemented. The ANN model was a three layer, 

with two hidden node and one output node, trained with a 

conjugate gradient algorithm. 

ECG, PPG, monitor calculated variables (HR, RR, SpO2, SBP 

and DBP). 

A split of 60%:40% was done for training and test data resp, 

through 100 simulation tests 

The best two features are SBP and HR. The use of non-

linear classifiers did not improve the discrimination, as 

the linear classifier had the best performance. 

[79] 

Retrospective data from the French Trauma 

registry, using all patients hospitalized for 

severe trauma. Only patients with Hemorrhagic 

Shock (HS), and Traumatic Brain Injury (TBI) 

were included. Patients transferred or < 15 

years were excluded from the study 

Poisson regression model was developed.  

HS was based on transfusion ≥ 4 RBC packs, while TBI was 

based on an AIS head score > 1.  

The following variables were used: epidemiological data, GCS, 

SBP, DBP, HR, haemoglobin. 

Amount of RBC packs, platelets and fresh frozen plasma 

transfused, transfusion timing, and coagulation tests results were 

additional taken for HS. For TBH intracranial hypertension 

treatment, and treatment of secondary cerebral insults were also 

collected 

AUROC (HR = 0.92, TBI = 0.97). 

The Poisson regression model provided minimal 

recommendations, which would reduce the 7-day 

mortality rate for TBI and HS cases  

[80] 

898 trauma-injured patients during transport by 

medical helicopter from the scene of injury to 

the Level I unit were collected. 

patients did not have any vital-sign data 

collected during transport, patients with 

ambiguous hemorrhagic condition, and 

unreliable vital-sign data based on the data 

reliability algorithm were excluded 

each ensemble classifier was trained and tested through 100 

trials, each using 50% of the data for training and the remaining 

50% for testing. 

vital signs: HR, RR (RR), arterial blood SpO2, and systolic and 

DBPs (BPs; SBP and DBP, respectively) 

AUROC (Ensemble = 0.85, SBP < 110 mmHg = 

0.71); Sensitivity (Ensemble = 0.85, SBP < 110 

mmHg = 0.47); Specificity (Ensemble = 0.73, SBP < 

110 mmHg = 0.87) 

[81] 

65 studies were routinely acquired with 64 

section or higher MDCT scanners in the trauma 

bay in either the late arterial or portal venous 

phase of enhancement 

A multi-scale attentional network (MSAN) model was developed The proposed MSAN substantially improves the 

segmentation accuracy by more than 7% compared 

with prior arts 

[82] 



373 urgent NCCT scans performed at a single 

academic medical center were used in the 

development of the ICH detection model  

A commercially developed convolutional neural network 

algorithm developed by Aidoc for ICH detection was utilized. 

Algorithm was trained and tested on CT scans from 9 different 

centers and 17 different scanners.  

Aidoc for all cases (Sensitivity = 0.887; specificity = 

0.942; PPV = 0.737; NPV = 0.977; accuracy = 0.934).  

Aidoc for emergency cases (Sensitivity = 0.863; 

specificity = 0.970; PPV = 0.587; NPV = 0.993; 

accuracy = 0.965) 

[83] 

Datasets of CT scans collected from 9 different 

sites. Aim of the study was to assess the impact 

of implementing a commercial AI software to 

analyze and detect any intracranial hemorrhage 

(ICH) – unclear whether trauma patients or not 

A commercially developed deep learning triage software 

developed by Aidoc was utilized 

Aidoc (Precision = 0.859, NPV = 0.963, Sensitivity = 

0.884, Specificity = 0.961 

[84] 

Data from Trauma patients with penetrating 

injury were collected for the BRI development 

Patients dying within 15 min of trauma center 

arrival and those younger than 18 years were 

excluded 

Bleeding Risk Index (BRI) based on features from pulse oximetry 

and electrocardiography waveforms and BP (BP) trends was 

calculated to predict patients who were undergoing REBOA, RT, 

and predict mortality outcome. 

Forty features derived from photoplethysmography (PPG) and 

electrocardiography (ECG) waveforms captured at 250 Hz and 

continuously collected including pulse oximetry (SpO2) numeric 

values and SBP trends captured at 1 Hz 

AUROC (BRI = 0.93, SI = 0.72); Precision (BRI = 

0.08); NPV (BRI = 0.99); Sensitivity (BRI = 0.95); 

Specificity (BRI = 0.85) 

[85] 

C Fifty-four trauma patients with rapid-TEG 

samples collection within one hour of surgery, 

who had not received any prior blood products 

were used to predict Trauma induced 

coagulopathy (TIC). Trauma patients with pre-

existing renal disease, coagulopathic disorder 

or using anticoagulant or antiplatelet drugs 

were excluded from the cohort 

A Decision Tree was developed. Rules to develop the tree 

structure: (1) ACT < 103, (2) ACT < 103 and MA < 72.55 = 

control, (3) ACT < 103 and MA ≥ 72.55 = ESRD, (4) ACT ≥ 

103 and MA < 60.8 = ACOT, (5) ACT ≥ 103 and MA ≥ 60.8 

= ESRD 

Accuracy = 0.934.  

End stage renal disease (ESRD) and TIC demonstrated 

distinct TEG patterns. The DT Classifier forms the 

basis for a clinical decision support software for 

viscoelastic hemostatic assays (VHA) 

[86] 



A total of 818 patients from Emergency Rescue 

Database were included as derivation cohort, 

and a total of 567 patients further collected 

from ED were included in the study as 

validation cohort 

Random forest and traditional logistic regression were deployed 

for prediction modeling of ATC (international normalized ratio 

(INR) values >1.5 upon admission to the ED 

AUROC (RF = 0.810, LR = 0.849); Accuracy (RF = 

0.94, LR = 0.935); Precision (RF = 0.933, LR = 

0.931); F-measure (RF = 0.934, LR = 0.92); 

Sensitivity = (RF = 0.94, LR = 0.935). 

The accuracy, precision, F1 score, and Sensitivity of 

the RF model was higher but yielded lower AUROC 

score. 

for predicting ATC in the trauma patients. 

Compared to the logistic regression model, the RF 

model showed better accuracy 

[87] 

Trauma patients admitted to emergency 

department are used as the dataset (after 

patients not meeting inclusion criteria are 

excluded).  

The inclusion criteria is based on the following: 

(1) < 30 d from injury to admission; (2) age ≥ 

18 years old; (3) length of stay > 3 d; Patients 

diagnosed with VTE upon admission are 

excluded.  

Any missing value is filled through mean 

values 

The following models are developed and compared with the 

Caprini score predictor: RF model based on DT for prediction 

modelling (with different feature screening ML methods like 

Least Absolute Shrinkage and selection operator (LASSO), 

Ridge, ElasticNet, LR, Mutual Information Entropy (MIE) 

regression). 

Two different model sets are implemented: (1) using the patient 

data, (2) patient data + Caprini score. 

A 10-fold validation is implemented for cross validation 

Model set (1): AUROC (LASSO+RF = 0.759, Ridge 

+ RF = 0.760, ElasticNet + RF = 0.763, LR + RF = 

0.769, MIE + RF = 0.759, Caprini = 0.773); Accuracy 

(LASSO+RF = 0.636, Ridge + RF = 0.620, ElasticNet 

+ RF = 0.635, LR + RF = 0.619, MIE+RF = 0.642, 

Caprini = 0.750); Precision (LASSO+RF = 0.332, 

Ridge + RF = 0.324, ElasticNet + RF = 0.331, LR + 

RF = 0.329, MIE + RF = 0.334, Caprini = 0.444);  TPR 

(LASSO+RF = 0.692, Ridge + RF = 0.707, ElasticNet 

+ RF = 0.685, LR + RF = 0.718, MIE + RF = 0.684, 

Caprini = 0.667); FPR (LASSO+RF = 0.320, Ridge + 

RF = 0.340, ElasticNet + RF = 0.310, LR + RF = 

0.330, MIE + RF = 0.310, Caprini = 0.227). 

Caprini score predictor, RF model based on DT for 

prediction modelling (with different feature screening 

ML methods like Least Absolute Shrinkage and 

selection operator (LASSO), Ridge, ElasticNet, LR, 

Mutual Information Entropy (MIE) regression) 

[88] 



The development cohort comprised data from 

consecutive patients enrolled in the ACIT 

study between January 2007 and October 2011 

at RLH. The model was validated in new 

patients enrolled into the ACIT study. 

Adult patients (>15 years) presenting directly 

to participating Major Trauma Centers, who 

meet local criteria for trauma team activation, 

are included into the study. Patients are 

excluded if they meet any of the following: (1) 

no consent given, (2) take anticoagulants 

medication, (3) have moderate or severe liver 

disease, (4) have a bleeding diathesis 

BN prediction model was developed using data from 600 patients 

recruited into the Activation of Coagulation and Inflammation in 

Trauma (ACIT) study.  

Performance was tested using 10-fold cross-validation. 

HR, SBP, temperature, hemothorax, FAST result, Unstable 

pelvic fracture, Long bone fracture, GCS, Lactate, Base deficit, 

pH, Mechanism of Injury, Energy 

BN Model performance with internal 

validation/external validation: AUROC (0.96/0.93). 

This model showcases a method of predicting an 

individual’s risk of TIC using clinical information 

This information may be used to support early and 

rational decisions on the use of damage control 

interventions and guide rapid and efficient activation 

of damage control resuscitation protocols, which in 

turn, may prevent an established coagulopathy and 

lead to improved outcomes 

[89] 

C  coagulopathy, HD  hemorrhage detection, IS  injury severity, RA  risk assessment, T  transfusion, TO  trauma outcome, ACS-TQIP American College of Surgeons Trauma 

Quality Improvement Program, AI Artificial intelligence, AIS Abbreviated Injury Scale, ANN Artificial Neural Network, ASCOT a severity characterization of trauma, 

AUROC area under the receiver operating curve, BBN bayesian belief network, BD base deficit, BE backward elimination, BN bayesian network, BP blood pressure, BRI 

bleeding risk index, CART classification and regression tree, CRI critical reserve index, CT computed tomography, CV cross validation, DBP diastolic blood pressure, DNN 

deep NN, DT decision tree, ED emergency department, EKG/ECG electrocardiogram, ER emergency room, ER evidential reasoning, ESRD end-stage renal disease, FAST 

focused assessment with Sonography for Trauma, FFP fresh frozen plasma, FGF fibroblast growth factor, FIS fuzzy inference system, GCS Glasgow Coma Score, GNB 

Gaussian Naïve Bayes Classifier, HR heart rate, ICH intracranial hemorrhage, ICU Intensive Care Unit, IL interleukin, INR international normalized ratio, ISS injury severity 

score, KNN k-nearest neighbor algorithm, LASSO least absolute shrinkage and selection operator, LDA linear discriminant analysis, LBNP low body negative pressure, MAP 

mean arterial pressure, MDCT multidetector CT, MGAP Mechanism, Glasgow coma score, Age and Arterial Pressure, MLP multi-layer perceptron model, MLR multivariate 

logistic regression, MT massive transfusion, NCCT non-contrast head CT, NLP natural language processing, NPV negative predictive value, NTDB national trauma data 

bank, OCT optimal classification trees, PART partitioning decision tree, PI permutation imputation, PPG photoplethysmosgram, PPM personal predictive monitoring, PPV 

positive predictive value, PR pulse rate, PROMMTT Prospective, Observational, Multicenter, Major Trauma Transfusion, R2 correlation coefficient, RAM risk assessment 

model, RBC red blood cell, RBFN radial-basis function network, RF random forest, RLH Royal London Hospital, RR respiration rate, RSNNS stuttgart neural network 

simulator, RTS revised trauma score, SBP systolic blood pressure, SCS simplified consciousness score, SI shock index, SMOTE synthetic minority over-sampling technique, 

SpO2 oxygen saturation, SVM support vector machine, TARN trauma Audit and Research Network, TBI traumatic brain injury, TIC trauma induced coagulopathy, TEG 

thromboelastography, TOP trauma outcome predictor, TSM trauma severity model, UKTARN United Kingdom Trauma Audit Research Network database, UKTRISS United 

Kingdom Trauma and Injury Severity Score, VTE venous thromboembolism, WBC white blood cell, WVSM wireless vital signs monitor
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