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ABSTRACT

Introduction: Radiation-induced cognitive decline (RICD) occurs in 50-90% of adult patients 6 
months post-treatment. In patients with low grade and benign tumors with long expected survival, this 
is of paramount importance. Despite advances in radiation (RT) treatment delivery, better 
understanding of structures important for RICD is necessary to improve cognitive outcomes. We 
hypothesize that RT may affect network topology and microstructural integrity on MRI prior to any 
gross anatomical or apparent cognitive changes. In this longitudinal cohort study, we aim to determine 
the effects of RT on brain structural and functional integrity and cognition. 

Methods and Analysis: This study will enroll patients with benign and low-grade brain tumors 
receiving partial brain radiotherapy. Patients will receive either hypofractionated (>2 Gy/fraction) or 
conventionally fractionated (1.8-2 Gy/fraction) RT. All subjects will be followed for 12 months, with 
MRIs conducted pre-RT and 6- and 12-months post-RT, along with a battery of neurocognitive tests 
and questionnaires. The study was initiated in late 2018 and will continue enrolling through 2024 with 
final follow ups completing in 2025. The neurocognitive battery assesses visual and verbal memory, 
attention, executive function, processing speed, and emotional cognition. MRI imaging protocols 
incorporate diffusion tensor imaging (DTI) and resting state fMRI (rs-fMRI) to assess structural 
connectivity (SC) and functional connectivity (FC), respectively. We will estimate the association 
between radiation dose, imaging metrics, and cognitive outcomes. 

Ethics and Dissemination: This study has been approved by the Institutional Review Board (IRB). 
All results will be published in peer-reviewed journals and at scientific conferences. 

STRENGTHS AND LIMITATIONS OF THIS STUDY

 Evaluation of patients with benign and low-grade brain tumors helps to mitigate confounding 
factors such as variation in tumor biology and normal tissue infiltration and better parse out the 
effects of radiation. 

 Prospective evaluation with baseline evaluation prior to radiation allows capture of subtle 
changes that would otherwise be missed since they would be within population norms

 Standard follow up period allows better understanding of trajectory of changes after radiation 
treatment for benign and low grade brain tumors.

 Multimodal imaging data in conjunction with neurocognitive battery provides a comprehensive 
evaluation of the biophysical effects of radiation in individuals with brain tumors. 

 Use of open-source software assures transparency, reproducibility, and implementation of the 
proposed protocol by other investigators. 

 Evaluation of RICD in the setting of hypofractionation, which has increasingly been utilized in 
benign and low grade brain tumors but evaluation of RICD in this population focuses on 
patients who receive conventionally fractionated radiation

 A significant limitation is heterogeneity of tumor type and laterality in patient population. 
However, excluding high grade tumors minimizes this limitation as much as possible while still 
allowing the study to be feasible at a single institution. 
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INTRODUCTION 

Rationale and Evidence Gaps:  Cognitive impairment in patients with brain tumors has a major 
impact on quality of life and on the ability to function at work and in daily life (1-4). Deficits manifest 
clinically as impairments in multiple cognitive domains including memory, attention, and executive 
function (5, 6). The etiology is often multifactorial; contributing factors may include anxiety and/or 
depression, tumor location and pathology, comorbidities, and age, as well as effects from treatment 
(chemotherapy, surgery, and/or radiation therapy(7)). Notably, RICD is observed in more than 30% of 
patients at 4 months after partial or whole brain RT and in more than 50% at 6 months (8). RICD is 
particularly important in patients with low grade and benign tumors who are expected to have long-
term survivals. In these patients, treatment selection to maximize quality of life and minimize cognitive 
deficits is imperative. Considerable efforts have been directed toward understanding and preventing 
radiation-induced cognitive decline (RICD), an important late effect of radiation therapy (5, 9, 10). To 
date, multiple mechanisms underlying RICD have been elucidated, including damage to sites of 
neurogenesis (11, 12), neuroinflammation (13, 14), neuronal dysfunction (15), and vascular changes 
(16-18). 

RICD can occur in the absence of any gross anatomical changes. Advanced magnetic resonance 
imaging (MRI) techniques, however, may be able to detect effects from RT early on and may help 
elucidate mechanisms of radiation damage in RICD (19). MRI can examine volumetric and 
connectivity changes (both functional and structural) as well as changes in brain vasculature and 
perfusion. MRI may ultimately provide tools to identify patients at risk for RICD and help to direct 
efforts to prevent or ameliorate cognitive decline. Accordingly, accurate modeling of neurocognitive 
function with neuropsychological tests and correlation with in vivo imaging findings may help to 
identify putative biomarkers for routine quantitative evaluation of cognitive changes in patients with 
RICD. Novel MRI biomarkers of RICD are essential to improve understanding of how RT affects the 
brain structurally and functionally, to identify potential targets and therapeutics to mitigate RICD, and 
to improve initial RT plans to decrease complication rates. 

RT affects both gray and white matter structures, yet the functional implications of these 
changes are actively being investigated. Studies have shown that cranial RT is associated with dose-
dependent atrophy of the cortex (20), hippocampus (21) and amygdala (22) on T1-weighted (T1w) 
MRI. The hippocampus in particular has garnered attention as a vulnerable structure in the setting of 
RT; where RT has been shown to reduce neurogenesis (23, 24) and the pool of neural stem cells in the 
dentate gyrus (25, 26). Additionally, radiation dose to the hippocampus has also been shown to predict 
Hopkins Verbal Learning Test scores after brain irradiation (27). Currently, the hippocampus is the 
only intracranial structure for which validated dose constraints are used in standard treatment 
planning (28-31). NRG Oncology CC001 showed that conformal avoidance of the bilateral 
hippocampi (important structures in learning and memory) during whole brain RT reduced the risk of 
cognitive decline at 6 months from 68.2% to 59.5% (32). Despite advances in understanding of the role 
of the hippocampus in RICD, however, nearly 60% of patients still experience diminished cognitive 
function after RT despite conformal avoidance of the hippocampus. Moreover, recent studies have 
shown that radiation dose to the corpus callosum and surrounding white matter tracts can impact 
attention and processing speed at 6 months post-RT (33), executive function with radiation damage to 
the anterior cingulate cortex (34), damage to perisylvian white matter can predict language dysfunction 
(35), and damage to the hippocampus, temporal pole, and entorhinal cortex can predict changes in 
visuospatial memory (36). Thus, while the hippocampus is undoubtedly an important structure in 
memory formation, the singular focus on this region likely belies the complexity of structures and 
networks involved in memory formation and ignores the contribution of other anatomic structures to 
cognitive deficits seen post-therapy. 
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Novelty and Innovation: While there have been some strides made in understanding RICD, there 
remain significant gaps in our knowledge, which our study hopes to address. These include applications 
of rs-fMRI in prediction of RICD, evaluation of cognitive outcomes after hypofractionated radiation 
for low grade and benign brain tumors, evaluation of novel areas of interest that could contribute to 
cognitive decline, and integration of established autosegmentation software such as Freesurfer with 
radiation dose information. 

Whole brain networks can be evaluated by analyzing structural and functional connections 
within the brain and their connections to function and behavior (37). Structural connectivity in the 
brain is measured by tracing white matter tracts derived from diffusion tensor imaging (DTI), (38). 
DTI evaluates the direction and magnitude of water molecular diffusion in a three-dimensional space 
(diffusion tensor) and can provide information on anisotropic diffusion. Additional quantitative metrics 
such as the fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial 
diffusivity (RD) can be obtained from DTI and can help describe different disease states such as 
demyelination (39, 40). Studies using DTI have shown that RT results in atrophy, demyelination of 
white matter, and gliosis (41) particularly in patients with a history of demyelinating diseases (42).  
Partial brain RT has also been shown to result in decreased AD and increased RD within the 
parahippocampal cingulum, where these changes are correlated with declines in verbal memory and 
fluency (43). Notably, reconstruction of fiber tracts in brain tumors and surrounding tissues is 
confounded by false continuities within the tumor and surrounding edema (44). Accordingly, advanced 
diffusion methods have recently been developed to model and eliminate free water with single-shell 
diffusion weighted imaging data, to more accurately model the tissue microstructure of surrounding 
normal brain tissue (45). However, similar to gross volumetric changes, apparent evidence of white 
matter atrophy and demyelination may not be discernable prior to 6 months or 1-year post-RT (46, 47). 
Resting state functional MRI (rs-fMRI) can be used to evaluate functional connectivity. In particular, 
graph-theory analysis of functional connectivity has revealed topological organization of brain 
networks (48), which has been used to investigate how network topology is affected in development 
(49), aging (50) and pathology (51-53). Graph theory-based approaches treat the brain as a network of 
nodes and edges, where nodes can be a region of interest (ROI) or a single voxel. Edges are the 
connections between each node. These graphical relationships can then be modeled as a correlation 
matrix, in which cross correlation is performed to determine the strength between pairs of nodes. 
Analysis of these matrices has revealed the brain to be highly modular (54, 55), with specific network 
hubs (areas of many connections to other nodes)(56), which have been shown to change in the setting 
of pathology and RT (57).  Nevertheless, it is not known whether functional network changes can 
predict RICD or precede structural changes on MRI. 

There has been limited evaluation of whether rs-fMRI can be used to predict early radiation 
changes. This may be partially due to difficulty in using rs-fMRI in high grade glioma (33). Other 
studies have consistently demonstrated that IDH wild type gliomas (ie. gliomas with more aggressive 
histology) have greater impact on functional connectivity metrics such as global functional 
connectivity derived from rs-fMRI (58) as well as impact baseline cognitive status to a greater degree 
prior to any treatment (59). When limited to select patients, this modality may be useful as an MRI 
biomarker in early grade and benign brain tumor patients receiving radiation. Further studies focused 
on that population and excluding high grade glioma patients, such as this one, are needed. Whole brain 
metrics such as functional connectivity may provide early identification of subjects who are at risk of 
decline and can be targeted with novel therapeutics. Preliminary studies are limited but suggest that rs-
fMRI and functional connectivity represent a promising modality with which to develop dose 
constraints and mitigate cognitive decline after RT (60-62).

Study Aims: Investigation into structures outside the hippocampus that can be spared in order to 
improve cognitive outcomes remains an area of active study. We have the most data for RICD related 

Page 5 of 22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

5

to radiation dose to the corpus callosum (33, 63) and hippocampus (31, 32). However, we currently 
have no valid dose constraints for the structures outside the hippocampus including the corpus 
callosum. Development of dose constraints and investigation of which structures can be avoided and 
lead to improvement in clinical outcomes is an area of active research as we seek to understand the 
complex structural and functional relationships that lead to RICD (64).

Additionally, radiosurgery and fractionated radiosurgery are important modalities used 
frequently in the treatment of benign brain tumors. With the increased use of hypofractionation and 
radiosurgery, it is important to establish dose constraints that are valid in the setting of high dose per 
fraction (65). As of now, we have little data on dose constraints for cognitive avoidance structures in 
the setting of hypofractionation, and much is extrapolated from studies of conventional fractionation. 

Accordingly, this study will evaluate the effects of RT in patients with benign and low-grade 
brain tumors using multimodal neuroimaging and a battery of neurocognitive tests. We hypothesize 
that radiation induced damage will manifest prior to gross anatomical changes via alterations in 
network topology and microstructural integrity. Ultimately, we aim to establish structures beyond the 
hippocampus that are vulnerable to RT and develop dose constraints to minimize the risk and 
progression of RICD in this vulnerable patient population.

METHODS and ANALYSIS 

Study Design 
A total of 75 patients with benign and low-grade brain tumors planned to receive partial brain RT, 
either hypofractionated (>2 Gy/fraction) or conventionally fractionated (1.8-2 Gy/fraction), will be 
enrolled at the Wilmot Cancer Institute. All participants provide written informed consent according 
to the Institutional Review Board (IRB) approved protocol prior to any evaluation. Subjects are 
followed for 12 months. 

Key inclusion criteria include 1) age ≥18-years; 2) patients with benign or low-grade brain tumors 
including low grade gliomas, meningiomas, acoustic neuromas, pituitary adenomas, 
craniopharyngiomas, hemangiopericytomas, or other benign or low-grade brain tumors; 3) planned to 
receive either conventional or hypofractionated RT; 4) no contraindication to gadolinium-enhanced 
MRI. Surgical excision and/or chemotherapy prior to enrollment is permitted. 

Key exclusion criteria include 1) Prior cranial RT; 2) Inability to participate in neurocognitive testing; 
3) Intractable seizures; 4) Non-English speaking; 5) Aphasia limiting ability to participate in 
neurocognitive testing. 

Subjects will undergo three comprehensive evaluations (baseline, 6-month, and 12-month time points) 
that include clinical evaluation, MRI, a battery of neurocognitive tests, and questionnaires which 
evaluate patient-reported cognition, fatigue, anxiety, and depression. An additional 3-month timepoint 
includes questionnaires and neurocognitive testing only (Figure 1). 

Patient and Public Involvement
Patients will be involved in the design and conduct of this research. After completion of this pilot 
cohort study, we will plan to further tailor the study design for a larger study by conducting 
interviews with participants. Once the trial has been published, participants will be informed of the 
results via email.
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Neurocognitive Testing
Assessments of neurocognitive and functional performance are performed to evaluate neurocognitive 
changes post-RT. The components of the neurocognitive testing battery are described in Table 1. The 
battery includes the standard tests recommended by the International Cognition and Cancer Task Force 
(66) testing verbal memory (HVLT-R, (67, 68), verbal fluency (COWA, (69), and executive function 
(TMT(70, 71). However, the battery additionally includes the BVMT-R, which has a similar format to 
the HVLT-R but focuses on visuospatial learning and memory (36), as well as additional iPad-based 
tests from Cambridge Cognition which have been shown to be valid and sensitive in the assessment of 
cancer-related cognitive impairment (72-74). Neuropsychological testing is administered by trained 
study coordinators using a standardized testing manual; study coordinators are supervised by the study 
team with expertise in neurology, neuropsychology and cognitive science. Raw scores will be used in 
analysis and adjusted for covariates such as age. Testing is performed in a quiet, comfortable room 
without distractions. 

Table 1. Description and platform of tests in cognitive battery
Test Description Cognitive Domain Platform
Wide Range 
Achievement Test-4 
(WRAT-4)

Word reading Cognitive reserve, 
education level

Paper-based

Hopkins Verbal 
Learning Test-Revised 
(HVLT-R)

Immediate and delayed 
recall of a word list

Verbal learning and 
memory

Paper-based

Controlled Oral Word 
Associated Test 
(COWA)

Number of words the 
subject can provide in a 
category over one minute

Verbal fluency Paper-based

Trailmaking Test A 
and B (TMT-A and 
TMT-B)

Connect circles 
containing a series of 
numbers (A) or numbers 
and letters (B) in a 
pattern

Executive function Paper-based

Brief Visuospatial 
Memory Test-Revised 
(BVMT-R)

Immediate and delayed 
recall of a series of 
shapes and designs

Visuospatial learning and 
memory

Paper-based

Emotional Recognition 
Task (ERT)

Identification of the 
emotion indicated by a 
facial expression

Emotional and social 
cognition

Cambridge 
cognition

Spatial Working 
Memory (SWM)

Use of strategy to find a 
yellow token behind 
colored boxes

Executive function, 
visuospatial working 
memory

Cambridge 
cognition

Paired Associates 
Learning (PAL)

Match the pattern to the 
box where it was 
previously displayed

Visuospatial episodic 
memory and new learning

Cambridge 
cognition

Delayed Matching to 
Sample (DMS)

Matching of complex 
visual patterns

Visual matching ability 
and short-term visual 
recognition memory

Cambridge 
cognition

Reaction Time Task 
(RTT)

Select a circle in which a 
yellow dot appears

Assessment of motor and 
mental response speed

Cambridge 
cognition
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Patient Reported Outcomes
Patient reported outcome measures of symptoms that may influence cognition are recorded 
longitudinally so that they can be studied and accounted for in analyses. These symptoms include 
fatigue, anxiety, and depression using validated measures including the Functional Assessment of 
Cancer Therapy-Brain (FACT-Br, neurologic symptoms in brain tumor patients, (75), Functional 
Assessment of Cancer-Fatigue (FACIT-Fatigue, symptoms of fatigue, (76), Patient Health 
Questionnaire-9 (PHQ-9, symptoms of depression, (77), State-Trait Anxiety Inventory (STAI, (78), 
and Short Form of the Profile of Mood States-2 (POMS2-SF, subscales of anger-hostility, confusion-
bewilderment, depression-dejection, fatigue-inertia, tension-anxiety, vigor-activity, and friendliness, 
(79). Subjective cognition is measured using the Functional Assessment of Cancer Therapy-Cognition 
(FACT-COG, (80) for comparison with scores on objective neurocognitive testing. 

Demographic and Clinical Information 
Patient characteristics that may affect cognitive outcomes and trajectories are recorded, including age, 
education level, comorbidities including diabetes, hypertension, autoimmune disease, tumor 
hemisphere, tumor site, tumor pathology, prior surgeries, employment status, smoking status, alcohol 
use, sex/gender, hypopituitarism, menopausal status, steroid use, use of medications that can affect 
cognition and mood, and exposure to chemotherapy.  

Radiotherapy Planning
Each patient is planned and treated per standard of care by their treating radiation oncologist. RT plans 
for single fraction or fractionated radiosurgery are created using BrainLAB Elements® planning 
software. All other plans were created using Varian Eclipse® treatment planning software. For 
consistency, all radiation dose maps were calculated in Eclipse for all patients using a 1 mm x 1 mm 
grid.  

MRI Acquisition
All imaging is performed on a 3T GE Discovery 750 MRI system (Milwaukee, WI, USA), equipped 
with an 8-channel head coil. High-resolution T1w anatomical images are acquired using a 3D BRAVO 
FSPGR sequence with the following parameters: repetition time (TR)= 8.2 ms, echo time (TE)= 3.2 
ms, field of view (FOV) 256 mm2, resolution 1x1x1mm3. 

Blood oxygen level dependent (BOLD) rs-fMRI is acquired using a BOLD sensitive gradient-echo 
echo planar imaging (GE-EPI) sequence with the following parameters: TR=2000ms, TE=30ms, 
FOV=192mm2, resolution 3x3x3 mm3, 150 volumes.

In order to evaluate white matter integrity and microstructural changes, we make use of a standard 
clinical DTI protocol with 30 diffusion directions, demonstrated to be sufficient for reconstructing 
white matter fiber tracts and not to affect test-retest reliability (81). DTI is acquired using a 2D axial 
single-shot dual spin-echo EPI (SE-EPI) sequence with the following parameters: TR= 10,000ms, TE= 
81ms, FOV=256mm2, resolution 2x2x2 mm3, 30 diffusion weighted directions with b=1000s/mm2 and 
4 b=0 reference images. 

MRI Data Processing
Herein we describe a comprehensive image analysis pipeline, which includes preprocessing, data 
cleaning, and post-processing for each imaging modality, including advanced modelling and 
calculation of quantitative imaging biomarkers (Figure 2). 

Page 8 of 22

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

8

All image processing is completed within URMC servers in the Center for Integrated Research 
Computing (CIRC), using BHWARD, a HIPAA compliant server. 

RT Dose Calculations
The RT dose map is first scaled and mapped with CT images using pydicom (version 1.4). T1w images 
are registered to subject-specific CT space using FMRIB’s Linear Image Registration Tool (FLIRT, 
(82). Subject specific parcellations derived from the Desikan-Killiany (83) atlas using Freesurfer are 
registered with the RT dose map. The mean, maximum, and minimum RT doses are extracted from 
each ROI, and the 2 Gy/fraction equivalent dose (EQD2) is calculated using the linear quadratic model 
(84), with an equal to 3, to model the radiosensitivity of normal brain tissue (85). 𝛼/𝛽 

T1w 
T1w images are processed by first masking out the tumor using the gross target volume (GTV) as 
contoured by the primary radiation oncologist from the RT structure set (86), delineated on planar MRI 
and CT imaging, using nibabel (https://nipy.org, version 3.1.1).  This is achieved by mapping the GTV 
to the CT images in subject space, and then performing an affine transform to register the T1-w images 
to the subject specific CT images (Figure 3). Thereafter, segmentation is performed using the tumor 
masked T1-w in Freesurfer (version 6.0.0, http://surfer.nmr.harvard.edu). The Freesurfer pipeline is 
run independently for each subject at each time point (pre-RT, 6-months, and 12-months post-RT). 
Briefly, processing includes skull-stripping and removal of non-brain tissue, motion correction, 
intensity normalization, automated Talairach transformation, white matter segmentation, and cortical 
parcellation using the Desikan-Killiany atlas (83),  which includes cortical and subcortical regions of 
interest (ROIs). Subsequent segmentation of thalamic nuclei was also performed using a probabilistic 
atlas based on ex vivo MRI and histology (87). 

Diffusion Imaging
DTI data is pre-processed using FMRIB’s Software Library (FSL, (88-91) diffusion toolbox (FDT, 
http://fsl.fmrib.ox.ac.uk/fsl). Briefly, inter-volume subject motion, brain extraction using BET (91), 
and eddy-current induced distortion correction are performed using EDDY (92). The diffusion tensors 
are then fit on eddy-corrected data using DTIFIT (93). DTIFIT fits a diffusion tensor model at each 
voxel and provides the 3 principal eigenvectors and eigenvalues of the diffusion tensor, from which 
the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD) can be measured (93).  All images are then registered to MNI standard space and interpolated to 
1 mm3 voxels. Binary gross target volume masks are then used to mask out abnormal tissue in 
processed maps. The JHU white-matter tractography atlas, composed of 20 structures identified using 
probabilistic tractography, is then used to extract mean FA, MD, AD, and RD values from regions of 
interest (94). 

Functional Imaging
rs-fMRI data is processed using FSL’s FMRI Expert Analysis Tool (FEAT, version 6.00)(95). 
Registration to high resolution structural space is carried out using a two-stage registration. First rs-
fMRI data is registered to high-resolution structural space using FMRIB’s Linear Image Registration 
Tool (FLIRT, (82), and then registration to MNI standard space (96) is further refined using FMRIB’s 
Nonlinear Image Registration Tool (FNIRT, (97). Since field maps were not acquired as part of the 
clinical scan protocol, a 12 degrees-of-freedom affine transformation was used for linear and nonlinear 
registration. All registrations are visually inspected during processing. Further preprocessing includes 
skull stripping using BET (91), motion correction using MCFLIRT (82), slice-time correction, spatial 
smoothing using a Gaussian kernel of FWHM 5mm, and high-pass temporal filtering. 
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Single-session independent component analysis (ICA) is then performed for each subject using 
probabilistic ICA implemented in FSL’s Multivariate Exploratory Linear Optimized Decomposition 
into Independent Components (MELODIC, Version 3.15). MELODIC de-composes input data into 
separate time courses and spatial maps using probabilistic principal component analysis (PCA). 
FMRIB’s ICA-based Xnoisifier (FIX, (98, 99) is then used to further denoise functional data by 
automatically classifying signal versus noise components from the time series data.  FIX is run using 
the standard pre-trained data (TR=3s, 3.5x3.5x3.5mm resolution, 6 minutes) which was preprocessed 
using default FEAT processing. All images and components are visually inspected for accuracy prior 
to further processing. 

Once all fMRI data has been preprocessed, the denoised functional data is used to construct subject 
specific functional connectivity (FC) matrices. Subject specific atlases generated using Freesurfer are 
then registered to the MNI standard space and used to extract the mean time series from each ROI. 
This is done to ensure that only functional regions outside of the tumor are used to construct FC 
matrices. FC matrices are then generated by computing the cross correlation between all pairs of nodes 
(ROIs), using the Pearson correlation coefficient (Figure 4). 

Subject specific FC matrices are then analyzed using the Brain Connectivity Toolbox (100) in 
MATLAB (R2020a). Subject specific correlation matrices are thresholded to yield weighted undirected 
networks, and analyzed using graph theory to yield measures of functional integration and segregation. 
Global measures of integration, including global efficiency, transitivity and modularity, are then 
computed for further statistical analysis (101). Local measures of segregation, including clustering 
coefficient and local efficiency (Table 2), are also computed for each ROI for further statistical 
analysis. A more thorough review of graph theory-based measures for rs-fMRI may be found in 
Rubinov and Sporns, 2010 (102). 

Table 2. Overview of graph theory measures used to analysis resting state functional connectivity and 
structural connectivity obtained from diffusion tractography. A more in depth review of graph theory 
and graph theory measures can be found in Rubinov and Sporns, 2010 (93)

Measurement Definition Equation
Node Degree The number of connections between one 

node and the rest of the network
𝑘𝑖 = Σ(𝑎𝑖𝑗)

Clustering Coefficient The number of connections between the 
neighbors of a node.

2𝑡/(𝑘(𝑘 ― 1); 
k is the node degree; t is the 

fraction of triangles around a node.
Efficiency Inverse of path length (minimum number 

of edges to traverse from one node to 
another)

1
𝑁(𝑁 ― 1)Σ ( 1

𝑑𝑖𝑗)
Where is the shortest path length 𝑑𝑖𝑗 

between nodes i and j
Modularity Areas of highly interconnected nodes, 

with few connections to nodes in other 
modules. 

𝑄 =
1
𝑙 Σ(𝑎𝑖𝑗 ―

(𝑘𝑖𝑘𝑗)
𝑙 )𝛿(𝑚𝑖,𝑚𝑗)
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Power & Sample Size Justification 
We estimate that 52 evaluable patients (a total of 75 subjects allowing for 30% of subjects with missing 
or incomplete data) will have ≥80% power to detect at least 0.4 standard deviation (SD) change on the 
delayed recall measure of the HVLT-R post-RT. The power analysis is based on a paired t-test with a 
two-sided significance level of 0.05.

Analysis Plan
Graphical methods will be used to explore the cognitive test and imaging data, to visually describe and 
compare distributions of continuous variables, and to visualize results of statistical analyses. 
Quantitative imaging metrics (cortical thickness, subcortical volume, FA, MD, AD, RD, local 
efficiency, and clustering coefficient) will be analyzed to investigate their relationships with RT dose 
and cognitive measures. Comparisons between raw scores on cognitive tests and imaging metrics pre 
and post-RT will be performed using paired t-tests and Wilcoxon signed-rank tests. Pearson and 
Spearman correlation analyses will be used to assess associations between pairs of continuous 
measures. Multivariate mixed effect regression models will be used to evaluate the relationships of 
cognitive tests at  6-month and 12-month visits with RT dose adjusting for the baseline cognitive test, 
imaging parameters, age, gender, tumor laterality, and tumor type. During the analyses, false discovery 
rate (FDR) method will be used to account for multiple comparisons (103).  All statistical analyses will 
be performed using R (R Foundation for Statistical Computing, Vienna, Austria) or SAS 9.4.

DISCUSSION & CONCLUSION

RICD is an important target of efforts to use more sophisticated radiation techniques such as intensity 
modulated radiation therapy and proton therapy in order to decrease side effects (104). While validated 
dose constraints exist for structures such as the brainstem, cochlea, optic nerves and chiasm, and 
pituitary gland (28), development of dose constraints for intracranial structures involved in cognition 
is a new and exciting area of research that promises to improve radiation outcomes. Despite conformal 
dose reduction to the hippocampi, RICD occurs in a large percentage of patients, reflecting the 
complexity of memory formation and the need to identify non-hippocampal structures involved in 
higher cognitive functions. The pathology underlying RICD likely begins prior to any gross anatomical 
changes or noticeable differences in cognition observed by the patient. Accordingly, development of 
quantitative in vivo biomarkers is essential for developing dose constraints and monitoring RICD.

This study utilizes conventional and advanced MRI, neurocognitive testing, and dosimetry 
information to provide a comprehensive description of RICD in patients with brain tumors receiving 
radiation therapy. The proposed analyses will provide insight into which intracranial structures are 
particularly susceptible to RT and how they modulate changes in cognition via aberrant network 
topology. The results of this study will help to provide dose constraints to better avoid cognitive decline 
that can ultimately be used to create radiation plans associated with less cognitive change. 
Incorporation of rs-fMRI into treatment planning and monitoring has the potential to improve cognitive 
outcomes in the setting of RT and provide personalized treatment. Additionally, utilization of graph 
theory will be able to identify specific nodes and hubs within brain networks that are susceptible to RT 
at the population and individual level (105).

This protocol and analysis pipeline will aid researchers interested in combining MRI imaging 
data including segmentation of intracranial structures not used in standard radiation planning with 
radiation dosimetry information to advance our understanding of RICD.  We provide detailed 
information on study design, clinical and imaging protocols and analysis pipeline with which to 
investigate RT-induced cognitive changes on intracranial structures that are not segmented with 
standard radiation planning software. This is an important and complex process which should be 
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transparent, and one of our goals with this paper is to promote utilization of open software packages in 
a useful and standardized way for the radiation oncology community.
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Figure 1. Study schema

Figure 2.  MRI Data Processing Pipeline. FC: Functional Connectivity; FA: Fractional Anisotropy; 
MD: Mean Diffusivity; AD: Axial Diffusivity; RD: Radial Diffusivity; DTI: Diffusion Tensor 
Imaging; SC: Structural Connectivity; GTV: Gross Target Volume; CT: Computed Tomography; RT: 
Radiotherapy; dMRI: Diffusion MRI; rs-fMRI: resting state functional MRI; FEAT: FMRI Expert 
Analysis Tool; MELODIC: Multivariate Exploratory Linear Optimized Decomposition into 
Independent Components; FIX: FMRIB’s ICA-based Xnoisefier. 

Figure 3. Representative Images from subject with vestibular schwannoma. (A) RT dose map from 
RT structure set, mapped to CT image, and scaled. (B) T1w structural image co-registered with CT 
image and RT dose map via affine transformation (yellow circle shows acoustic schwannoma). (C) 
T1w image with gross target volume (GTV, yellow circle) used to mask tumor prior to processing. (D) 
Subcortical and cortical structures obtained from brain parcellation, with vestibular schwannoma 
excluded (yellow arrow).

Figure 4. Representative functional connectivity correlation matrices. Matrices are computed using 
the Pearson correlation coefficient between every time course for all pairs of nodes. Matrices are 
thresholded at 0.5 and normalized. The average of all subject specific correlation matrices at baseline 
(A) and 6-months post RT (B). The color bar represents the normalized correlation coefficient between 
pairs of nodes.
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MRI Data Processing Pipeline. FC: Functional Connectivity; FA: Fractional Anisotropy; MD: Mean Diffusivity; 
AD: Axial Diffusivity; RD: Radial Diffusivity; DTI: Diffusion Tensor Imaging; SC: Structural Connectivity; 

GTV: Gross Target Volume; CT: Computed Tomography; RT: Radiotherapy; dMRI: Diffusion MRI; rs-fMRI: 
resting state functional MRI; FEAT: FMRI Expert Analysis Tool; MELODIC: Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components; FIX: FMRIB’s ICA-based Xnoisefier. 
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Representative Images from subject with vestibular schwannoma. (A) RT dose map from RT structure set, 
mapped to CT image, and scaled. (B) T1w structural image co-registered with CT image and RT dose map 

via affine transformation (yellow circle shows acoustic schwannoma). (C) T1w image with gross target 
volume (GTV, yellow circle) used to mask tumor prior to processing. (D) Subcortical and cortical structures 

obtained from brain parcellation, with vestibular schwannoma excluded (yellow arrow). 
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Representative functional connectivity correlation matrices. Matrices are computed using the Pearson 
correlation coefficient between every time course for all pairs of nodes. Matrices are thresholded at 0.5 and 
normalized. The average of all subject specific correlation matrices at baseline (A) and 6-months post RT 

(B). The color bar represents the normalized correlation coefficient between pairs of nodes. 
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ABSTRACT

Introduction: Radiation-induced cognitive decline (RICD) occurs in 50-90% of adult patients 6 
months post-treatment. In patients with low grade and benign tumors with long expected survival, this 
is of paramount importance. Despite advances in radiation (RT) treatment delivery, better 
understanding of structures important for RICD is necessary to improve cognitive outcomes. We 
hypothesize that RT may affect network topology and microstructural integrity on MRI prior to any 
gross anatomical or apparent cognitive changes. In this longitudinal cohort study, we aim to determine 
the effects of RT on brain structural and functional integrity and cognition. 

Methods and Analysis: This study (ClinicalTrials.gov NCT04390906) will enroll patients with benign 
and low-grade brain tumors receiving partial brain radiotherapy. Patients will receive either 
hypofractionated (>2 Gy/fraction) or conventionally fractionated (1.8-2 Gy/fraction) RT. All 
participants will be followed for 12 months, with MRIs conducted pre-RT and 6- and 12-months post-
RT, along with a battery of neurocognitive tests and questionnaires. The study was initiated in late 
2018 and will continue enrolling through 2024 with final follow ups completing in 2025. The 
neurocognitive battery assesses visual and verbal memory, attention, executive function, processing 
speed, and emotional cognition. MRI imaging protocols incorporate diffusion tensor imaging (DTI) 
and resting state fMRI (rs-fMRI) to assess structural connectivity (SC) and functional connectivity 
(FC), respectively. We will estimate the association between radiation dose, imaging metrics, and 
cognitive outcomes. 

Ethics and Dissemination: This study has been approved by the Research Subjects Review Board at 
the University of Rochester (STUDY00001512: Cognitive changes in patients receiving partial brain 
radiation). All results will be published in peer-reviewed journals and at scientific conferences. 

STRENGTHS AND LIMITATIONS OF THIS STUDY

 Strengths:
 Limiting the study to participants with only benign and low-grade brain tumors helps 

mitigate confounding factors such as variation in tumor biology and normal tissue 
infiltration.. 

 Prospective design with baseline evaluation prior to radiation allows capture of longitudinal 
changes in imaging and cognitive outcomes. 

 Use of open-source software assures transparency, reproducibility, and implementation of 
the proposed protocol by other investigators. 

 Inclusion of patients receiving hypofractionated radiation, which has increasingly been 
utilized in benign and low grade brain tumors, is highly important since much of the data 
focuses on conventionally fractionated radiation.

 Limitations:
 Heterogeneity of patient population including tumor type, size, and location, radiation 

techniques, patient clinical factors including age, other cancer treatments including 
chemotherapy and surgery is a significant limitation; however, these factors will be adjusted 
for in analysis and improve generalizability of results.
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INTRODUCTION 

Rationale and Evidence Gaps:  Cognitive impairment in patients with brain tumors has a major 
impact on quality of life and on the ability to function at work and in daily life (1-4). Deficits manifest 
clinically as impairments in multiple cognitive domains including memory, attention, and executive 
function (5, 6). The etiology is often multifactorial; contributing factors may include anxiety and/or 
depression, tumor location and pathology, comorbidities, and age, as well as effects from treatment 
(chemotherapy, surgery, and/or radiation therapy(7)). Notably, RICD is observed in more than 30% of 
patients at 4 months after partial or whole brain RT and in more than 50% at 6 months (8). RICD is 
particularly important in patients with low grade and benign tumors who are expected to have long-
term survivals. In these patients, treatment selection to maximize quality of life and minimize cognitive 
deficits is imperative. Considerable efforts have been directed toward understanding and preventing 
radiation-induced cognitive decline (RICD), an important late effect of radiation therapy (5, 9, 10). To 
date, multiple mechanisms underlying RICD have been elucidated, including damage to sites of 
neurogenesis (11, 12), neuroinflammation (13, 14), neuronal dysfunction (15), and vascular changes 
(16-18). 

RICD can occur in the absence of any gross anatomical changes. Advanced magnetic resonance 
imaging (MRI) techniques, however, may be able to detect effects from RT early on and may help 
elucidate mechanisms of radiation damage in RICD (19). MRI can examine volumetric and 
connectivity changes (both functional and structural) as well as changes in brain vasculature and 
perfusion. MRI may ultimately provide tools to identify patients at risk for RICD and help to direct 
efforts to prevent or ameliorate cognitive decline. Accordingly, accurate modeling of neurocognitive 
function with neuropsychological tests and correlation with in vivo imaging findings may help to 
identify putative biomarkers for routine quantitative evaluation of cognitive changes in patients with 
RICD. Novel MRI biomarkers of RICD are essential to improve understanding of how RT affects the 
brain structurally and functionally, to identify potential targets and therapeutics to mitigate RICD, and 
to improve initial RT plans to decrease complication rates. 

RT affects both gray and white matter structures, yet the functional implications of these 
changes are actively being investigated. Studies have shown that cranial RT is associated with dose-
dependent atrophy of the cortex (20), hippocampus (21) and amygdala (22) on T1-weighted (T1w) 
MRI. The hippocampus in particular has garnered attention as a vulnerable structure in the setting of 
RT; where RT has been shown to reduce neurogenesis (23, 24) and the pool of neural stem cells in the 
dentate gyrus (25, 26). Additionally, radiation dose to the hippocampus has also been shown to predict 
Hopkins Verbal Learning Test scores after brain irradiation (27). Currently, the hippocampus is the 
only intracranial structure for which validated dose constraints are used in standard treatment 
planning (28-31). NRG Oncology CC001 showed that conformal avoidance of the bilateral 
hippocampi (important structures in learning and memory) during whole brain RT reduced the risk of 
cognitive decline at 6 months from 68.2% to 59.5% (32). Despite advances in understanding of the role 
of the hippocampus in RICD, however, nearly 60% of patients still experience diminished cognitive 
function after RT despite conformal avoidance of the hippocampus. Moreover, recent studies have 
shown that radiation dose to the corpus callosum and surrounding white matter tracts can impact 
attention and processing speed at 6 months post-RT (33), executive function with radiation damage to 
the anterior cingulate cortex (34), damage to perisylvian white matter can predict language dysfunction 
(35), and damage to the hippocampus, temporal pole, and entorhinal cortex can predict changes in 
visuospatial memory (36). Thus, while the hippocampus is undoubtedly an important structure in 
memory formation, the singular focus on this region likely belies the complexity of structures and 
networks involved in memory formation and ignores the contribution of other anatomic structures to 
cognitive deficits seen post-therapy. 
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Novelty and Innovation: While there have been some strides made in understanding RICD, there 
remain significant gaps in our knowledge, which our study hopes to address. These include applications 
of rs-fMRI in prediction of RICD, evaluation of cognitive outcomes after hypofractionated radiation 
for low grade and benign brain tumors, evaluation of novel areas of interest that could contribute to 
cognitive decline, and integration of established autosegmentation software such as Freesurfer with 
radiation dose information. 

Whole brain networks can be evaluated by analyzing structural and functional connections 
within the brain and their connections to function and behavior (37). Structural connectivity in the 
brain is measured by tracing white matter tracts derived from diffusion tensor imaging (DTI), (38). 
DTI evaluates the direction and magnitude of water molecular diffusion in a three-dimensional space 
(diffusion tensor) and can provide information on anisotropic diffusion. Additional quantitative metrics 
such as the fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial 
diffusivity (RD) can be obtained from DTI and can help describe different disease states such as 
demyelination (39, 40). Studies using DTI have shown that RT results in atrophy, demyelination of 
white matter, and gliosis (41) particularly in patients with a history of demyelinating diseases (42).  
Partial brain RT has also been shown to result in decreased AD and increased RD within the 
parahippocampal cingulum, where these changes are correlated with declines in verbal memory and 
fluency (43). Notably, reconstruction of fiber tracts in brain tumors and surrounding tissues is 
confounded by false continuities within the tumor and surrounding edema (44). Accordingly, advanced 
diffusion methods have recently been developed to model and eliminate free water with single-shell 
diffusion weighted imaging data, to more accurately model the tissue microstructure of surrounding 
normal brain tissue (45). However, similar to gross volumetric changes, apparent evidence of white 
matter atrophy and demyelination may not be discernable prior to 6 months or 1-year post-RT (46, 47). 
Resting state functional MRI (rs-fMRI) can be used to evaluate functional connectivity. In particular, 
graph-theory analysis of functional connectivity has revealed topological organization of brain 
networks (48), which has been used to investigate how network topology is affected in development 
(49), aging (50) and pathology (51-53). Graph theory-based approaches treat the brain as a network of 
nodes and edges, where nodes can be a region of interest (ROI) or a single voxel. Edges are the 
connections between each node. These graphical relationships can then be modeled as a correlation 
matrix, in which cross correlation is performed to determine the strength between pairs of nodes. 
Analysis of these matrices has revealed the brain to be highly modular (54, 55), with specific network 
hubs (areas of many connections to other nodes)(56), which have been shown to change in the setting 
of pathology and RT (57).  Nevertheless, it is not known whether functional network changes can 
predict RICD or precede structural changes on MRI. 

There has been limited evaluation of whether rs-fMRI can be used to predict early radiation 
changes. This may be partially due to difficulty in using rs-fMRI in high grade glioma (33). Other 
studies have consistently demonstrated that IDH wild type gliomas (ie. gliomas with more aggressive 
histology) have greater impact on functional connectivity metrics such as global functional 
connectivity derived from rs-fMRI (58) as well as impact baseline cognitive status to a greater degree 
prior to any treatment (59). When limited to select patients, this modality may be useful as an MRI 
biomarker in early grade and benign brain tumor patients receiving radiation. Further studies focused 
on that population and excluding high grade glioma patients, such as this one, are needed. Whole brain 
metrics such as functional connectivity may provide early identification of participants who are at risk 
of decline and can be targeted with novel therapeutics, either by using advanced RT techniques to 
improve RT plans or use of radioprotective pharmaceuticals. Preliminary studies are limited but 
suggest that rs-fMRI and functional connectivity represent a promising modality with which to develop 
dose constraints and mitigate cognitive decline after RT (60-62).
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Study Aims: Investigation into structures outside the hippocampus that can be spared in order to 
improve cognitive outcomes remains an area of active study. We have the most data for RICD related 
to radiation dose to the corpus callosum (33, 63) and hippocampus (31, 32). However, we currently 
have no valid dose constraints for the structures outside the hippocampus including the corpus 
callosum. Development of dose constraints and investigation of which structures can be avoided and 
lead to improvement in clinical outcomes is an area of active research as we seek to understand the 
complex structural and functional relationships that lead to RICD (64).

Additionally, radiosurgery and fractionated radiosurgery are important modalities used 
frequently in the treatment of benign brain tumors. With the increased use of hypofractionation and 
radiosurgery, it is important to establish dose constraints that are valid in the setting of high dose per 
fraction (65). As of now, we have little data on dose constraints for cognitive avoidance structures in 
the setting of hypofractionation, and much is extrapolated from studies of conventional fractionation. 

Accordingly, this study will evaluate the effects of RT in patients with benign and low-grade 
brain tumors using multimodal neuroimaging and a battery of neurocognitive tests. We hypothesize 
that radiation induced damage will manifest prior to gross anatomical changes via alterations in 
network topology and microstructural integrity. Ultimately, we aim to establish structures beyond the 
hippocampus that are vulnerable to RT and develop dose constraints to minimize the risk and 
progression of RICD in this vulnerable patient population.

METHODS and ANALYSIS 

Study Design 
A total of 75 patients with benign and low-grade brain tumors planned to receive partial brain RT, 
either hypofractionated (>2 Gy/fraction) or conventionally fractionated (1.8-2 Gy/fraction), will be 
enrolled at the Wilmot Cancer Institute. All participants provide written informed consent according 
to the Institutional Review Board (IRB) approved protocol prior to any evaluation. Participants are 
followed for 12 months. 

Key inclusion criteria include 1) age ≥18-years; 2) patients with benign or low-grade brain tumors 
including grade 2 IDH-mutant astrocytoma, grade 2 oligodendroglioma, grade 1 and 2 meningiomas, 
vestibular schwannomas, pituitary adenomas, craniopharyngiomas, hemangiopericytomas, or other 
benign or low-grade brain tumors; 3) planned to receive either conventional or hypofractionated RT; 
4) no contraindication to gadolinium-enhanced MRI. Surgical excision and/or chemotherapy prior to 
enrollment is permitted. 

Key exclusion criteria include 1) Prior cranial RT; 2) Inability to participate in neurocognitive testing; 
3) Intractable seizures; 4) Non-English speaking; 5) Aphasia limiting ability to participate in 
neurocognitive testing. 

Participants will undergo three comprehensive evaluations (baseline, 6-month, and 12-month time 
points) that include clinical evaluation, MRI, a battery of neurocognitive tests, and questionnaires 
which evaluate patient-reported cognition, fatigue, anxiety, and depression. An additional 3-month 
timepoint includes questionnaires and neurocognitive testing only (Figure 1). 

Patient and Public Involvement
Patients will be involved in the design and conduct of this research as follows: After completion of 
this study, we will plan to further tailor the study design for a larger study by conducting interviews 
with participants. Once the results have been published, participants will be informed via email.
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Neurocognitive Testing
Assessments of neurocognitive and functional performance are performed to evaluate neurocognitive 
changes post-RT. The components of the neurocognitive testing battery are described in Table 1. The 
battery includes the standard tests recommended by the International Cognition and Cancer Task Force 
(66) testing verbal memory (HVLT-R, (67, 68), verbal fluency (COWA, (69), and executive function 
(TMT(70, 71). However, the battery additionally includes the BVMT-R, which has a similar format to 
the HVLT-R but focuses on visuospatial learning and memory (36), as well as additional iPad-based 
tests from Cambridge Cognition which have been shown to be valid and sensitive in the assessment of 
cancer-related cognitive impairment (72-74). Neuropsychological testing is administered by trained 
study coordinators using a standardized testing manual; study coordinators are supervised by the study 
team with expertise in neurology, neuropsychology and cognitive science. Raw scores will be used in 
analysis and adjusted for covariates such as age. Testing is performed in a quiet, comfortable room 
without distractions. 

Table 1. Description and platform of tests in cognitive battery
Test Description Cognitive Domain Platform
Wide Range 
Achievement Test-4 
(WRAT-4)

Word reading Cognitive reserve, 
education level

Paper-based

Hopkins Verbal 
Learning Test-Revised 
(HVLT-R)

Immediate and delayed 
recall of a word list

Verbal learning and 
memory

Paper-based

Controlled Oral Word 
Associated Test 
(COWA)

Number of words the 
participant can provide in 
a category over one 
minute

Verbal fluency Paper-based

Trail Making Test A 
and B (TMT-A and 
TMT-B)

Connect circles 
containing a series of 
numbers (A) or numbers 
and letters (B) in a 
pattern

Executive function Paper-based

Brief Visuospatial 
Memory Test-Revised 
(BVMT-R)

Immediate and delayed 
recall of a series of 
shapes and designs

Visuospatial learning and 
memory

Paper-based

Emotional Recognition 
Task (ERT)

Identification of the 
emotion indicated by a 
facial expression

Emotional and social 
cognition

Cambridge 
cognition

Spatial Working 
Memory (SWM)

Use of strategy to find a 
yellow token behind 
colored boxes

Executive function, 
visuospatial working 
memory

Cambridge 
cognition

Paired Associates 
Learning (PAL)

Match the pattern to the 
box where it was 
previously displayed

Visuospatial episodic 
memory and new learning

Cambridge 
cognition

Delayed Matching to 
Sample (DMS)

Matching of complex 
visual patterns

Visual matching ability 
and short-term visual 
recognition memory

Cambridge 
cognition

Reaction Time Task 
(RTT)

Select a circle in which a 
yellow dot appears

Assessment of motor and 
mental response speed

Cambridge 
cognition
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Patient Reported Outcomes
Patient reported outcome measures of symptoms that may influence cognition are recorded 
longitudinally so that they can be studied and accounted for in analyses. These symptoms include 
fatigue, anxiety, and depression using validated measures including the Functional Assessment of 
Cancer Therapy-Brain (FACT-Br, neurologic symptoms in brain tumor patients, (75), Functional 
Assessment of Cancer-Fatigue (FACIT-Fatigue, symptoms of fatigue, (76), Patient Health 
Questionnaire-9 (PHQ-9, symptoms of depression, (77), State-Trait Anxiety Inventory (STAI, (78), 
and Short Form of the Profile of Mood States-2 (POMS2-SF, subscales of anger-hostility, confusion-
bewilderment, depression-dejection, fatigue-inertia, tension-anxiety, vigor-activity, and friendliness, 
(79). Subjective cognition is measured using the Functional Assessment of Cancer Therapy-Cognition 
(FACT-Cog, (80) for comparison with scores on objective neurocognitive testing. 

Demographic and Clinical Information 
Patient characteristics that may affect cognitive outcomes and trajectories are recorded, including age, 
education level, comorbidities including diabetes, hypertension, autoimmune disease, tumor 
hemisphere, tumor site, tumor pathology, prior surgeries, employment status, smoking status, alcohol 
use, sex/gender, hypopituitarism, menopausal status, steroid use, use of medications that can affect 
cognition and mood, and exposure to chemotherapy.  

Radiotherapy Planning
Each patient is planned and treated per standard of care by their treating radiation oncologist. RT plans 
for single fraction or fractionated radiosurgery are created using BrainLAB Elements® planning 
software. All other plans were created using Varian Eclipse® treatment planning software. For 
consistency, all radiation dose maps were calculated in Eclipse for all patients using a 1 mm x 1 mm 
grid.  

MRI Acquisition
All imaging is performed on a 3T GE Discovery 750 MRI system (Milwaukee, WI, USA), equipped 
with an 8-channel head coil. High-resolution T1w anatomical images are acquired using a 3D BRAVO 
FSPGR sequence with the following parameters: repetition time (TR)= 8.2 ms, echo time (TE)= 3.2 
ms, field of view (FOV) 256 mm2, resolution 1x1x1mm3. 

Blood oxygen level dependent (BOLD) rs-fMRI is acquired using a BOLD sensitive gradient-echo 
echo planar imaging (GE-EPI) sequence with the following parameters: TR=2000ms, TE=30ms, 
FOV=192mm2, resolution 3x3x3 mm3, 150 volumes.

In order to evaluate white matter integrity and microstructural changes, we make use of a standard 
clinical DTI protocol with 30 diffusion directions, demonstrated to be sufficient for reconstructing 
white matter fiber tracts and not to affect test-retest reliability (81). DTI is acquired using a 2D axial 
single-shot dual spin-echo EPI (SE-EPI) sequence with the following parameters: TR= 10,000ms, TE= 
81ms, FOV=256mm2, resolution 2x2x2 mm3, 30 diffusion weighted directions with b=1000s/mm2 and 
4 b=0 reference images. 

MRI Data Processing
Herein we describe a comprehensive image analysis pipeline, which includes preprocessing, data 
cleaning, and post-processing for each imaging modality, including advanced modelling and 
calculation of quantitative imaging biomarkers (Figure 2). 
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All image processing is completed within URMC servers in the Center for Integrated Research 
Computing (CIRC), using BHWARD, a HIPAA compliant server. 

RT Dose Calculations
The RT dose map is first scaled and mapped with CT images using pydicom (version 1.4). T1w images 
are registered to patient-specific CT space using FMRIB’s Linear Image Registration Tool (FLIRT, 
(82). Patient-specific parcellations derived from the Desikan-Killiany (83) atlas using Freesurfer are 
registered with the RT dose map. The mean, maximum, and minimum RT doses are extracted from 
each ROI, and the 2 Gy/fraction equivalent dose (EQD2) is calculated using the linear quadratic model 
(84), with an equal to 3, to model the radiosensitivity of normal brain tissue (85). 𝛼/𝛽 

T1w 
T1w images are processed by first masking out the tumor using the gross target volume (GTV) as 
contoured by the primary radiation oncologist from the RT structure set (86), delineated on planar MRI 
and CT imaging, using nibabel (https://nipy.org, version 3.1.1).  This is achieved by mapping the GTV 
to the CT images in patient space, and then performing an affine transform to register the T1-w images 
to the patient specific CT images (Figure 3). Thereafter, segmentation is performed using the tumor 
masked T1-w in Freesurfer (version 6.0.0, http://surfer.nmr.harvard.edu). The Freesurfer pipeline is 
run independently for each participant at each time point (pre-RT, 6-months, and 12-months post-RT). 
Briefly, processing includes skull-stripping and removal of non-brain tissue, motion correction, 
intensity normalization, automated Talairach transformation, white matter segmentation, and cortical 
parcellation using the Desikan-Killiany atlas (83),  which includes cortical and subcortical regions of 
interest (ROIs). Subsequent segmentation of thalamic nuclei are also performed using a probabilistic 
atlas based on ex vivo MRI and histology (87). ROIs will include whole brain gray and white matter, 
cerebral hemispheres and subcortical gray matter (hippocampus, amygdala, caudate, putamen, 
thalamus, nucleus basalis of Meynert), as well as white matter tracts including cingulum, fornix, 
parahippocampal white matter, and corpus callosum.

Diffusion Imaging
DTI data is pre-processed using FMRIB’s Software Library (FSL, (88-91) diffusion toolbox (FDT, 
http://fsl.fmrib.ox.ac.uk/fsl). Briefly, inter-volume patient motion, brain extraction using BET (91), 
and eddy-current induced distortion correction are performed using EDDY (92). The diffusion tensors 
are then fit on eddy-corrected data using DTIFIT (93). DTIFIT fits a diffusion tensor model at each 
voxel and provides the 3 principal eigenvectors and eigenvalues of the diffusion tensor, from which 
the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD) can be measured (93).  All images are then registered to MNI standard space and interpolated to 
1 mm3 voxels. Binary gross target volume masks are then used to mask out abnormal tissue in 
processed maps. The JHU white-matter tractography atlas, composed of 20 structures identified using 
probabilistic tractography, is then used to extract mean FA, MD, AD, and RD values from regions of 
interest (94). 

Functional Imaging
rs-fMRI data is processed using FSL’s FMRI Expert Analysis Tool (FEAT, version 6.00)(95). 
Registration to high resolution structural space is carried out using a two-stage registration. First rs-
fMRI data is registered to high-resolution structural space using FMRIB’s Linear Image Registration 
Tool (FLIRT, (82), and then registration to MNI standard space (96) is further refined using FMRIB’s 
Nonlinear Image Registration Tool (FNIRT, (97). Since field maps were not acquired as part of the 
clinical scan protocol, a 12 degrees-of-freedom affine transformation was used for linear and nonlinear 
registration. All registrations are visually inspected during processing. Further preprocessing includes 
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skull stripping using BET (91), motion correction using MCFLIRT (82), slice-time correction, spatial 
smoothing using a Gaussian kernel of FWHM 5mm, and high-pass temporal filtering. 

Single-session independent component analysis (ICA) is then performed for each participant using 
probabilistic ICA implemented in FSL’s Multivariate Exploratory Linear Optimized Decomposition 
into Independent Components (MELODIC, Version 3.15). MELODIC de-composes input data into 
separate time courses and spatial maps using probabilistic principal component analysis (PCA). 
FMRIB’s ICA-based Xnoisifier (FIX, (98, 99) is then used to further denoise functional data by 
automatically classifying signal versus noise components from the time series data.  FIX is run using 
the standard pre-trained data (TR=3s, 3.5x3.5x3.5mm resolution, 6 minutes) which was preprocessed 
using default FEAT processing. All images and components are visually inspected for accuracy prior 
to further processing. 

Once all fMRI data has been preprocessed, the denoised functional data is used to construct participant 
specific functional connectivity (FC) matrices. Participant specific atlases generated using Freesurfer 
are then registered to the MNI standard space and used to extract the mean time series from each ROI. 
This is done to ensure that only functional regions outside of the tumor are used to construct FC 
matrices. FC matrices are then generated by computing the cross correlation between all pairs of nodes 
(ROIs), using the Pearson correlation coefficient (Figure 4). 

Participant specific FC matrices are then analyzed using the Brain Connectivity Toolbox (100) in 
MATLAB (R2020a). Participant specific correlation matrices are thresholded to yield weighted 
undirected networks, and analyzed using graph theory to yield measures of functional integration and 
segregation. Global measures of integration, including global efficiency, transitivity and modularity, 
are then computed for further statistical analysis (101). Local measures of segregation, including 
clustering coefficient and local efficiency (Table 2), are also computed for each ROI for further 
statistical analysis. A more thorough review of graph theory-based measures for rs-fMRI may be found 
in Rubinov and Sporns, 2010 (102). 
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Table 2. Overview of graph theory measures used to analysis resting state functional connectivity and 
structural connectivity obtained from diffusion tractography. A more in depth review of graph theory 
and graph theory measures can be found in Rubinov and Sporns, 2010 (93)

Measurement Definition Equation
Node Degree The number of connections between one 

node and the rest of the network
𝑘𝑖 = Σ(𝑎𝑖𝑗)

Clustering Coefficient The number of connections between the 
neighbors of a node.

2𝑡/(𝑘(𝑘 ― 1); 
k is the node degree; t is the 

fraction of triangles around a node.
Efficiency Inverse of path length (minimum number 

of edges to traverse from one node to 
another)

1
𝑁(𝑁 ― 1)Σ ( 1

𝑑𝑖𝑗)
Where is the shortest path length 𝑑𝑖𝑗 

between nodes i and j
Modularity Areas of highly interconnected nodes, 

with few connections to nodes in other 
modules. 

𝑄 =
1
𝑙 Σ(𝑎𝑖𝑗 ―

(𝑘𝑖𝑘𝑗)
𝑙 )𝛿(𝑚𝑖,𝑚𝑗)

Power & Sample Size Justification 
We estimate that 52 evaluable patients (a total of 75 participants allowing for 30% of participants with 
missing or incomplete data) will have ≥80% power to detect at least 0.4 standard deviation (SD) change 
on the delayed recall measure of the HVLT-R post-RT. The power analysis is based on a paired t-test 
with a two-sided significance level of 0.05.

Analysis Plan
Graphical methods will be used to explore the cognitive test and imaging data, to visually describe and 
compare distributions of continuous variables, and to visualize results of statistical analyses. 
Quantitative imaging metrics (cortical thickness, subcortical volume, FA, MD, AD, RD, local 
efficiency, and clustering coefficient) will be analyzed to investigate their relationships with RT dose 
and cognitive measures. Comparisons between raw scores on cognitive tests and imaging metrics pre 
and post-RT will be performed using paired t-tests and Wilcoxon signed-rank tests. Pearson and 
Spearman correlation analyses will be used to assess associations between pairs of continuous 
measures. Multivariate mixed effect regression models will be used to evaluate the relationships of 
cognitive tests at  6-month and 12-month visits with RT dose to ROIs known to be instrumental in the 
specific cognitive domain adjusting for the baseline cognitive test, imaging parameters, age, gender, 
tumor laterality, and tumor type. During the analyses, false discovery rate (FDR) method will be used 
to account for multiple comparisons (103).  All statistical analyses will be performed using R (R 
Foundation for Statistical Computing, Vienna, Austria) or SAS 9.4.

DISCUSSION & CONCLUSION

RICD is an important target of efforts to use more sophisticated radiation techniques such as intensity 
modulated radiation therapy and proton therapy in order to decrease side effects (104). While validated 
dose constraints exist for structures such as the brainstem, cochlea, optic nerves and chiasm, and 
pituitary gland (28), development of dose constraints for intracranial structures involved in cognition 
is a new and exciting area of research that promises to improve radiation outcomes. Despite conformal 
dose reduction to the hippocampi, RICD occurs in a large percentage of patients, reflecting the 
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complexity of memory formation and the need to identify non-hippocampal structures involved in 
higher cognitive functions. The pathology underlying RICD likely begins prior to any gross anatomical 
changes or noticeable differences in cognition observed by the patient. Accordingly, development of 
quantitative in vivo biomarkers is essential for developing dose constraints and monitoring RICD.

This study utilizes conventional and advanced MRI, neurocognitive testing, and dosimetry 
information to provide a comprehensive description of RICD in patients with brain tumors receiving 
radiation therapy. The proposed analyses will provide insight into which intracranial structures are 
particularly susceptible to RT and how they modulate changes in cognition via aberrant network 
topology. The results of this study will help to provide dose constraints to better avoid cognitive decline 
that can ultimately be used to create radiation plans associated with less cognitive change. 
Incorporation of rs-fMRI into treatment planning and monitoring has the potential to improve cognitive 
outcomes in the setting of RT and provide personalized treatment. Additionally, utilization of graph 
theory will be able to identify specific nodes and hubs within brain networks that are susceptible to RT 
at the population and individual level (105).

This protocol and analysis pipeline will aid researchers interested in combining MRI imaging 
data including segmentation of intracranial structures not used in standard radiation planning with 
radiation dosimetry information to advance our understanding of RICD.  We provide detailed 
information on study design, clinical and imaging protocols and analysis pipeline with which to 
investigate RT-induced cognitive changes on intracranial structures that are not segmented with 
standard radiation planning software. This is an important and complex process which should be 
transparent, and one of our goals with this paper is to promote utilization of open software packages in 
a useful and standardized way for the radiation oncology community.
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Figure 1. Study schema

Figure 2.  MRI Data Processing Pipeline. FC: Functional Connectivity; FA: Fractional Anisotropy; 
MD: Mean Diffusivity; AD: Axial Diffusivity; RD: Radial Diffusivity; DTI: Diffusion Tensor 
Imaging; SC: Structural Connectivity; GTV: Gross Target Volume; CT: Computed Tomography; RT: 
Radiotherapy; dMRI: Diffusion MRI; rs-fMRI: resting state functional MRI; FEAT: FMRI Expert 
Analysis Tool; MELODIC: Multivariate Exploratory Linear Optimized Decomposition into 
Independent Components; FIX: FMRIB’s ICA-based Xnoisefier. 

Figure 3. Representative Images from participant with vestibular schwannoma. (A) RT dose map from 
RT structure set, mapped to CT image, and scaled. (B) T1w structural image co-registered with CT 
image and RT dose map via affine transformation (yellow circle shows acoustic schwannoma). (C) 
T1w image with gross target volume (GTV, yellow circle) used to mask tumor prior to processing. (D) 
Subcortical and cortical structures obtained from brain parcellation, with vestibular schwannoma 
excluded (yellow arrow).

Figure 4. Representative functional connectivity correlation matrices. Matrices are computed using 
the Pearson correlation coefficient between every time course for all pairs of nodes. Matrices are 
thresholded at 0.5 and normalized. The average of all patient specific correlation matrices at baseline 
(A) and 6-months post RT (B). The color bar represents the normalized correlation coefficient between 
pairs of nodes.
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MRI Data Processing Pipeline. FC: Functional Connectivity; FA: Fractional Anisotropy; MD: Mean Diffusivity; 
AD: Axial Diffusivity; RD: Radial Diffusivity; DTI: Diffusion Tensor Imaging; SC: Structural Connectivity; 

GTV: Gross Target Volume; CT: Computed Tomography; RT: Radiotherapy; dMRI: Diffusion MRI; rs-fMRI: 
resting state functional MRI; FEAT: FMRI Expert Analysis Tool; MELODIC: Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components; FIX: FMRIB’s ICA-based Xnoisefier. 
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Representative Images from subject with vestibular schwannoma. (A) RT dose map from RT structure set, 
mapped to CT image, and scaled. (B) T1w structural image co-registered with CT image and RT dose map 

via affine transformation (yellow circle shows acoustic schwannoma). (C) T1w image with gross target 
volume (GTV, yellow circle) used to mask tumor prior to processing. (D) Subcortical and cortical structures 

obtained from brain parcellation, with vestibular schwannoma excluded (yellow arrow). 
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Representative functional connectivity correlation matrices. Matrices are computed using the Pearson 
correlation coefficient between every time course for all pairs of nodes. Matrices are thresholded at 0.5 and 
normalized. The average of all subject specific correlation matrices at baseline (A) and 6-months post RT 

(B). The color bar represents the normalized correlation coefficient between pairs of nodes. 
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