Supporting information

Upregulation of Robo4 expression by SMAD signaling suppresses vascular permeability and mortality in endotoxemia and COVID-19 models

Maaya Morita¹, Aki Yoneda¹, Nagisa Tokunoh^{2,3}, Tatsumi Masaki¹, Keisuke Shirakura¹, Mayumi Kinoshita¹, Rina Hashimoto⁴, Naoya Shigesada¹, Junya Takahashi¹, Masashi Tachibana¹, Shota Tanaka¹, Masanori Obana^{1,5}, Nobumasa Hino¹, Masahito Ikawa^{1,2,5}, Kazutake Tsujikawa¹, Chikako Ono^{2,5}, Yoshiharu Matsuura^{2,5}, Hiroyasu Kidoya⁶, Nobuyuki Takakura^{2,5}, Yoshiaki Kubota⁷, Takefumi Doi¹, Kazuo Takayama⁴, Yasuo Yoshioka^{1,2,3,5}, Yasushi Fujio^{1,5}, Yoshiaki Okada^{1,5*}

¹Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
²Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
³BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Osaka 565-0871, Japan
⁴Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan

⁵Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan

⁶Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Yoshida, Fukui 910-1193, Japan.

⁷Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.

*Correspondence to: **Yoshiaki Okada**, Ph.D., Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan Email: okadabos@phs.osaka-u.ac.jp

Figure S1. Culture condition-dependent expression levels of PAI-1, ID-1, and Robo4 in endothelial cells

(A) HUVECs cultured in the presence or absence of Matrigel. Pictures are representative images of HUVECs cultured in normal or Matrigel conditions. Scale bar = 200 μ m. (B) Effect of Matrigel culture on PAI-1, Robo4, and ID-1 expression. HUVECs were cultured in the presence or absence of Matrigel for 24 h, and PAI-1, ID-1, and Robo4 expression was measured by qPCR (n = 4, *p < 0.05, **p < 0.01, by the unpaired *t*-test). Data are expressed as the mean \pm standard error of the mean.

Figure S2. Expression levels of Robo4 and ID-1 in endothelial cells treated with K02288 and BMP9. HUVECs were treated with K02288 (0.1 to 2 μ M) for 30 min followed by BMP9 (1 ng/mL). Expression levels of Robo4 (A) and ID-1 (B) were measured by qPCR (n = 4, *p < 0.05, **p < 0.01 by Tukey's test). Data are expressed as the mean ± standard error of the mean.

Figure S3. Expression of ALK1 in mouse lung endothelial cells. Immunofluorescent staining for ALK1 and VE-cadherin using mouse lungs infected with or without SARS-CoV-2.

Figure S4. K02288 suppressed body weight loss in SARS-CoV-2-infected mice. (A, B) BALB/c mice were intranasally inoculated with SARS-CoV-2, and intraperitoneally

injected with vehicle or K02288 (2 mg/kg body weight) in PBS containing 1% DMSO. Body weights of control mice (n = 10) (A) and K02288-injected mice (n = 10) (B) were measured. The humane endpoint was set at 25% body weight loss relative to initial body weight at the time of infection. (C) Expression levels of junction-related genes in SARS-CoV-2 infected mouse lungs with or without K02288 treatment. Four days after the SARS-CoV-2 infection, lungs were harvested from mice with or without K02288 treatment and used for RNA preparation. Expression levels of junction-related genes were measured by qPCR (n = 5, N.S., not significant by the unpaired *t*-test). (D) Transmission electron microscope (TEM) images of endothelial junctions between in mouse lungs treated with or without SARS-CoV-2 and K02288. Arrowheads indicate the junctions between endothelial cells.

Generation of screening cells		5'-3'
Infusion primers	Fw	GTACTTGGAGCGGCCCCTTTCGTCTTCACTCGAG
	Rv	TATTTTATTGCGGCCCACTGATAGGGAGTGGTAA
qPCR primers		5'-3'
human Robo4	Fw	TTATGGCTCCCTCATCGCTG
	Rv	GAGGCTGTCTGAGCTGGAAC
human PAI-1	Fw	GAAGATCGAGGTGAACGAGAGTG
	Rv	ACCACAAAGAGGAAGGGTCTGT
human ID-1	Fw	CTCCAACTGAAGGTCCCTGATGTAG
	Rv	CGACATGAACGGCTGTTACTCAC
human GAPDH	Fw	TGCACCACCAACTGCTTAGC
	Rv	GGCATGGACTGTGGTCATGAG
mouse Robo4	Fw	CTAACAGCTCCCCACTGCTC
	Rv	CTGGGCTTTGAGAAAGGTTC
mouse ALK1	Fw	CTCAGTCACAATCCAGAGAAGCC
	Rv	ACACTCTCTTCACTCCCTCTAC
mouse GAPDH	Fw	TGCACCACCAACTGCTTAG
	Rv	GGCATGGACTGTGGTCATGA
SARS-CoV-2	Fw	AGCCTCTTCTCGTTCCTCATCAC
	Rv	CCGCCATTGCCAGCCATTC
mouse VE-cadherin	Fw	TACTCAGCCCTGCTCTGGTT
	Rv	GCTTGCAGAGGCTGTGTCTT
mouse CD31	Fw	ACGAGCCCAATCACGTTTCAG
	Rv	AAAACGCTTGGGTGTCATTCA
mouse Claudin-5	Fw	CTGGACCACAACATCGTGAC
	Rv	AGTGCTACCCGTGCCTTAAC
mouse Occludin	Fw	TTGAAAGTCCACCTCCTTACAGA
	Rv	CCGGATAAAAAGAGTACGCTGG
mouse ZO-1	Fw	GCCGCTAAGAGCACAGCAA

Table S1. Primers used in this study.

Γ _W Τ <u></u> <u></u> Τ <u></u> <u></u> Τ <u></u> <u></u> Τ <u></u> <u></u> <u></u> Τ <u></u>
Tw ICICITCACUICIAIUAICCIUU
Rv TTTGATGGACTCGTTCTCGGG
Fw TTGCTGCGGGTTTTGTTCCT
Rv TCTACCGCTTCCAATTTGTTGAG
5'-3'
Fw CCATCAAGCTGATCCGGAAC
Rv GTAACAGGAGGGTCCCATCC
Fw GCCTGCATTACCGGTCGATGCAACGA
Rv GTGGCAGATGGCGCGGCAACACCATT