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Supplemental Figure 1. MPRA activity comparisons among all cell lines. Pair-wise linear 
correlation between changes in allele-specific transcriptional activity for all measurements and 
across all cell lines. R2 correlation and p-value are provided. 
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Supplemental Figure 2. Transcription factor footprints at functional regulatory variants. 
Transcription factor (TF) footprints identified at 54 of 556 functional regulatory variants are 
shown and ranked by the total number of motifs identified. 
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Supplemental Figure 3. Dual-luciferase reporter assay validation of the indicated 
functional regulatory variant. (A-K) Dual-luciferase reporter assays comparing the reference 
(Ref, in green) and alternate (Alt, in red) alleles ability to drive luciferase expression is depicted. 
Variant rs number and the ALL cell line the luciferase reporter assay was tested in is provided. 
Data show the mean +/- SEM of three (A) or two (B-K) independent experiments. P-value is 
calculated using a student’s t-test.  
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Supplemental Figure 4. Chromatin accessibility at rs1247117 in primary ALL cells. (A) 
IGV genome browser image of ATAC-seq chromatin accessibility spanning rs1247117 in 
diverse molecular subtypes of ALL is provided. (B) PU.1 footprint analysis comparing 
normalized ATAC-seq cut count signal for all bound PU.1 sites (red) compared to unbound 
(blue) sites across all primary ALL cells from patients. (C) Primary ALL cells with SNV genotype 
information were analyzed (n=69). Normalized ATAC-seq read counts in heterozygous (GA) 
primary ALL cells (n=12) at rs1247117 compared to homozygous (AA) primary ALL cells (n=57). 
Mann Whitney U test p-value is provided.  (D) Normalized ATAC-seq read counts per allele in 
primary ALL cells for G allele (n=12) and A allele (n=69). Normalized counts for G and A alleles 
are shown. Mann Whitney U test p-value is provided. 
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