1	Nicotine rebalances NAD * homeostasis and improves aging-related
2	symptoms in male mice by enhancing NAMPT activity
3	Liang Yang <i>et al</i>
4	
5	
6	
7	
•	
8	
9	Supplementary Information
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	

NAD⁺ homed

Supplementary Figure. 1

39

40 Supplementary Figure 1. Nanogram-trace of Nicotine increased NAD⁺ levels and did not induced 41 the nAchR activation. a. LC-MS and quantification of nicotine (n=2-4) of mice serum, liver and brain 42 with or without nicotine for 6 month. b. The gene expression of NAMPT in aged brain with or without 43 nicotine for 6 months. c. The protein expression of the NAMPT with nicotine in a dose dependent manner 44 for 48 h. d. The gene expression of the nicotinic cholinergic receptor α and β subunits in aged brain with 45 or without nicotine for 6 months. e. The images of nicotine effects on the states of nAChRs activity. The 46 scalar bar: 100 µm. f. The statistical analysis of the mean fluorescence intensity of Calcium ions in 47 nicotine treatment (n=3 biologically independent samples/group). (g) Inhibition of nAChRs activity did not 48 affect the promoting effect of nicotine on SIRT1-NAMPT interaction. Data are means ± SEM. p values

49 were determined by two-sided Student's t-test (a,b), or, One-way ANOVA with Tukey's multiple

- 50 comparisons test (c,f), or two way ANOVA analysis and Fisher's least significant difference test (d).
- 51

Supplementary Figure 2.

53 **Supplementary Figure 2. Nicotine increased nuclear deacetylation levels and enhanced the** 54 **co-localization of SIRT1 and NAMPT in HT22 cells. a.** Fluorescent images of HT22 cells following the 55 treatment of nicotine effect on nuclear acetylation. The scalar bar: 50 μm. **b.** The fluorescent intensity and 56 co-localization of acetylation levels (Green) and nucleus (Blue) in single cell, administrated with or 57 without nicotine. The scalar bar: 20 μm. **c.** The overlap ratio of acetylation levels and nucleus in HT22 58 cells (n=6 independent photos/group). **d.** The fluorescent intensity of SIRT1 (Green), NAMPT (Red) and 59 Nucleus (Blue) in single cell. The scalar bar: 50 μm. **e.** The mean fluorescence intensity and

60 co-localization of SIRT1, NAMPT and Nucleus of HT22 cells administrated with or without nicotine. The 61 scalar bar: 20 μ m. **f.** The overlap ratio among SIRT1, NAMPT and nucleus in HT22 cells (n=3 62 independent photos/group). Data are means ± SEM. *p* values were determined by two-sided Student's 63 t-test (**c**, **f**).

64

65 66

67 Supplementary Figure 3. Nicotine increases NAD⁺ generation and NAMPT activity in vivo and in 68 vitro. a. NAMPT acute activity in hippocampus of aged mice administered with or without nicotine at 13 69 months of age (n=4 biologically independent samples/group). b. LC-MS and quantification of β -NMN 70 content of HT22 cells with 1 ng/mL nicotine (n=3 biologically independent samples/group) and 10 ng/mL 71 nicotine (n=3) for 48 h. c. Total NAD⁺ levels of HT22 cells after treated with nicotine at 1 ng/mL and 500 72 ng/mL for 48 h(n=3 biologically independent samples/group). d. The cytosolic NAD⁺/NADH ratio (n=3) 73 and nuclear NAD⁺/NADH ratio (n=3 biologically independent samples/group) were reflected by 74 biosensors in HT22 cells with or without nicotine. **e.** The NAD⁺/NADH ratio of β -galactose-induced aged 75 HT22 cells without nicotine and with nicotine for 7 days (n=4 biologically independent samples/group). 76 Data are means ± SEM. p values were determined by two-sided Student's t-test (a) or One-way ANOVA 77 with Tukey's multiple comparisons test (b, c, e) two way ANOVA analysis and Fisher's least significant 78 difference test (d).

- 79
- 80
- 81
- 82

84 Supplementary Figure 4.Nicotine did not change the SIRT1 expression and not directly affect 85 SIRT1 activity. a. Gene expression of sirt family in aged brain with or without nicotine for 6 months. b. 86 Western blot and quantification of the protein expression of SIRT1 in nicotine-treated HT22 cells (n=3 87 biologically independent samples/group). c. Western blot and quantification of the protein expression of 88 SIRT6 in nicotine-treated HT22 cells (n=3 biologically independent samples/group). d. The total NAD⁺ 89 levels of SIRT6 knockdown cells after nicotine treatment (n=3 biologically independent samples/group). e. 90 The effects of NAMPT inhibitor: FK866 and Nampt-IN-1 on SIRT1-NAMPT interaction after nicotine 91 treatment on HT22 cells. f. Western blot and quantification of silencing of SIRT1 expression in HT22 cells. 92 g. Nicotine has no effect on the purified protein SIRT1 activity (n=3 biologically independent 93 samples/group). h. LC-MS and quantification of cotinine content of mice brain with or without nicotine for 94 6 month (n=4). Data are means ± SEM. p values were determined by two way ANOVA analysis and 95 Fisher's least significant difference test (a), or two-sided Student's t-test (h),or One-way ANOVA with 96 Tukey's multiple comparisons test (b,c,d,f,g).

98 Supplementary Figure 5. Nicotine did not change the OCR and ECAR in BV2, HT22 cells. OCR 99 measurement of nicotine treated a. BV2 cell, b. HT22 cell and quantitative analysis of Basal respiration, 100 ATP-linked respiration, Proton leak, Maximal respiration, Spare respiratory capacity, Non-mitochondrial 101 oxygen consumption. ECAR of nicotine treated c. BV2 cell, d. HT22 cell and quantitative analysis of 102 Glycolysis, Glycolytic capacity, Glycolytic reserve and non-glycolytic acidification. Data are means ± SEM 103 (n=2-3 biologically independent samples/group). *p* values were determined by two-sided Student's t-test. 104

106 Supplementary Figure 6. Scratch Wound analysis of nicotine on NAMPT-K53Q cells. a. The RWD%

107 of BV2 cells transfected NAMPT-Flag and NAMPT-K53Q with or without nicotine for 12 h (n=4 108 biologically independent samples/group).**b.** The RWD% of HT22 cells transfected NAMPT-Flag and 109 NAMPT-K53Q with or without nicotine for 12 h (n=4 biologically independent samples/group). Data are 110 means \pm SEM. *p*<0.05 values were determined by One-way ANOVA with Tukey's multiple comparisons 111 test (**a**, **b**) **p* Flag+Nicotine vs Flag.

112

113

114 Supplementary Figure 7. The transcriptomic analyses of nicotine administration aged mice brain.

a. Spearman's rank correlation of aged mice brain with or without nicotine for 6 months (n=3 biologically independent samples/group). **b.** Principal component analyses showed the percentage of explained

variance of aged mice with or without nicotine for 6 months (n=3 biologically independent samples/group).

c. The TPM of disease-associated microglia genes in aged mice brain with or without nicotine for 6

119 months (n=4 biologically independent samples/group). Data are means \pm SEM. *p* values were 120 determined by two-sided Student's t-test (**c**).

Supplementary Figure 8.

122

128

Supplementary Figure 8. Nicotine rescued the telomere shelterin complex in the aged mice.
Western blot and quantification of the telomere shelterin complex of a. brain, b. liver, c. kidney, d. muscle
e. spleen and f. Heart after 6 months nicotine administration (n=3). g. is a quantification of brain, liver,
kidney, muscle, spleen and heart. Quantification is normalized to GAPDH. Data are means ± SEM. *p*values were determined by two way ANOVA analysis and Fisher's least significant difference (g).

Supplementary Figure 9.

Supplementary Figure 9. Effect of nicotine on anxiety, tumorigenesis, blood glucose, body weight, food and water consumption. a. The representative images of aged male mice drink with nicotine from 7 to 13-month-old mice (n=12 biologically independent samples/group). The mouse images were taken after 6 months of nicotine treatment. b. Kaplan-Meier curves of male C57BL/6J mice (control group n=24, Nicotine group n=24 biologically independent samples/group). c. LC-MS and quantification of β-NMN content in brain of aged mice administered with or without nicotine at 13 months of age (n=2-3 biologically independent samples/group). LC-MS and quantification of β-NMN content in liver of aged mice administered with or without nicotine at 13 months of age (n=2-3 biologically independent samples/group) d. Heatmap of the TPM of tumorigenesis markers in brain: Ascl1 and Gfap (n=3 biologically independent samples/group) and liver: Epcam and Bmp4 (n=3 biologically independent samples/group) of mice with nicotine administration for 6 months, p value Control (Con) vs Nicotine (Nic).e. The body weight, food and water consumption of control and nicotine group in 7 weeks (n=6 biologically independent samples/group). f. TPM of brain Tcf7/2 gene in aged mice with nicotine for 6 months (n=3 biologically independent samples/group).g. the blood glucose of aged mice with nicotine administration for 2 months (n=6 biologically independent samples/group). Data are means ± SEM. p values were determined by, two-sided Student's t-test (c, d, e, f, g).

174	Supplementary Table 1	Antibodies and compounds	s commercial information
-----	-----------------------	--------------------------	--------------------------

		•
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibody		
Rabbit Monoclonal	Cell Signaling	Cat#9475T;RRID: AB_2617130
anti-SIRT1(D1D7)	Technology	
Mouse Monoclonal	Santa Cruz	Cat#sc393444;RRID:AB_2894708
anti-PBEF(E-3)	Biotechnology	
Rabbit Polyclonal	Abcam	Cat#ab9485; RRID: AB_307275
anti-GAPDH		
Mouse Monoclonal	Sigma-Aldrich	Cat#A1978; RRID: AB_476692
anti-β-actin		
Rabbit Monoclonal anti	Cell Signaling	Cat#8242;RRID:AB_10859369
$NF-\kappa b(D14E12)$	Technology	
Rabbit Monoclonal	Cell Signaling	Cat#12486;RRID:AB_2636969
anti-SIRT6(D8D12)	Technology	
Mouse Monoclonal	Santa Cruz	Cat# sc71819;RRID:AB_1126979
anti-p53	Biotechnology	
Mouse Monoclonal	Santa Cruz	Cat# sc74465; RRID:AB_1129462
anti-SIRT1	Biotechnology	
Mouse Monoclonal	S	Cat#sc518025;RRID:AB_2890187
anti-PGC-1α(D-5)		
Rabbit Monoclonal	Cell Signaling	Cat# 47808;RRID:AB_2894709
anti-BDNF	Technology	
Rabbit Monoclonal	Abcam	Cat#ab207175;RRID:AB_2894710
anti-Doublecortin		
Rabbit Polyclonal	ABclonal	Cat# A1491; RRID:AB_2761791
Anti-POT1		
Rabbit Polyclonal	ABclonal	Cat#A5627;RRID:AB_2766387
Anti-TPP1		
Rabbit Polyclonal	ABclonal	Cat#A0975;RRID: AB_2757494
Anti-Rap1A		
Rabbit Polyclonal	ABclonal	Cat#A0137;RRID: AB_2766105
Anti-TERF1		
Rabbit Polyclonal	ABclonal	Cat#A16316;RRID:AB_2772562
Anti-TERF2		
Rabbit Polyclonal	ABclonal	Cat#A9750;RRID:AB_2767352
Anti-TIN2/TINF2		
Mouse Monoclonal	Santa Cruz	Cat#SC-32268
AC-lysine(AKL5C1)	Biotechnology	
Goat anti-MOUSE IgG	Jackson immune	Cat# 223-005-024
(H+L)	research	
Goat anti-Rabbit IgG	Jackson immune	Cat# 323-005-021
(H+L)	research	

Alexa 488-conjugated	Thermo Scientific	Cat#A32731	
Goat anti-Rabbit IgG			
antibody			
Alexa 555-conjugated	Thermo Scientific	Cat#A32727	
Goat anti-Mouse IgG			
antibody			

Chemicals				
DAPI	Sigma-Aldrich	Cat#D9542		
Nicotine	Sigma-Aldrich	Cat#N3876		
β-ΝΜΝ	Sigma-Aldrich	Cat#N3501		
Resveratrol	MedChemExpress	Cat#HY-16561		
SRT1720	MedChemExpress	Cat#HY-10532		
FK866	MedChemExpress	Cat#HY-50876		
Nampt-IN-1	MedChemExpress	Cat# HY-12971		
cotinine	MedChemExpress	Cat#HY-B1178		
Selisistat	MedChemExpress	Cat#HY15452		
Phosphatase inhibitor cocktail	Roche	Cat#5892791001		
Protein A+G Agarose	Santa Cruz	Cat#sc-2003		
beads	Biotechnology			
D-galactose	MedChemExpress	Cat#HY-N0210		
F18-FDG	Gosun cyclotron			
	Medicine			
D-Tubocurarine	MedChemExpress	CAT#HY-125901		
chloride pentahydrate				
Critical Commercial	Critical Commercial			
Assays				
CycLex [®] NAMPT	MBL	Cat# CY-1251V2		
Colorimetric Assay Kit				
Ver.2				
NAD/NADH assay kit	Abcam	Cat# ab65348		
Pierce™ BCA Protein	Thermo Scientific	Cat# 23227		
Assay Kit				
Protein Carbonyl	Cayman	Cat# 10005020-96		
Colorimetric Assay Kit				
Universal SIRT Activity	abcam	Cat# ab156915		
Assay Kit				
SIRT1 activity assay kit	Sigma-Aldrich	Cat#		
Hifair [®] II 1st Strand	Yeasen	Cat# 11121ES60		
cDNA Synthesis Kit				
(gDNA digester plus)				
Hifair [®] III One Step	Yeasen	Cat# 11143ES50		

RT-qPCR SYBR Green		
Kit		
Total Antioxidant	Beyotime	Cat#S0119
Capacity Assay Kit		
Cu/Zn-SOD and	Beyotime	Cat#S0103
Mn-SOD Assay Kit		
Cell Mito Stress Test Kit	Agilent	Cat#103015-100
	Technologies	
Glycolysis stress Test Kit	Agilent	Cat#103020-100
	Technologies	
Experimental Models:		
Cell Lines		
HT22 cell line	BeNaCultureCollect	Cat# BNCC337709
	ion	
BV2 cell line	BeNaCultureCollect	Cat# BNCC337749
	ion	
Experimental		
Models:Organisms/Str		
ains		
Mouse: C57bl/6J	Guangdong	
	Medical Laboratory	
	Animal Center	
Software and		
Algorithms		
GraphPad Prism	GraphPad Software	http://www.graphpad.com/
<u> </u>	(version8)	scientificsoftware/prism/
ImageJ	NIH	http://imagej.nih.gov/ij/
Zen 2011	Carl Zeiss	https://www.zeiss.com/microscopy/
		int/downloads.html
Noldus	Noldus	https://www.noldus.com.cn/animal-behavior-re
		search/
Quantity One	Biored	https://www.bio-rad.com
Incucyte [®] S3	Sartorius	www.sartorius.com/Incucyte
Wave	Agilent	www.agilent.com
	Technologies	

Supplementary Table 2 siRNA and Oligonucleotides

siRNA		
Scrambled:FW:5'- UUCUUCGAACGUGUCACGUTT-3'	GenePharma	
Scrambled:RV:5'- ACGUGACACGUUCGGAGAATT -3'	GenePharma	

#1 sirt1:FW: 5'-GCGGAUAGGUCCAUAUACUTT-3'	GenePharma
#1 sirt1:RV:5'- AGUAUAUGGACCUAUCCGCTT-3'	GenePharma
#2 sirt1:FW: 5'- CCGUCUCUGUGUCACAAAUTT-3'	GenePharma
#2 sirt1:RV: 5'- AUUUGUGACACAGAGACGGTT-3'	GenePharma
#3 sirt1:FW:5'- GGGAUCAAGAGGUUGUUAATT-3'	GenePharma
#3 sirt1:RV:5'- UUAACAACCUCUUGAUCCCTT-3'	GenePharma
#1 sirt6:FW: 5'- GGUCAUUGUCAACCUGCAATT-3'	GenePharma
#1 sirt6:RV:5'- UUGCAGGUUGACAAUGACCTT-3'	GenePharma
#2 sirt6:FW: 5'- GCUGCACGGAAACAUGUUUTT-3'	GenePharma
#2 sirt6:RV: 5'- AAACAUGUUUCCGUGCAGCTT-3'	GenePharma
#3 sirt6:FW:5'- GCUACGUGGAUGAGGUGAUTT-3'	GenePharma
#3 sirt6:RV:5'- AUCACCUCAUCCACGUAGCTT-3'	GenePharma
Oligonucleotides	
Telomeric:FW:5'-	Callicott and Womack,
CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTT-3'	2006; Cawthon, 2002)
Telomeric:RV:5'-	Callicott and Womack,
GGCTTGCCTTACCCTTACCCTTACCCTTACCCT-3'	2006; Cawthon, 2002)
36B4:FW:5'- ACTGGTCTAGGACCCGAGAAG-3'	Callicott and Womack,
	2006; Cawthon, 2002)
36B4:RV:5'- TCAATGGTGCCTCTGGAGATT-3'	Callicott and Womack,
	2006; Cawthon, 2002)