ONLINE SUPPLEMENTARY DOCUMENT **Title:** The impact of the introduction of ten- or thirteen-valent pneumococcal conjugate vaccines on antimicrobial-resistant pneumococcal disease and carriage: a systematic literature review Authors: Rita Reyburn^{1*}, Jaclyn Maher², Claire von Mollendorf^{1,3}, Amanda Gwee^{1,3,4}, Kim Mulholland^{1,3,5} and Fiona Russell^{1,3} ## Table S1. Medline search strategy ## MEDLINE Search Strategy - 1. exp *Pneumonia/ - 2. ((lower-respiratory adj3 infection*) or pneumonia or pneumonias or lung-inflammation* or lobitis or nonspecific-inflammatory-lung-disease* or peripneumonia or pleuropneumonia or pleuropneumonitis or pneumonic-lung* or pneumonic-pleurisy or pneumonic-pleuritis or pneumonitides or pneumonitis or pulmonal-inflammation* or pulmonary-inflammation* or pulmonic-inflammation*).tw,kf. - 3. *pneumococcal infections/ - 4. *Streptococcus infections/ - 5. 1 or 2 or 3 or 4 - 6. exp *Pneumococcal Vaccines/ - 7. exp *Immunization/ - 8. (pnu-im?une or pnuim?une or pcv10 or pcv-10 or pcv13 or pcv-13 or prevenar13 or prevenar-13 or prevenar-13 or synflorix).tw,kf. - 9. ((10-valent or ten-valent or 13-valent or thirteen-valent) and (pneumococcal adj5 vaccine*)).tw,kf. - 10. Immunization Programs/ - 11. 6 or 7 or 8 or 9 or 10 - 12. *pharynx/ or exp *nasopharynx/ - 13. exp *Otitis Media/ - 14. *Carrier State/ - 15. exp *Microbial Sensitivity Tests/ - 16. exp *Drug Resistance, Microbial/ - 17. (resistance or resistant or susceptib* or sensitivit* or nonsusceptib* or non-susceptib* or nasopharyn* or pharyn* or carrier* or carriage* or otitis-media or invasive).tw,kf. - 18. 12 or 13 or 14 or 15 or 16 or 17 - 19. 5 and 11 and 18 - 20. randomized controlled trial.pt. - 21. exp randomized controlled trial/ - 22. exp case-control studies/ - 23. (exp animals/ or (rat or rats or mouse or mice or swine or porcine or murine or sheep or lamb or lambs or pig or pigs or piglet or piglets or rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkey or monkeys or trout or marmoset or marmosets).ti.) not human*.sh. - 24. limit 19 to (case reports or comment or editorial or guideline or letter or practice guideline) - 25. 19 not (20 or 21 or 22 or 23 or 24) - 26. . limit 25 to yr="2017 -Current" ## Table S2. Study characteristics for studies assessing antimicrobial resistance or non-susceptibility in invasive pneumococcal isolates | Study
ID | First
author, year
of
publication | Tide | WHO
region | Country | Study population | Study design | Data
collect
ion
period | Age
group | Number and
type of
pneumococcal
isolates/infecti
ons | Clinical
and
Laborator
y
Standards
Institute
used | PCV10 or
PCV13 | PCV
schedule
and catch
up | Years in the
pre-
PCV10/13
period | Years in the
post-
PCV10/13
period | Quality
assessment | |-------------|--|---|---------------|---------------|--|---|----------------------------------|--------------------|--|---|-------------------|------------------------------------|--|---|-----------------------| | Low inc | come countries | | | | | | | | | | | | | | | | 7 | Darboe,
2019 [17] | Community-acquired Invasi ve
Bacterial Disease in Urban Gambia,
2005-2015: a hospital-based
surveillance | AFRO | The
Gambia | Rural catchment
population of the
Medical Research
Council Unit, The
Gambia at the London
School of Hygiene and
Tropical Medicine,
situated 12 km from the
capital, Banjul | Before-after
retrospective
hospital-based
cohort | 2005-
2015 | All ages | 242
pneumococcal
isolates | Yes | PCV13 | 3+0 | 2005-2009 | 2012-2015 | Moderate | | Upper 1 | niddle income co | untries | | | | | | | | | | | | | | | 3 | Berezin,
2019 [13] | Invasive pneumococcal disease
among hospitalized children in
Brazil before and after the | РАНО | Brazil | Urban population <17
years catchment for two
hospitals in São Paulo
and Uberlândia, each | Before-after
retrospective
hospital-based
cohort | 2005-
2015 | <5years,
6-16 y | 260 patients
with IPD and
positive | Yes | PCV10 | 2 + 1, no catch up | 2005-2009 | 2011-2015 | Moderate | | | | introduction of a pneumococcal conjugate vaccine | | | with an average 3000
annual paediatric
admissions | | | | pneumococcal
isolates | | | | | | | |----|----------------------------------|---|------|------------------------|---|--|---------------|--|---|------------|---|--|---|--|----------| | 5 | Cassiolato,
2018 [15] | Expansion of the multidrug-resistant clonal complex 320 among invasive Streptcoccus pneumoniae serotype 19A after the introduction of a tenvalent pneumococcal conjugate vaccine in Brazil | РАНО | Brazil | National population of
all ages. National
Reference laboratory
for IPD receiving data
from 25 public health
laboratories located in
25 Brazilian states | Before-after
retrospective
laboratory-based
cohort | 2005-
2017 | <5 y, 5-
49 y, ≥50
y | A total of 9852
IPD isolates,
of which 6.8%
(n = 673/9852)
were serotype
19A | Not stated | PCV10 | 2+1, no catch up | 2005-2009 | 2011-2017 | Moderate | | 6 | Cho, 2017
[16] | Redistribution of Streptococcus
pneumoniae Serotypes after
Nationwide 13-Valent
Pneumococcal Conjugate Vaccine
Program in Children in Northern
Taiwan | WPRO | Taiwan
(China) | Urban population <18 y
in catchment area od
Mackay Memorial
Hospital and National
Taiwan University
Hospital | Before-after
retrospective
hospital-based
cohort | 2010-
2015 | <12 mo,
12-24
mo, 2-5
y, 5-18 y | 114 IPD
isolates | Yes | PCY13 | 2+1, catch
up for 1-5 y | 2010-2012 PCV7/PCV1 3 were provided free-of- charge only for children ≤5 y of age with high risks (i.e. certain underlying diseases or low socioeconom ic status) and available privately | 2013-2015
PCV13 was
publicly
funded for all
1-5 y with a
catch up
campaign | Moderate | | 8 | Diawara,
2017 [18] | Molecular characterization of
penicillin non-susceptible
Streptococcus pneumoniae isolated
before and after pneumococcal
conjugate vaccine implementation
in Casablanca, Morocco | EMRO | Morocco | Isolates from the
Microbiology
Laboratory of Ibn
Rochd University
Hospital Centre of
Casablanca, population
not described | Before-after
retrospective
laboratory -based
cohort | 2007-
2014 | 0-14 y | 361 IPD isolates | Yes | PCV13 in
2010,
PCV10 in
2013 | 2+1, no catch up | 2007-2010 | 2011-2014 | Moderate | | 9 | Echaniz-
Aviles, 2019
[19] | Clinical and microbiological
characteristics of community-
acquired pneumonia associated with
Streptococcus pneumoniae in adult
patients in Mexico | РАНО | Mexico | Patients who presented
to three tertiary care
hospitals | Before-after
retrospective
hospital -based
cohort | 2000-
2015 | All ages | 96 IPD isolates | Yes | PCV7 in
2008,
PCV13 in
2012 | Not
described | 2000-2007 | 2008-2015 | Moderate | | 11 | Gagetti,
2017 [21] | Characterization of Streptococcus
pneumoniae invasi we serotype 19A
isolates from Argentina (1993-2014) | РАНО | Argentina | Samples received by
the National Reference
Laboratory (NRL) 101
hospitals in 20
provinces and Buenos
Aires city | Before-after
retrospective
laboratory-based
cohort | 1993-
2014 | Children
<6 y | 176 IPD
isolates
serotype 19A | Yes | PCV13 in 2012 | 2+1, catch-
up campaign
for 12-24 mo | 1993-2011 | 2012-2014 | Moderate | | 13 | Ho, 2019
[22] | Increase in incidence of invasive pneumococcal disease caused by serotype three in children eight years after the introduction of the pneumococcal conjugate vaccine in Hong Kong | WPRO | Hong
Kong,
China | Isolates captured as
clinical laboratories
providing service to
hospitalised patients | Before-after
retrospective
laboratory-based
cohort | 1995-
2017 | Children
<5 y | 265 IPD isolates | Yes | PCV7 in
2009,
PCV10 in
2010,
PCV13 in
2011 | 3+1, catch-
up campaign
for <2 y | 1995-2004
(no PCV
available) | 2015-2017
(PCV13
only) | Moderate | | 15 | Huang, 2019
[24] | Respiratory pathogens – Some
altered antibiotic susceptibility after
implementation of pneumococcus
vaccine and antibiotic control
strategies | WPRO | Taiwan,
China | Isolates from children
<18 y admitted at
Taichung Veterans
General Hospital
(TCVGH), a tertiary-
care referral centre with
1555 beds | Before-after
retrospective
laboratory -based
cohort | 2008-
2017 | Children
<18 y | 449 IPD
isolates | Yes | PCV13 in 2013 | 2+1, catch
up <5 y | 2008-2012 | 2016-2017 | Moderate | | 21 | Mott, 2019
[29] | Emergence of serotype 19A
Streptococcus pneumoniae after
PCV10 associated with a ST320 in
adult population, in Porto Alegre,
Brazil | РАНО | Brazil | Isolates were obtained
from three hospitals in
Porto Alegre
(metropolitan area with
more than four million | Before-after
retrospective
hospital-based
cohort | 2008-
2014 | All ages | 36 IPD
serotype 19A
isolates | Yes | PCV10 | 2+1, no catch up | 2008-2009 | 2011-2014 | Moderate | | | | | | | inhabitants), South | | | | | | | | | | | |-------|-----------------------------------|--|------|---------|---|---|---------------|---|---|------------|---|---|--------------------------------------|------------------------------|----------| | 22 | Neves, 2018
[40] | Population structure of
Streptococcus pneumoniae
colonizing children before and after
universal use of pneumococcal | РАНО | Brazil | Brazil Pneumococcal isolates recovered from samples taken from the nasopharynx of | Before-after
retrospective
health facility-
based cohort | 2009-
2014 | All ages | 36 IPD
serotype 19A
isolates | Yes | PCV10 | 2+1, no catch up | 2009-2019 | 2014 | Moderate | | | | conjugate vaccines in Brazil:
Emergence and expansion of the
MDR serotype 6C-CC386 lineage | | | children from seven
institutions distributed
across five different
neighbourhoods in
Nitero i city, Rio de
Janeiro state, Brazil | | | | | | | | | | | | ighin | come countries | | | | | | | | | | | | | | | | | Ando, 2020
[11] | The prevalence and antimicrobial
susceptibility of Streptococcus
pneumoniae isolated from patients
at Jikei University Hospitals after
the implementation of the
pneumococcal vaccination program
in Japan | WPRO | Japan | Urban population
catchment for four Jikei
University Hospitals | Before-after
retrospective
hospital-based
cohort | 2009-
2017 | All ages | 5763 IPD isolates | Not stated | PCV13
(following
PCV7) | 3+1, no catch up | 3 y (2009-
2011) | 4 y (2014-
2017) | Moderate | | | Ben-Shimol,
2018 [12] | Impact of pneumococcal conjugate vaccines introduction on antibiotic resistance of Streptococcus pneumoniae meningitis in children aged five years or younger, Israel, 2004 to 2016 | EURO | Israel | All children <5 y in
Israel, 2016
population = 875 000 | Before-after
prospective,
nationwide,
population-based
and active
surveillance | 2000-
2016 | Children
<5 y | 325
pneumococcal
meningitis
cases | Yes | PCV13
(following
PCV7), 80-
95% PCV13
vaccine
coverage | 2+1, no catch up | 5 y (2004-
2008) | 2014-2016 | Moderate | | | Berger, 2018
[14] | Paediatric community-acquired
bacteraemia, pneumococcal invasive
disease and antibiotic resistance fell
after the pneumococcal conjugate
vaccine was introduced | EURO | Israel | Urban population <18 y
from3 children's
hospitals in Tel Aviv
and Jerusalem | Before-after
retrospective
hospital-based
cohort | 2007-
2015 | <18 y | 238
community-
acquired
bacteraemia
cases | Yes | PCV13
(following
PCV7), 80-
95% PCV13
vaccine
coverage | 2+1,no
catch up | 2007-2009 | 2010-2015 | Moderate | |) | Furuya,
2017 [20] | Impact of the pneumococcal
conjugate vaccine on serotype
distribution of adult non-invasive
Streptococcus pneumoniae isolates
in Tokai region, Japan, 2008e2016 | WPRO | Japan | Adult patients (>16 y)
at 10 hospitals in Gifu
or Aichi | Before-after
retrospective
hospital -based
cohort | 2008-
2016 | Adults
>16 y | 504 IPD | Yes | PCV7 in
2010,
PCV13 in
2013 | Not
described | 2008-2009 | 2015-2016 | Moderate | | 2 | Gaviria-
Agudelo,
2017 [41] | The Effect of 13-Valent Pneumococcal Conjugate Vaccine on the Serotype Distribution and Antibiotic Resistance Profiles in Children With Invasive Pneumococcal Disease | РАНО | USA | Child patients < 18 y at
the Children's Medical
Center Dallas (CMCD) | Before-after
retrospective
laboratory -based
cohort | 1999-
2014 | Children
<18 y | 770 IPD isolates | Yes | PCV7 in
2007,
PCV13 in
2010 | 3+1, catch
up campaign
not
described | January
1999-
December
2000 | January
2011-June
2014 | Moderate | | 7 | Koutouzis,
2018 [26] | Characteristics of Streptococcus
pneumoniae serotype 19A isolates
from children in the pre and post
Conjugate Vaccine Era. Single
center experience 1986-2015 | EURO | Greece | IPD and non-IPD in
children from a tertiary
care children's hospital
located in Athens,
Greece | Before-after
retrospective
hospital-based
cohort | 1986-
2015 | States
children
but does
not
provide
specific
age | 210 IPD
serotype 19A | Yes | PCV7 in
2006,
PCV10 and
PCV13 in
2010 | Not stated | 1986-2005 | 2011-2015 | Moderate | | 1 | Quirk, 2018
[30] | Vaccination of Icelandic children
with the 10-valent pneumococcal
vaccine leads to a significant herd
effect among adults in Iceland | EURO | Iceland | All pneumococci isolated from lower respiratory tract samples taken from adults with suspected pneumonia and submitted to the Department of Clinical Microbiology at Landspitali University Hospital in Iceland | Before-after
retrospective
hospital-based
cohort | 2009-
2017 | Adults
>18 y | 797 IPD
isolates | Not stated | PCV13 in 2011 | 2+1 | 2009-2011 | 2012-2017 | Moderate | | 5 | Ricketson,
2018 [31] | Changes in the nature and severity
of invasive pneumococcal disease in
children before and after the seven- | РАНО | Canada | All children <18 y of
age presenting to a
healthcare center in the | Before-after
retrospective | 2000-
2015 | Children
<18 y | 285 IPD
isolates | Not stated | PCV13 | 3+1 | 2000-
September
2002 | 2010-2015 | Moderate | | | | valent and thirteen-valent
pneumococcal conjugate vaccine
programs in Calgary, Canada | | | Calgary Zone of
Alberta Health Services | hospital-based
cohort | | | | | | | | | | |---------|---------------------|---|---------------------------------|---|--|---|---------------|-----------------------|-----------------------|------------|--------------------------------------|----------------------|----------------------|----------------------|----------| | 28 | Siira, 2020
[34] | Antimicrobial susceptibility and clonality of Streptococcus pneumoniae isolates recovered from invasive disease cases during a period with changes in pneumococcal childhood vaccination, Norway, 2004-2016 | EURO | Norway | IPD surveillance data
from the Norwegian
Surveillance System for
Communicable
Diseases (MSIS). | Before-after
retrospective
population-based
cohort | 2004-
2016 | All ages | 10239 IPD
isolates | Not stated | PCV7 in
2006,
PCV13 in
2011 | 2 + 1 | 2004-2005 | 2012-2016 | Moderate | | Multipl | e income status o | ountries in one study | | | | | | | | | | | | | | | 18 | Lo, 2019
[27] | Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study | WPRO,
EURO.
AFRO,
PAHO | Hong
Kong,
Israel,
Malawi,
South
Africa,
The
Gambia,
and the
USA | IPD in children from
hospitals and
laboratories in six
countries | Multisite before-
after retrospective
hospital and
laboratory -based
cohort | 1995-
2015 | Children
aged <3 y | 2391 IPD isolates | Yes | Varied by
country | Varied by
country | Varied by
country | Varied by
country | Moderate | PCV – pneumococcal conjugate vaccine, IPD – invasive pneumococcal disease, AFRO – World Health Organization African Region, AMRO – World Health Organization Region of the Americas, SEARO – World Health Organization South-East Asian Region, EURO – World Health Organization European Region, EMRO – World Health Organization Eastern Mediterranean Region, WPRO – World Health Organization Western Pacific Region, y – years, mo – months Table S3. Study characteristics for studies assessing antimicrobial resistance or non-susceptibility in otitis media isolates | Study
ID | First
author, year
of
publication | Title | WHO
Region | Country | Study population | Study design | Data
collection
period | Age
group | Number and
type of
pneumococcal
isolates / infec
tions | Clinical
and
Laborator
y
Standards
Institute
(CLSI)
used | PCV10 or
PCV13 and
vaccine
coverage | PCV
schedule
and catch
up | Years in the
pre-
PCV10/13
period | Years in the
post-
PCV10/13
period | Quality
assessment | |-------------|--|--|---------------|---------|--|--|------------------------------|-------------------|--|---|--|------------------------------------|--|---|-----------------------| | Highin | come countries | | | | | | | | | | | | | | | | 14 | Hoshino,
2017 [23] | Analysis of Streptococcus pneumoniae and Haemophilus influenzae isolated from middle ear fluid before and after the introduction of government subsidies for pneumococcal and H. influenzae type b vaccines in Japan | WPRO | Japan | Isolates from paediatric
middle ear fluid
samples collected from
children aged 15 y or
younger at Chiba
Children's Hospital | Before-after
retrospective
laboratory -based
cohort | 2007-2014 | Children
<15 y | pneumococcal
isolates from
820 middle ear
fluid samples | Yes | PCV7 in
2010,
PCV13 in
2013 | Not
described | 2011-2010 | 2011-2014 | Moderate | PCV – pneumococcal conjugate vaccine, WPRO – World Health Organization Western Pacific Region, y – years Table S4. Study characteristics for studies assessing antimicrobial resistance or non-susceptibility in nasopharyngeal carriage isolates | Study
ID | First
author, year
of
publication | Title | WHO
region | Country | Study population | Study design | Data
collection
period | Age
group | Number and type
of pneumococcal
isolates/
infections | Clinical
and
Laborator
y
Standards
Institute
used | PCV10 or
PCV13 and
vaccine
coverage | PCV
schedule &
catch up | Years in the
pre-
PCV10/13
period | Years in the
post-
PCV10/13
period | Quality
assessment | |-------------|---|---|---------------|--------------|---|--|------------------------------|-----------------------|--|---|--|---|--|---|-----------------------| | 16 | middle income co
Kobayashi,
2020 [25] | Impact of 10-valent pneumococcal conjugate vaccine introduction on pneumococcal carriage and antibiotic susceptibility patterns among children aged <5 years and adults with human immunodeficiency virus infection: Kenya, 2009-2013 | AFRO | Kenya | Isolates from cross-
sectional pneumococcal
carriage surveys were
performed in children
from Kibera and Lwak,
Kenya | Comparison of
cross-sectional
pneumococcal
carriage surveys | 2009-2013 | Children
aged <5 y | Pneumococcal carriage isolates from Kibera children aged <5 y (n = 499 in 2009, n = 445 in 2013). Pneumococcal carriage isolates from Lwak children aged <5 y (n = 163 in 2009, n = 181 in 2013) | Yes | PCV10 in 2011 | 3+0, catch
up in
selected sites
for children
<1 y | 2009 | 2013 | Moderate | | 31 | Turner, 2020
[37] | Impact of 13-valent pneumococcal
conjugate vaccine on colonization
and invasive disease in Cambodian
children | WPRO | Cambodi
a | Carriage isolates from
children at the
outpatient department
of the Angkor Hospital
for Children is a
nongovernmental
paediatric hospital | Before-after
retrospective
hospital-based
cohort | 2014-2016 | Children
<5 y | 1629
pneumococcal
carriage isolates | Yes | PCV13 in 2015 | 3+0, no catch up | 2014 | 2016-2018 | Moderate | | _ | | | | | located in the north
western city of Siem
Reap. The hospital, and
an associated satellite
clinic at Sot Nikom
district hospital, | | | | | | | | | | | |-------|--|--|------|---------|--|---|-----------|--------------------|---------------------------|------------|---------------|-----|-----------|-----------|----------| | 19 | middle i ncome co
Mayanskiy,
2017 [38] | Serotypes and antimicrobial susceptibility of nasopharyngeal pneumococci isolated from children in 2010-2016: a retrospective cohort study | EURO | Russia | Nasopharyngeal
pneumococci isolated
from children getting
care at the National
Medical Research
Center of Children's
Health (Moscow) | Before-after
retrospective
hospital -based
cohort | 2010-2016 | Children
<18 y | 484 carriage isolates | Yes | PCV13 in 2014 | 2+1 | 2010/11 | 2016 | Moderate | | 20 | Mayanskiy,
2019 [28] | Changing serotype distribution and resistance patterns among paediatric nasopharyngeal pneumococci collected in Moscow, 2010-2017 | EURO | Russia | Nasopharyngeal
pneumococci isolated
from children getting
care at the National
Medical Research
Center of Children's
Health (Moscow) | Before-after
retrospective
hospital -based
cohort | 2010-2017 | Children
<5 y | 631 carriage
isolates | Yes | PCV13 in 2014 | 2+1 | 2010/11 | 2017 | Moderate | | Highi | ncome countries | | | | | | | | | | | | | | | | 23 | Quirk, 2019
[30] | Effect of vaccination on pneumococci isolated from the nasopharynx of healthy children and the middle ear of children with otitis media in Iceland | EURO | Iceland | Nasopharyngeal swabs
were taken from
healthy children
attending 15 DCCs,
chosen to be
representative of the
greater Reykjavík area | Before-after health
facility-based
cross-sectional
surveys | 2009-2017 | Children
1-17 y | 3020 carriage
isolates | Not stated | PCV13 in 2011 | 2+1 | 2009-2011 | 2012-2017 | Moderate | PCV – pneumococcal conjugate vaccine, AFRO – World Health Organization African Region, EURO - World Health Organization European Region, WPRO - World Health Organization Western Pacific Region Table S5. Study characteristics for studies assessing antimicrobial resistance or non-susceptibility in other (sputum or mixed invasive and non-invasive pneumococcal) isolates | Study
ID | First
author, year
of
publication | Tide | WHO
Region | Country | Study population | Study design | Data
collection
period | Age
group | Number and
type of
pneumococcal
isolates/
infections | Clinical
and
Laborator
y
Standards
Institute
used | PCV10 or
PCV13 and
vaccine
coverage | PCV
schedule
and catch
up | Years in the
pre-
PCV10/13
period | Years in the
post-
PCV10/13
period | Quality
assessment | |-------------|--|---|---------------|---------|--|---|------------------------------|--|---|---|--|------------------------------------|--|---|-----------------------| | High ind | Shoji, 2017
[32] | Serotype distribution of
Streptococcus pneumoniae isolated
from adult respiratory tract
infections in nationwide Japanese
surveillances 2006-2014 | WPRO | Japan | The Japanese Society of
Chemotherapy (JSC)
nationwide surveillance
network of the
antimicrobial
susceptibility of
bacterial respiratory
pathogens | Prospective
national
surveillance | 2006-2014 | Adults
>18 y,
median
age 73 y | Streptocpccus
pneumoniae
strains isolated
from sputum
and specimens
of
transtracheal
aspiration or
bronchoscopy | Not stated | PCV13
(following
PCV7) | 3+1, no catch up | 2006-2010 | 2012-2014 | Moderate | | | | | | | | | | | in adult
respiratory
tract infections | | | | | | | |----|------------------------|---|------|---------|--|---|-----------|------------------|--|------------|--------------------------------------|--|-----------|-----------|----------| | 27 | Sivhonen,
2017 [33] | Streptococcus pneumoniae antimicrobial resistance decreased in the Helsinki Metropolitan Area after routine 10-valent pneumococcal conjugate vaccination of infants in Finland | EURO | Finland | Clinical invasive (isolated from the blood or the cerebrospinal fluid) and non-invasive (all others, e.g. from ear, eye, nose, throat, maxillary simus, trachea, bronchus, sputum, or abscess) S. pneumoniae isolates routinely identified at HUSLAB (Hospital District of Helsinki and Uusimaa Laboratory Services) | Before-after
retrospective
hospital-based
cohort | 2009-2014 | Children
<5 y | 3040 non-
invasive and
1254 IPD
isolates | Not stated | PCV10 | 2 + 1, no
catch up
campaign
described | 2009 | 2014 | Moderate | | 29 | Suzuki, 2017
[35] | Impact of the introduction of a 13-
valent pneumococcal vaccine on
pneumococcal serotypes in non-
invasive isolates 2007-2016 at a
teaching hospital in Japan | WPRO | Japan | Pneumococcal isolates
collected at the Tokyo
Medical University
Hachioji Medical
Center | Before-after
retrospective
hospital-based
cohort | 2007-2016 | All ages | 618 invasive
and non-
invasive
pneumococcal
isolates | Yes | PCV7 in
2010,
PCV13 in
2013 | 3+1, no catch up | 2006-2010 | 2012-2014 | Moderate | | 30 | Toda, 2018
[36] | Laboratory surveillance of antimicrobial resistance and multidrug resistance among Streptococcus pneumoniae isolated in the Kinki region of Japan, 2001e2015: Comparison of the prevalence of drug-resistant strains before and after introduction of conjugated pneumococcal vaccine | WPRO | Japan | Streptococcus
pneumoniae collected
from 21 medical
institutions in the Kinki
region that belong to
the Study of Bacterial
Resistance in the Kinki
Region of Japan | Before-after
retrospective
hospital-based
cohort | 2001-2016 | All ages | 4354
pneumococcal
isolates | Yes | PCV7 in
2010,
PCV13 in
2013 | 3+1, no catch up | 2001-2002 | 2001-2016 | Moderate | PCV – pneumococcal conjugate vaccine, IPD – invasive pneumococcal disease, EURO – World Health Organization European Region, WPRO – World Health Organization Western Pacific Region