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Section S1 Methods 

Conjugating Antibodies to DNA Oligos 

In order to attach antibodies to the nanoswitch construct, IgG antibody proteins of interest were 
first coupled to DNA oligos complementary to a specific region on the nanoswitch backbone. 
The antibodies tested in this work were monoclonal anti-fluorescein (Invitrogen 31242), 
monoclonal anti-digoxigenin (Invitrogen 700772), and polyclonal anti-fluorescein (Invitrogen A-
889). Before conjugation, the antibodies were washed 3 times using Zeba desalting columns 
(7K MWCO, 0.5mL, Thermo Scientific 89882) with PBS buffer pH8.0 to remove free amine and 
azide in the storage buffer. Antibody concentrations before and after buffer exchange were 
determined via OD280 readings. The post buffer exchange concentration was adjusted to 
0.5mg/ml (3.3uM) by dilution with PBS. The antibody was then activated by converting some 
surface amine groups into dibenzocyclooctyne (DBCO) groups for copper-free click chemistry 
using the short linker DBCO-PEG4-NHS (Sigma 764019). The DBCO-PEG4-NHS was first 
dissolved in DMSO (anhydrous, Invitrogen D12345) to 0.4mM, and then spiked into the antibody 
in PBS solution, at ratios ranging from 1x to 3x molar excess of DBCO-PEG4-NHS to antibody. 
The reaction vial was flushed with argon gas briefly, sealed with Parafilm, and incubated at 
room temperature for 1 hour with rotation.  

After incubation, the reaction mixture was washed 3 times again with Zeba columns to remove 
excess DBCO-PEG4-NHS and transferred into PBS buffer at a pH of 7.4. DNA oligos with a 3’ 
azide modification were then added at a 10x molar ratio to the DBCO-activated antibody. The 
reaction mixture was incubated at room temperature for 2 hours with rotation, followed by size 
exclusion FPLC using a Superdex 200 Increase 10/300 GL column (Cytiva, 28-9909-44). 
Elusion fractions were resolved by native TBE gel electrophoresis. The fractions with pure 
antibody-DNA conjugates were pooled. The purified conjugates were mixed with glycerol 
(Sigma G5516) to 40% (v/v) and stored at -20°C. 

DNA Nanoswitch Preparation 

The DNA nanoswitch construct was prepared based on protocols previously published by our 
team.1,2 Briefly, a set of complementary DNA oligos (Integrated DNA Technologies)3,4 were 
hybridized to the linearized M13mp18 DNA (backbone). The small molecule antigen (FITC or 
Digoxigenin) was attached to one of the oligos as a 3’ modification. The oligo at the 3’ end of the 
M13 backbone was modified with a 5’ biotin for attaching to streptavidin-coated micro beads in 
the centrifuge force microscope (CFM) experiments. The 5’ region and the region 
complementary to the antibody-coupled oligo was left as single-stranded. 

The hybridization was performed by mixing 15nM linearized M13 backbone, 150nM of each of 
the non-modified filler oligos, and 75nM of the biotin and antigen modified oligos, in 1x NEB 
Buffer 2. The mixture was set in a thermocycler with a temperature ramp from 90°C to 20°C with 



S3 
 

a -1°C / min gradient. After the annealing, the mixture was purified using a Microspin S-400 HR 
column (Cytiva, 27-5140-01) to remove excess oligos. The purified linear nanoswitch construct 
was stored at 4°C before experiments.  

Looped nanoswitch was prepared immediately before use. The antibody-coupled oligo was 
added to the linear nanoswitch at a 5x molar ratio in PBS buffer, with 250nM linear nanoswitch 
and 1250nM antibody-oligo, respectively. The mixture was incubated at room temperature for 1 
hour. The looped nanoswitch was verified by gel electrophoresis. 

Flow Cell Preparation 

The flow cell used in the CFM experiments has single stranded DNA oligos covalently 
conjugated to the surface to allow DNA nanoswitches to attach via DNA hybridization. The flow 
cell was constructed using circular shaped cover glass (#1 thickness, 19mm diameter, Gold 
Seal #3346), and support glass (0.7mm thickness, 25mm diameter, S.I. Howard Glass D263), 
sandwiched together using double-sided Kapton tape with a flow channel shaped cut-out. Two 
0.75mm diameter holes were drilled on the support glass, 15mm apart, to serve as the inlet and 
outlet.  

Both the cover glass and the support glass were cleaned by sonication in isopropyl alcohol 
(ACS grade, VWR BDH1133). The glass slides were then rinsed using MilliQ water and dried in 
an 80°C oven. 

Following the cleaning, the cover glass slides were silanized and passivated with PEG 
(polyethylene glycol). To prepare the cover glass slides for silanization, they were first treated 
by plasma etching in a SPI Plasma Prep II, under 400 milli-Torr pressure for 5 min. Next, the 
plasma-treated cover slides were silanized in liquid phase. 3-aminopropyltriethoxysilane (MP 
Biomedicals 02154766) was dissolved in acetone (Sigma 650501) to 0.5% v/v. The cover slides 
were placed on a holder and submerged in the silane-acetone solution, in a clean glass 
container. The container was then placed in a sealed desiccator and incubated at room 
temperature for 16 hours. Following the incubation, the cover slides were rinsed in clean 
acetone, then in MilliQ water, and then dried. 

The silanized cover slides and cleaned support slides were then assembled into circular flow 
cells using Kapton double-sided tape cut to a circular outline with a flow channel shaped cut-out 
in the center. The flow channel was then passivated with PEG. Together with the PEG 
molecules, we also covalently attached ssDNA oligos to the silanized cover slides surface to 
serve as anchor points for the nanoswitch construct. The passivation PEG was directly attached 
to the silane surface via a single amine-EHS ester chemistry. The DNA oligo attachment was 
mediated by a dual functional linker, DBCO-PEG4-NHS, where the DBCO-PEG4-NHS was 
attached to the silane surface via amine-EHS ester chemistry, and then the DNA oligo with an 
azide active group was attached to these linkers via copper-free click chemistry. All of the 
reagents were mixed in a single reaction mixture and injected into the flow channel. To make 
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the reaction mixture, mPEG-Succinimidyl Valerate with a mean molecular weight of 5000 Da 
(PEG5000, Laysan Bio, MPEG-SVA-5000) was dissolved in 0.1M potassium borate buffer 
(Potassium Tetraborate, Sigma P5754) at pH 8.1, to a final PEG concentration of 10% w/v. The 
DBCO-PEG4-NHS linker (Sigma 764019) was first dissolved in DMSO (anhydrous, Invitrogen 
D12345) to 0.4mM, before added into the aqueous reaction mix. The anchor DNA oligo, and 
DBCO-PEG4-NHS, were then added into the 10% PEG5000 solution to a final concentration of 
50nM DNA, and 2000nM DBCO-PEG4-NHS. 20ul of this final reaction mix solution was injected 
into the flow channel using a pipette. The flow cell assembly with passivation reaction mix was 
then placed in a petri dish sealed by Parafilm to minimize evaporation. The assembly was 
incubated at room temperature for 1 hour, after which the channel was flushed using 100ul 
MilliQ water, and incubated again with fresh passivation reaction mix for 1 hour. After the 
second incubation, the flow channel was flushed using MilliQ water, and dried. The flow cell 
assembly was kept under vacuum desiccator before use.  

Immediately before each CFM experiment, the DNA nanoswitches and micro-beads were added 
into the flow cell channel to form tethers following the protocol in our previous work,1 with the 
modification that the nanoswitches are tethered to the glass surface via DNA hybridization. 
Briefly, the flow cell channel was passivated by injecting 20ul of blocking solution (10 mg/ml 
Blocking Reagent, Roche 11096176001, in PBS), twice, with 30min incubation each at RT. The 
channel was then washed with 50ul experiment buffer (1x TBS, pH7.6, with 0.05% v/v Tween-
20). The looped nanoswitch construct with antibody-antigen pair was diluted in the experiment 
buffer to 75pM. 20ul of the diluted nanoswitch solution was then injected into the channel and 
incubated at RT for 20min to allow hybridization to the surface. During the hybridization step, M-
270 streptavidin beads (Invitrogen 65305) was washed excessively with the experiment buffer 
and diluted to 7mg/ml. The channel was then washed with 20ul experiment buffer, followed by 
injection of 20ul diluted M-270 beads to form tethers. 

Electrophoresis Mobility Shift Assay 

The zero-force antigen dissociation rate for the monoclonal anti-fluorescein sample was 
measured by electrophoresis mobility shift assay (EMSA). A fluorescein-labeled 40mer ssDNA 
oligo was pre-bound to unconjugated monoclonal anti-fluorescein antibody by mixing 0.1uM 
fluorescein-DNA to 0.5uM antibody. The mixture was incubated at RT for 10min to reach 
equilibrium. Following this, an excess of free fluorescein (10uM) was spiked in to compete off 
the fluorescein oligo and incubated at room temperature for a set amount of time (0min-60min) 
before loading onto a native gel. Each of the kinetic time points were timed so that all samples 
could be loaded onto the gel at the same time. The samples were resolved on a precast BioRad 
mini-protean TBE 4-20% gel, in 1x TBE buffer, at 100V, for 1hr 30min. The gel was then imaged 
using a Typhoon scanner in the fluorescein channel, and quantified using the gel analysis 
module in ImageJ. The EMSA assay was carried out in three replicates independently. The 
scanned gel image of one of the replicates is shown in Fig. S1A. The average antibody-bound 
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fraction of DNA was plotted against incubation time and fit to a single exponential decay 
function [Fig. S1B], which yields a dissociation lifetime T0 = 380 ± 50 sec. 

 

 
Figure S1. Electrophoresis Mobility Shift Assay of monoclonal anti-fluorescein. (A) Example gel image 
showing dissociation of fluorescein-oligo from monoclonal anti-fluorescein. Large excess of free fluorescein 
was added to the mixture to compete off the pre-bound fluorescein-oligo from the antibody. Lanes labeled as 
“Oligo+Ab+Fluo” shows the mixture of pre-bound fluorescein-oligo and antibody complex, plus free fluorescein 
spike-in, incubated at RT for the corresponding time duration. The lane labeled as “Oligo+Fluo” shows sample 
with free fluorescein-oligo and free fluorescein ligand. The lane labeled as “Oligo only” shows free fluorescein-
oligo only. (B) Quantified percentage of fluorescein-oligo remained bound to the antibody (slow mobility band 
on the gel) versus incubation time duration from the point when free fluorescein competitor was added. The 
error bars indicates standard deviation from three replicate experiments. The curve is a least square fit using 
an exponential decay function. 

 

Centrifuge Force Microscope Experiment 

Parallel force spectroscopy experiments were carried out with a custom-built Centrifuge Force 
Microscope designed to fit into a benchtop centrifuge. This consisted of a miniature microscope 
that fit into a 3D-printed holder designed to slide into a standard centrifuge swing bucket. The 
table-top CFM setup and force calibration was detailed in previously published work from our 
group,1 with the only modifications being a different camera (Point Grey Blackfly BFLY-PGE-
50S5M-C with Sony IMX264 sensor) and a new 3D-printed swing bucket fixture to 
accommodate the new camera. The updated parts list is provided in Table S1. The pixel size of 
the new camera remains the same as in our previous work (3.4um/pixel).   



S6 
 

 

Item# Vendor Part# Description Qty. 
1 Thorlabs S1LEDM SM1-Threaded Mount for LED 1 
2 Thorlabs SM1T1 SM1 (1.035"-40) Coupler 1 
3 Thorlabs SM05RR Retaining Ring for diffuser 1 
4 Thorlabs DG05-220 Light Source Diffuser, Ø1/2" N-BK7  

Ground Glass 
1 

5 Thorlabs SM1A6T Diffuser and sample cell mount 1 
6 SI Howard Glass Co B-270 Ø 25 mm, 0.9 mm Thick 1 
7 Kapton Tape PPTDE-3  Sample Cell Assembly 1 
8 VWR 63782-01 Gold Seal, #1 19 mm coverglass  1 
9 Thorlabs SM1L03 Sample Holder, SM1 Lens Tube, 0.3"  

Thread Depth 
1 

10 Thorlabs SM1V05 Focusing Ø1" SM1 Lens Tube 1 
11 Edmund Optics #86-815 40X Olympus Plan Achromat Objective, 0.65 NA, 0.6 mm 

WD 
1 

12 Thorlabs SM1A3 Objective Adaptor with External  
SM1 Threads and Internal RMS  
Threads 

1 

13 Thorlabs AC254-100 Tube Len, f=100.0 mm, Ø1"  
Achromatic Doublet, ARC: 400-700  
nm 

1 

14 Thorlabs SM1RR Tube Lense SM1 Retaining Ring 1 
15 Thorlabs SM1M20 Objective SM1 Lens Tube Without  

External Threads, 2" Long 
1 

16 Thorlabs SM1A6T Adaptor with External SM1 Threads  
and Internal SM05 Threads, 0.40"  
Thick 

2 

17 - - Custom made turning block, aluminum  1 
18 Thorlabs PFE10-P01 Turning Mirror, 1"  Silver Elliptical  

Mirror, 450 nm - 20 µm 
2 

19 Thorlabs SM1NT Camera  SM1 (1.035"-40) Locking  
Ring, Ø1.25" Outer Diameter 

1 

20 Thorlabs SM1A9 Camera Adaptor with External C- 
Mount Threads and Internal SM1  
Threads 

1 

21 Point Grey (now 
Teledyne FLIR) 

BFLY-PGE-
50S5M-C  

Sony IMX264 CMOS sensor, 2448 x 2048 resolution  1 

22 IMC Network  855-10734  MiniMc-Gigabit Twisted Pair to Fiber Media Converter 1 
23 PrinceTel MJX  Fiber Optic Rotary Joint  1 

 

Table S1. Parts list for the Centrifuge Force Microscope used to carry out force spectroscopy experiments. 
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In this work, antibody-antigen dissociation rates were measured by constant force experiments 
using the CFM. After the sample flow cell was mounted in the CFM swing bucket fixture, a 
custom speed program was run on the centrifuge. The program started with a speed-up section 
at maximum acceleration, approximately 198 RPM/sec, before reaching a constant RPM speed 
that provided the desired constant force. The program then held the constant speed for a fixed 
amount of time, until most tethered nanoswitches had transitioned into the open state where the 
antibody-antigen pair had unbounded. The speed was then slowed down at max deceleration to 
a full stop. The system was held at rest for 20 min to allow the antibody-antigen pair to rebind 
and the nanoswitches to close again, before repeating the next force cycle. For each 
experiment, this constant force program was repeated for 18-20 cycles. Due to the covalent 
attachment chemistry we used, the bead loss over repeated force cycles was minimal [Figure 
S2]. In each repeat, a video capture of the bead motion was taken of the same region of interest 
in the sample flow cell [Figure S3A]. 

For the monoclonal anti-fluorescein sample, experiments were performed under 20, 25, 30, and 
35 pN forces. The centrifuge RPM speed was set to 1428, 1597, 1750, and 1890 RPM, 
respectively. The hold time was 480, 420, 240, and 200 sec, respectively. The movies were 
recorded at 0.5, 0.7, 1, 1.4 fps, respectively. For both the monoclonal anti-DIG and polyclonal 
anti-fluorescein samples, the experiments were performed under 30pN force, with the constant 
centrifuge speed at 1750 RPM for 480 sec, while the movies were recorded at 0.5 fps. 

 
Figure S2. Number of remaining tethers per force cycle. The number of beads in the field of view of the flow 
cell that are successfully tracked as a function of cycle number across repeated force cycles. The hold time of 
the centrifuge at the indicated force, 𝑡!"#, is presented above for each experimental condition. 
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Figure S3. Raw images from the Centrifuge Force Microscope. Left, a portion of the camera field of view. 
Center, an inset of a few beads. The looped and unlooped nanoswitches are in slightly different focal planes. 
Right, images of the lowermost bead in the inset before and after a transition from a closed to an open 
nanoswitch state. The position of the center of the bead is tracked in yellow (before transition) and blue (after 
transition). The position of the yellow circle is overlaid in the lower right image as a reference. 

Centrifuge Force Microscope Data Processing 

Motion trajectories of tethered beads in drift-corrected relative x and y coordinates were 
extracted from the raw movie recordings as previously described.1 Trajectories for each bead in 
each repeated experiment were extracted independently. The same physical beads were 
identified from each repeat based on the rule of minimal shift distance, and a unique Bead ID 
was given to each bead across repeats. In our CFM setup, the bead displacement in the y 
direction is the more prominent component as a result of the geometry of our CFM flow cell 
fixture and the swing angle of the centrifuge bucket under the working RPM speed. Thus, only 
the y displacement trajectories were used in the transition state analysis.   

Drift-corrected y trajectories were extracted for each bead for constant force stage in each 
experiment cycle, with the starting point being when the spinning speed reaches a constant 
value. The end point was set to either the end of the stage of constant speed/force if the bead 
could be traced until that point, or to the point when the bead tracking was lost. A typical y 
trajectory shows the bead fluctuating around a stable average position under the set pulling 
force. A sudden transition of the mean bead position indicates that the linked antibody-antigen 
bound has ruptured and the nanoswitch has undergone a transition from closed to open state.  
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Figure S4. Example bead trajectories. An arbitrary validated bead was chosen from the (A) mAF_30pN 
dataset and from the (B) mAD_30pN dataset. For each of the repeated pulls where the bead was successfully 
tracked, the y position of the center of the bead is plotted in blue as a function of time. The trajectory fit is 
shown in orange. The inferred transition time is shown with the red dotted line and labeled above each plot. 

These trajectories were then analyzed using the vbFRET package,5 a Matlab package for time 
series analysis based on a Bayesian approach. The bead trajectories were loaded in vbFRET 
and fitted to idealized trajectories (step functions) using default parameters and a maximum 
number of states of 5. For each idealized trajectory, the number of transition events, their 
transition time (relative to the beginning of the trajectory) and transition distance (difference in y 
displacement between states) were extracted.  

In addition to the transition distance and angle requirements applied to each individual transition 
event, as detailed in our previous work,1 the bead transition data set was further filtered by 
applying of following rules on the level of the unique bead IDs, to ensure only the beads with 
highly reliable trajectories were included in the transition time analysis:  

1. Beads from tight clusters were removed. The starting center-to-center distance matrix was 
obtained for each pair of beads from each repeated pull. Any bead with one or more neighbors 
with a bead center-to-center distance smaller than 25 pixels, or 2.2um, was removed, together 
with all of its neighbors within this distance range. 

2. Beads with invalid transitions were removed. Only beads with zero or one upward transitions 
were considered valid. The upward transition is defined as the idealized y trajectory transitioning 
from a lower position to a higher position, corresponding to the nanoswitch going from closed to 
open state in our setup. Beads showing either multi-state (> 2 states) transitions, or a transition 

B

A mAF_30pN, bead ID 79

mAD_30pN, bead ID 10
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in the incorrect direction (corresponding from open to closed state under force) were considered 
invalid, and all of its trajectories were removed from the data set, including repeats where it 
seemingly showed only valid transitions. 

3. Beads with an unusually large transition distance were removed. The threshold of y transition 
distance dy was selected to be 3.6 pixels, or 12.2um. This threshold was determined by adding 
3x standard deviation to the median dy based on all valid transitions meeting the first two 
requirements. Beads with one or more transition distance greater than this threshold were 
removed from the data set. 

4. Beads with an unusually high variance in the idealized open or closed state positions 
between repeated pulls were removed. Beads meeting the above three requirements would 
show no more than two states, an open one and a closed. Consider taking the difference 
between the max and min values of the idealized coordinate. The larger one between the two 
ranges cannot be greater than a threshold of 18 pixels, or 61.2um. This threshold was set to be 
5x of the dy threshold chosen in Requirement #3. 

Bead IDs with one or more trajectories which failed any of the listed four requirements were 
removed from the data set. Overall, this additional filtering process removed ~10-30% of the 
remaining tracked beads. A final valid dataset of the Bead ID and transition time in each 
repeated measurement was compiled and used in the following Bayesian analysis. 

 
Figure S5. Dependence of lifetime uncertainty on number of repeats. For the monoclonal anti-fluorescein 
dataset at 30pN, all molecular pairs with at least 9 observed transitions were selected. For each molecular pair, 
a random subset of N transitions were randomly selected, where N is between 1 and 9, and the coefficient of 
variation (CV) of these transitions was calculated by dividing the standard deviation by the average. The trend 
line shows the 1/√𝑁 dependence expected if the only error were statistical noise. 
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Section S2 Bayesian Non-Parametric Fitting Method 
From the table of transition times, we applied Bayesian non-parametric (BNP) inference to fit a 
distribution of bond-rupture lifetimes for the population of molecules. The population is modeled 
as a mixture of components, where the population fraction of component 𝑘 is denoted 𝑝! and 
the sum of the 𝑝! is 1. For any molecule belonging to component 𝑘, the transition time is 
assumed to follow an exponential distribution with a characteristic time 𝜏! and a right-truncation 
time 𝑇 of the length of the experiment, 𝑝(𝑡) ∝ 𝑒"#/%$ , 0 < 𝑡 < 𝑇. The BNP method determines a 
joint posterior distribution over the mixing proportions 𝑝!, and the lifetimes 𝜏!. The posterior 
distribution is estimated with a Gibbs sampler Monte Carlo chain. The codes are available 
online at https://github.com/wpwonglab/Single-Molecule-Centrifugation. 

The Weak Limit. In the non-parametric treatment, the number of components is formally infinite. 
Practically, however, given a finite dataset, only a small number of components have substantial 
posterior probability weight 𝑝!, and the remaining components have negligible weights. We 
therefore apply a finite truncation and approximate the prior on {𝑝!} as a Dirichlet distribution 
over a finite number of components, 𝐾&'(. Here 𝐾&'( should be much larger than the number 
of substantially populated components. In the limit 𝐾&'( → ∞, the weak limit approaches a 
Dirichlet Process.  For our dataset and hyperparameters, we find that the posterior over 𝑝! is 
robust for 𝐾 ≥ 10, so we are confident our truncation of the infinite Dirichlet Process is not 
affecting our posterior over 𝑝! (see discussion below).  

Model definition. We place an inverse gamma prior on the lifetime of each component, 𝜏! , 𝑘 =
1…𝐾&'(, and a Dirichlet prior on the proportions 𝑝!. Each of 𝑁 beads is randomly assigned to 
one of the components, with probability 𝑝! for the 𝑘’th component. The (unobserved) identity of 
each bead 𝑐) is an integer between 1 and 𝐾 for all beads	𝑛 = 1…𝑁. The 𝑛’th bead has 
observed transitions in 𝑀) of the repeated pulls, where 𝑀) ≤ 𝑀 and 𝑀 is the total number of 
pulls. The transition time of the 𝑛’th bead on the 𝑚’th pull is 𝑡)&, where 0 < 𝑡)& < 𝑇, 𝑛 =
1…𝑁,𝑚 = 1…𝑀), and is assumed to be drawn from a truncated exponential distribution with a 
characteristic time 𝜏*%, the lifetime of the component of that bead. To summarize, 

𝜏! ∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)					𝑘 = 1…𝐾&'( 

{𝑝+, 𝑝,, … } ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾/𝐾&'() 

𝑐) ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑝+, 𝑝,, … )				𝑛 = 1…𝑁 

𝑡)& ∼ 𝑇𝑟𝑢𝑛𝑐𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙V𝜏*); 𝑇X				𝑛 = 1…𝑁,𝑚 = 1…𝑀- 

or explicitly, 

𝑃(𝜏! = 𝜏|	𝛼, 𝛽) ∝ 𝜏"(+/0)𝑒"2/% 

𝑃(𝑝+, 𝑝,, … 	|	𝛾) ∝ (𝑝+𝑝,…)3/4&'("+  
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𝑃(𝑐) = 𝑘	|	{𝑝+, 𝑝,, … 	}) = 𝑝! 

𝑃(𝑡)& = 𝑡	|	{𝑐), 𝜏!}) = [𝜏 \1 − 𝑒"
%
5^_

"+
exp	(−𝑡/𝜏*%) 

We chose an inverse gamma prior for the lifetimes because it is conjugate to the untruncated 
exponential distribution (which the truncated exponential distribution approaches as the cutoff 
time T increases relative to the characteristic lifetime 𝜏*, i.e. in the limit 𝑇/𝜏* → ∞), and because 
it is a standard choice for biomolecular processes with first-order kinetics.6 

An analogy for the Dirichlet Process. The key feature of the BNP formalism is that the model 
infers a probability distribution over {𝑝!} for an infinite number of components. Intuitively, the DP 
can be thought of in analogy with a “Chinese restaurant”, where we are tasked with seating a 
long line of 𝑁	customers, one at a time, at a set of tables. Each customer represents a molecule 
and each table represents a component. As each customer enters the restaurant, they can be 
assigned to an existing table, with a probability proportional to the number of customers already 
at the table, or they can be assigned to a new singleton table, with a probability proportional to 
the “concentration hyperparameter” 𝛾. As the customers are seated the number of occupied 
tables grows (logarithmically with 𝑁).  

The hyperparameter 𝛾 determines the propensity for populating a new table. A larger value of 𝛾 
induces more tables to be populated. The size of 𝛾 can be interpreted as a strength of the prior. 
For small 𝛾, it is relatively rare to populate a new table, so it only tends to happen when a bead 
is highly distinct from existing data points such that it populates its own table. By contrast, for 
large 𝛾, it is relatively more likely to populate new tables, and so tables are populated even 
when a customer can comfortably be assigned to one of the existing tables. Here the preference 
of a customer for a pre-populated table represents the likelihood of observing a bead’s transition 
times given the lifetime of an existing component (as compared to forming a new component 
with a distinct lifetime). 

Prior and Posterior. The parameters we wish to determine are the mixing proportions 𝑝!, and 
the lifetimes 𝜏!. As with any Bayesian method, we assume a prior distribution over these 
parameters, encoded in the first two equations above. These represent our existing knowledge 
about these parameters. 

The data is used to infer a posterior distribution over these parameters, which can be 
interpreted as the model’s confidence that the parameters have a set of values based on the 
dataset. From the maximum and spread of this posterior distribution over 𝑝! and 𝜏!, we can 
infer point estimates and relative errors of the parameters. In our case, the posterior is 
numerically sampled with a Monte Carlo approach.   

Gibbs Monte Carlo sampler. In the first iteration, the parameter values are drawn from the prior 
distribution. Afterwards, the value of the parameters at each iteration is determined 
stochastically from the values at the previous iteration, as described shortly. Each iteration is a 
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sample. After many samples, the distribution of parameter values approaches the posterior. In 
each iteration 𝑡, we estimate a set of putative parameter values, 𝑝!

(#) and 𝜏!
(#), 𝑘 = 1…𝐾	, as well 

as a putative way to assign beads to component, 𝑐)
(#), 𝑛 = 1…𝑁, based on the values of 

variables in the previous iteration , 𝑝!
(#"+), 𝜏!

(#"+), and  𝑐)
(#"+). A schematic explanation of the 

Gibbs sampler is given here, and a more complete description is given at the end of this section. 

1.  Update the component assigned to each bead 𝑐)
(#), 𝑖 = 1…𝑁, based on the values of 

𝑝!
(#"+) and 𝜏!

(#"+) from the previous iteration. 

2. Update the proportion of beads in each component, 𝑝!
(#), 𝑘 = 1…𝐾, based on the number 

of beads currently assigned to that component, determined from 𝑐)
(#). 

3. Update the lifetime of each component, 𝜏!
(#), 𝑘 = 1…𝐾, based on the observed transition 

times of all beads currently assigned to that component, determined from 𝑐)
(#). 

The new set of values for the variables 𝑝!
(#), 𝜏!

(#),	and 𝑐)
(#) are saved to the computer, and the 

procedure is repeated. 

Sampling of Dirichlet Process. In the weak limit, the mixing proportions 𝑝! are sampled as a 
standard Dirichlet distribution over 𝐾&'( classes. Even though 𝑝! is nonzero for all 𝑘, the 
probability weight ends up getting concentrated in a small number of components. Therefore, 
when the bead identities 𝑐) are sampled (with standard multinomial sampling), they end up 
being assigned to a few components, and the remainder of the components are empty. As the 
Monte Carlo chain proceeds, the number of beads assigned to each component goes up and 
down, as shown in Figure S6. Sometimes a component loses all of its beads; conversely, 
sometimes an empty component begins to accumulate beads. (At any iteration, all empty 
components are assigned a random lifetime drawn from the prior distribution.) 

To get a sense of the number of significant subpopulations in our biomolecular sample, we 
count the number of components with at least one bead. This is something which is (indirectly) 
sampled over the course of the Monte Carlo chain. We ran the sampling for long enough to 
attain a steady-state distribution of the number of significant subpopulations. (As a technical 
note, it is difficult to directly interpret this as the number of distinct kinetic subpopulations, 
because by the nature of the Dirichlet Process, the number of populated mixture components is 
expected to grow logarithmically with the number of data points.) 

Since component lifetimes 𝜏! have a non-conjugate prior, there is no standard method for 
sampling from the posterior. We used a rejection sampling approach: the graph of the 
conditional posterior density 𝑝(𝜏!|𝑐)) is plotted as a function of 𝜏!. A point (𝑥, 𝑦) is chosen 
uniformly and at random with 1 < 𝑥 < 500 and 0 < 𝑦 < max𝑝(𝜏!|𝑐)). If the point lies under the 
graph of the probability density (i.e., 𝑦 < 𝑝(𝑥)), then 𝑥 is returned as a sample of 𝜏!; if not, the 
procedure is repeated. The first value of 𝑥 which lies under the graph is returned. 
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Hyperparameters of the prior. The results of the Bayesian fit can be sensitive to the 
hyperparameters 𝛼 and 𝛽 for the lifetime prior and 𝛾 for the DP. We chose biophysically 
plausible values of 𝛼 = 2, 𝛽 = 240, which cover the range of lifetimes exhibited by our 
monoclonal antibody samples. The optimal value of the concentration hyperparameter 𝛾 was 
determined by testing different values and inspecting the results, as shown in Figure S7. As 
expected, the larger values of 𝛾 induced a larger posterior probability for populating more 
mixture components, whereas smaller values of 𝛾 had smaller number of populated mixture 
components. We ended up choosing a value of 𝛾 = 10"6; the range from 𝛾 = 3 × 10"7 −
3 × 10"6 led to similar results (see Figure S5). 

Sampling scheme. We sampled 60,000 iterations, discarded the first 10,000, and took every 
100th sample after that. As shown in Figure S8B, the posterior has converged after 1,000 
samples, and the correlation between samples drops off after 100 samples. 

The Monte Carlo chain should not be sensitive to the initialization as long as the samples before 
equilibration are discarded. We tested this by initializing in two ways, (1) with all beads assigned 
to the same component, and (2) with equal probability in all 𝐾&'( component. Both initial 
conditions led to both the same equilibrium after several hundred iterations, as shown in Figure 
S6. 

We also verified that our finite truncation is justified. Figure S8 shows 𝐾&'( = 10 and Figure S9 
shows 𝐾&'( = 50. The results are nearly identical. 

Full algorithm. The full algorithm is described below. In each step, the posterior is written in the 
form (prior) ×	(likelihood).  

0. Initialize the values of 𝑝! , 𝜏! , and 𝑐). 

Repeat until convergence: 

1. For each bead 𝑛 = 1…𝑁	, 	update bead assignment 𝑐- by sampling from  

𝑃(𝑐) = 𝑘	|	{𝑝! , 𝜏! , 𝑡)&}) =
8$

∑ 8)
*&'(
)+,

,    where 

𝐿! = 𝑝! ×∏ [𝜏! \1 − 𝑒
"-$. ^_

"+
exp	(−𝑡)&/𝜏!)

:%
&;+     for 𝑘 = 1…𝐾&'( 

2. For each component, 𝑘 = 1…𝐾, update the mixing proportions: 

𝑃V𝑝+, 	 … , 𝑝4&'( 	|i𝑐- , 𝜏* , 𝑡-<jX ∝ (𝑝+𝑝,⋯𝑝4)3"+ ×∏ 𝑝!
)/ ,4

!;+  where 

𝑛* =l𝛿(𝑐- , 𝑐)
=

-;+
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3. For each component 𝑘 = 1…𝐾, update the lifetime 𝜏! based on the observed transition 
times of all beads currently classified as that component. This is done with a rejection 
sampling approach. For unoccupied components, the lifetime is drawn from the prior.  

𝑃(𝜏! = 𝜏		|	{𝑝! , 𝑐), 𝑡)&}) ∝ V𝜏"(+/0)𝑒"2/%X ×nn𝛿(𝑐), 𝑐) o𝜏 p1 − 𝑒
"#%&5 qr

"+
𝑒"#%&/%

:

&;+

=

);+

. 

 
Figure S6. Comparison of different initialization schemes for BNP. The number of non-empty components 
is plotted as a function of the Monte Carlo iteration for an initialization with K=1 component (blue) and with 
K=10 components (orange). Inset, a zoom-in for early Monte Carlo iterations. 

 
Figure S7. Comparison of different values of the concentration hyperparameter, gamma. Plotted is the 
cumulative posterior probability density of the unbinding lifetime, inferred with various values of the 
concentration hyperparameter.  
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Figure S8. Convergence of Monte Carlo chain for the pAF dataset, with 𝑲𝒎𝒂𝒙 = 𝟏𝟎. (A)The values of 
various parameters are tracked as a function of Monte Carlo iteration number. The top two panels track 𝑝3 and 
𝜏3, respectively, with each component labeled with a different color. Dotted vertical line shows 10,000 
iterations, the equilibration time. (B) The autocorrelation of parameters, after relabeling the k from lowest to 
highest lifetime to resolve label-switching ambiguities. The first 10,000 iterations are not included in the 
calculation of autocorrelation. 
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Figure S9. Convergence of Monte Carlo chain for the pAF dataset, with 𝑲𝒎𝒂𝒙 = 𝟓𝟎. Identical to Figure S4 
except with K_max=50. Note that the results are nearly identical to Figure S4, indicating that the finite 
truncation of the Dirichlet Process is acceptable. 
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Section S3 How per-molecule information can help resolve components 
The fitting of multi-exponential decay curves is a common task in science and engineering. In 
most situations, each data point is independent of the others and there is no information about 
whether any two given data points originate from the same mixture component. However, since 
our experimental method tracks the same molecule between repeated CFM pulls, we have 
access to an extra piece of information: namely, all the data points coming from the same 
molecule must be in the same component. 

To investigate how this per-molecule information could aid in parameter fitting, we tested our 
analysis method with a standard parameter set, BOLIDEN3, which has been used as a 
benchmark for assessing fitting methods for multi-exponentials.7–9 Prior work has shown that the 
Bayesian non-parametric approach can successfully infer BOLIDEN3 parameters with as few as 
104 data points9. 

To assess the utility of per-molecule information, we generated two datasets: 

1. 10,000 molecules with 1 pull each with BOLIDEN3 parameters (Figure S10A) 
2. 500 molecules with 20 pulls each with BOLIDEN3 parameters (Figure S10B) 

Both datasets have the same total number of data points, comparable to what is feasible with 
the CFM. The difference is that dataset 2 has additional per-molecule information.  

Shown in Figure S10B is the per-molecule averaged histogram of dataset 2, analogous to the 
inset in Figure 2C of the main text. Visually, the per-molecule averaging in dataset 2 allows 
peaks to become clearly resolved. Applying our Bayesian nonparametric analysis to these 
datasets (hyperparameters 𝛼 = 0.1, 𝛽 = 0.5) yields the parameter estimates in Table S2. 
Interestingly, dataset 2 exhibits a smaller uncertainty in the lifetime estimate than dataset 1, 
owing to the extra information (purple vs blue text). However, the uncertainty in mixing 
proportion in dataset 2 is larger because of the fewer total number of molecules. Hence, for a 
given total number of data points, the repeated per-molecule measurement can indeed reduce 
the statistical uncertainty in the lifetime estimate (at the cost of greater uncertainty in the 
proportion estimate).   

  tau_1 tau_2 tau_3 tau_4 p_1 p_2 p_3 p_4 

parameter value 142.83 9.46 1.362 0.1000 0.750 0.174 0.0587 0.0167 

dataset 1 
mean 140.85 9.34 1.439 0.0795 0.750 0.172 0.0625 0.0141 

std 2.44 1.62 0.489 0.0337 0.017 0.025 0.0215 0.0059 

dataset 2 
mean 142.06 9.82 1.454 0.0953 0.747 0.177 0.0580 0.0160 

std 1.64 0.23 0.060 0.0075 0.060 0.053 0.0326 0.0176 

Table S2. Results of applying Bayesian Nonparametric analysis to synthetic datasets with the BOLIDEN 3 
parameters.7 The uncertainty in lifetime for dataset 1 and dataset 2 are shown in purple and blue, respectively. 
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Figure S10. Effect of per-molecule averaging for simulated datasets. (A) Simulated dataset 1 with 
BOLIDEN 3 parameters with 10,000 molecules and 1 repeat each. (B) Dataset 2 with BOLIDEN3 parameters 
with 500 molecules and 20 repeats each. Top, middle, and lower panels show with averaging over differing 
numbers of molecules. (C) Simulated dataset 3; same as (A) but with the PAF1 parameters. (D) Simulated 
dataset 4; same as (B) but with PAF1 parameters. Note the similarity to Fig. 4B in the main text.  

To see whether this result also holds for a more biophysically plausible parameter set, we 
repeated the above analysis using the parameters we inferred from the polyclonal anti-
fluorescein sample. These parameters, which we call PAF1, are listed in Table 2 in the main 
text. As before, we simulated two datasets: 

3. 10,000 molecules with 1 pull each with PAF1 parameters (Figure S10C) 
4. 500 molecules with 20 pulls each with PAF1 parameters (Figure S10D) 

To emulate the experimental conditions, we removed data points longer than the truncation time 
of 480 seconds.  

As shown in Figure S10D, the per-molecule averaged histograms of the PAF1 simulated 
dataset 4 bear a close resemblance to the histograms of the experimental data (Fig. 4B), 
indicating that our fitted parameters largely recapitulate the original data. While our analysis 
suggests that three components may be sufficient to explain the observed unbinding kinetics, 
we note that due to the ill-conditioned nature of the multi-exponential, the data could also be 
well-modeled by a greater number of components or even by a continuous lifetime density. In 
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this case, the parameter estimation is greatly aided by the repeated measurement: without this 
information, dataset 3 does not converge to the correct values, whereas with this added 
information, dataset 4 converges to the true parameter values (Table S3). 

 

  tau_1 tau_2 tau_3 p_1 p_2 p_3 

parameter value 400.079 119.566 35.451 0.594 0.266 0.140 

dataset 3 
mean 300.332 156.485 46.212 0.589 0.155 0.254 

std 58.636 75.534 8.910 0.263 0.271 0.074 

dataset 4 
mean 403.510 122.435 36.489 0.566 0.287 0.145 

std 31.977 5.849 1.092 0.076 0.071 0.049 

Table S3. Results of applying Bayesian Nonparametric analysis to synthetic datasets with the PAF1 
parameters. The uncertainty in lifetime for dataset 3 and dataset 4 are shown in purple and blue, respectively. 
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