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Fig. S1. Chemical structures of the organic donor and acceptor semiconductor materials 
used in this work. The chemical structure of PFN-Br interlayer is also included. 
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Fig. S2. Time dependence of dark current density. JD recorded over time by applying a 
constant bias voltage, as indicated in the legend, for the tandem-like photodiode with FAMAPbI3 
and PM6:Y6 active layers. 
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Fig. S3. Noise current spectral density as a function of frequency. Noise current spectral 
density measured at −0.5 and 0 V for the tandem-like photodiode with FAMAPbI3 and PM6:Y6 
active layers. For comparison, the noise of a commercial Si photodiode at −0.5 V is also shown. 
Each spectrum is obtained with an average of 15 measurements. Harmonics with large amplitude 
in the spectrum are due to powerline interference. Black line represents the noise floor of the 
setup (∼ 4 × 10−15 A Hz−1/2). 
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Fig. S4. Normalized transient photocurrent response. Normalized transient photocurrent 
response upon square light pulses of NIR light (850 nm) of 250 𝜇s duration.  
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Fig. S5. Voltage dependence of EQE. EQE as function of wavelength measured at 0 and −1 V. 
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Fig. S6. EQE enhancement as function of applied voltage. EQE as function of wavelength 
measured with and without additional green (540 nm) light illumination for different applied 
voltages. Green light intensities are indicated in the legend. 
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Fig. S7. Schematic illustration of the photophysical mechanisms occurring in the device 
upon different illumination conditions. (A) Visible light: photogenerated electrons in the 
perovskite upon absorption tend to accumulate at PFN-Br interface, thus screening the internal 
electric field that promotes carriers extraction, facilitating instead their recombination. As result, 
charge collection is largely suppressed and EQE is extremely low, approaching zero. (B) NIR 
light: photogenerated carriers in the BHJ are successfully transported and collected at the 
electrodes. (C) Visible light (with additional green light): the additional green light is entirely 
absorbed by the perovskite film, where a large population of photo-generated electrons cannot be 
extracted and piles up at the interface with PFN-Br. This shifts the conduction band of perovskite 
upward and closer to the LUMO level of PFN-Br, thus redistributing the internal electric field of 
the latter and lowering the electron-blocking energy barrier. Similar as for (A), at the generation 
of electron and hole pair in the perovskite upon absorption of visible light, charge extraction is 
hindered. Given the population of photogenerated electrons and holes by additional green light, 
(visible) electron and holes will more likely recombine, resulting in a very low, almost negligible 
EQE. (D) NIR light (with additional green light): in this situation, the background population of 
excited electrons and holes leads to EQE to NIR photons exceeding 100%. The additional green 
light is entirely absorbed by the perovskite film, forming a large population of excited electrons 
that cannot be extracted and piles up at the interface with PFN-Br. Such accumulated charges 
shift the conduction band of perovskite upward and closer to the LUMO level of PFN-Br, thus 
redistributing the internal electric field of the latter and lowering the electron-blocking energy 
barrier. The extent of this process is regulated by the intensity of additional green light. The 
incoming NIR light is here absorbed in the BHJ. As described for (B), both (NIR) 
photogenerated electrons and holes can be extracted. However, when the (NIR-) photogenerated 
holes approach the PFN-Br from the BHJ, the electron-blocking energy barrier further reduces, 
thus enabling the transfer of a portion of electrons from the perovskite towards the cathode. As a 
result, from a single NIR photon absorbed by the tandem-like device, more than one carrier is 
extracted as photocurrent causing an EQE > 100%. The mechanism recalls that of a 
photomultiplication, but with a lower gain, occurring locally at the junction between the 
perovskite and the BHJ, due to the PFN-Br interlayer, and is light-activated. Due the complexity 
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of the system and relative uncertainty of the energetics, the precise mechanism through which 
electrons passes the barrier, e.g., jumping over or tunnelling through, is not fully understood at 
this point. 
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Fig. S8. EQE of the device without PFN-Br interlayer. EQE as function of wavelength 
measured with and without additional green (540 nm) light illumination for at 0 V for the device 
without PFN-Br interlayer, showing a broadband spectrum and no enhancement of EQE. Green 
light intensities are indicated in the legend. Without PFN-Br, all charges generated by additional 
green light within the perovskite layer can freely move to the BHJ (with the lower bandgap), 
resulting in a larger population of excited photocarriers in the BHJ. Similar as in the perovskite, 
the strongly enhanced carrier density in the BHJ, then, results in more electron-hole 
recombination which reduces the collection efficiency and EQE. This occurs irrespective of 
where the electron-hole pair is generated, either in the perovskite (from visible photons) or in the 
BHJ (from NIR photons). Hence, the EQE is reduced over the entire spectrum. 
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Fig. S9. Device stability. (A) Stability of enhanced EQE as function of wavelength measured 
under additional green light illumination (540 nm, 60 mW cm−2) after fabrication, 3 and 6 
months, as indicated in the legend. Inset shows the variation of EQEmax. (B) Stability of the 
corresponding spectral responsivity. 

  



 
 

12 
 

 

Fig. S10. Noise current and specific detectivity. (A) Normalized current noise spectral density 
(in) as function of frequency measured in dark and under 530nm and/or 850 nm light illumination 
modulated at different frequencies, as described in the legend. Each spectrum has been 
normalized with respect to that measured in dark. (B) Detectivity at different wavelengths as in 
Fig. 3D in semilogarithmic scale. (C) Extended plot of comparison of noise-current based 
specific detectivity (D*) of our device with state-of-the-art NIR narrowband solution-processed 
photodetectors (both photodiode and photomultiplication types, indicated in the legend as PD-
type and PM-type respectively). The code number associated to each data point is referenced in 
Table S1.  

  



 
 

13 
 

 

Fig. S11. Effect of LED driving voltage on emitted light intensity. Variation of light intensity 
as function of LED (940 nm) voltage without and with the attenuation caused by the finger 
between the LED and the photodiode . For calibration, a commercial Si diode (Thorlabs 
FDS100-CAL) was used. The measurement has been performed in transmission and by placing 
the LED at 2 cm from the diode. The attenuated intensity was measured by inserting the finger 
between the light source and the photodiode. 
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Fig. S12. PPG signal measured with commercial Si photodiode. (Null) PPG signal measured 
in transmission under the same measurement conditions as described in Fig.4a using a 
commercial Si photodiode (Thorlabs FDS100-CAL). 
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Fig. S13. 940 and 540 nm LEDs characteristics. (A) I-V characteristics of the green and NIR 
LEDs.  (B) Power consumption as function of applied voltage for the 940 nm (NIR) LED, 
calculated as P = VI. Dashed line shows the value of power used for the additional green LED, 
while red and black circles indicate the low-power and high-power conditions, respectively, 
considered in our analysis for the NIR LED. (C) Light intensity of the NIR LED as function of 
power consumption. 
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Fig. S14. Experimental setting for heart and respiration rates measurements in reflection. 
(A) Schematic illustration of the experimental set-up used to measure heart rate (left) and 
respiration rate (right) at distance in reflection. (B) Photograph of the experimental setting for 
remote heart rate monitoring. 
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Fig. S15. Experimental setting for heart rate measurement in transmission. (A) Schematic 
illustration and (B) photograph of the experimental set-up used to measure the PPG signal at 
distance in transmission. (C) Normalized PPG signal measured at different PD-finger distances 
using near-IR light (850 nm) in transmission. 
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Table S1. Comparison of noise-current based specific detectivity (D*) of state-of-the-art 
NIR narrowband solution-processed photodetectors as shown in Fig. 3E and Fig. S10. 

 

Code 
no. 

Active material design [nm] D* [Jones] Ref. 

1 DPP-DTT:PC71BM 930 4.2 × 1012 (33) 
2 MAPbI3 766 2.65 × 1012 (38) 
3 MAPbI3 800 1.27 × 1012 (35) 
4 PTB7-Th:FOIC 910 1.25 × 1012 (59) 
5 PTB7-Th:SiOTIC-4F 1030 1.25 × 1012 (59) 
6 PTB7-Th:COTIC-4F 1100 1.25 × 1012 (59) 
7 D8:C60 910 3.9 × 1011 (60) 
8 PDTP-DFBT:PC70BM:PbS-QDs 890 8 × 1011 (61) 
9 P3HT:PTB7-Th:BEH 850 8.8 × 1011 (62) 
10 P3HT:PTB7-Th:PC70BM 800 5.7 × 1011 (63) 
11 MAPbI3 780 1.7 × 1011 (64) 
12 P3HT:PTB7-Th:PC60BM 800 2.4 × 1010 (65) 
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Data S1. 
All data shown in the graphs in the manuscript and in the supplementary figures. 
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