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Figure S1. Global reorganization of genome compartmentalization during SC lineage
development. (A) GFP+ FISCs or QSCs were collected from Pax7-nGFP muscle by FACS
sorting. FACS profiles are shown. GFP+ cells are marked as magenta dots. Values on the
plots indicate mean percentage of sorted GFP+ cells in the total number of events. (B)
Immunofluorescence staining for PAX7 was performed on the above collected QSC and
FISC. The percentage of PAX7+ cells is shown on the right. Scale bar, 10 pm. n = 6-9 fields.
(C) In situ Hi-C was performed on QSC, FISC, ASC-D1, ASC-D2, or DSC-D3. Heat map
showing the Pearson correlation among all replicates of Hi-C samples, based on the PC1
values (100 kb bins). (D) Scatter plots of PC1 values showing change of each time point
relative to QSC replicate 1. Pearson correlation coefficients are indicated. (E) The percentage
of cis and trans chromosomal Hi-C contacts in the Hi-C datasets at each time point. (F)
Contact probability relative to genomic distance of individual chromosomes. (G) Enrichment
of H3K4me3 and H3K27Ac ChIP-seq signals in A or B compartments in QSC and FISC.
kP < 0.0001, Wilcoxon signed-rank test. (H) Line chart depicting fraction of the genome
assigned to A or B compartments at each time point. (I) Left, bar graph depicting fraction of
the genome that switched compartment between any two time points. Right, bar graph
depicting switching percentage per time point. (J) Absolute PC1 change between any two

time points for regions that switched compartment (A—B or B—A) or did not switch

(‘stable’) but increased (+) or decreased (-) in PC1 value.
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Figure S2. Integrated kinetics of transcriptome and compartmentalization during SC
lineage development. (A) left: Genome browser view of Pax7, Heyl, Egri, Myodl and
MyoG gene expression measured by RNA-seq data; right: bar graph depicting the RPKM
values of the above genes across the SC lineage progression. (B) 20 types of switching
clusters were identified and the dynamics of average RNA expression versus PC1 are shown.
(C) Summarized gene ontology (GO) annotation of the 20 clusters grouped by switching

dynamics during SC lineage progression.
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Figure S3. Dynamic TAD boundary organization during SC lineage development. (A)
Boxplots showing TAD size distribution at each stage. (B) Bar graph showing the number of
TADs that were rearranged, merged, split, built or disappeared between two adjacent stages.
(C) Boxplots showing IS of TAD borders harboring 0, 1-3 or >3 CTCF motifs. (D-E)
Average IS in a 240 kb region centered on TAD boundaries gained or lost over time during
SC lineage progression. Lines show mean values (left). Representative in situ Hi-C contact
maps of a novel boundary gained at D2 (D, right) or lost at D2 (E, right). (F-G) Boxplots
depicting gene expression (RPKM) dynamics for border regions that were gained (red) or lost
(blue) during SC development. (H) Kinetics of mean expression level (FPKM) changes at
dynamic borders harboring genes that were either up-regulated or down-regulated after IS
decreased. (I) Illustration of in situ Hi-C contact maps (40-kb resolution) on the Hey! locus.
(J) Bar graph showing IS and FPKM kinetics of Heyl residing TAD border. Data in A, C, F,
and G are presented in boxplots. **P < (0.001, ***P < 0.0001, n.s., no significance, Wilcoxon

signed-rank test.
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Figure S4. Intra-TAD interactions are rewired during SC lineage development. (A)
Boxplots depicting average expression of genes (FPKM) in TADs with a low (0, 0.3), med
(0.3,0.6) or high (0.6, 1) D-score at each stage. *P < 0.01, **P < 0.001, n.s., no significance,
Wilcoxon signed-rank test. (B) k-means clustering (k= 20) of D scores. (C) PCA of D-score
during SC lineage progression. Hypothetical trajectory is shown as black arrow. (D) Average
D-score and PC1 kinetics (top) or gene expression (bottom) analysis for clusters of TADs that
were gained (n=2,172, left) or lost (n =467, right) in D3 vs QSC. Pearson correlation
coefficients (R) are indicated. (E) Illustration of in situ Hi-C contact maps (40-kb resolution)
on the Egr2 locus on Chrl5 (top) and on the Abtb1 locus on Chr6 (bottom). The bar graphs
show the FPKM kinetics of Egr2 and Abtb1 expression.
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Figure S5. TAD clusters are dynamically reorganized in FISC vs. QSC. (A) Boxplots
showing the average distance between pair-wise TAD interactions at each time point. (B) (top)
illustration of significant interactions between TADs in a matrix (red pixels). (bottom) A
TAD cluster (pink) is identified when =3 TADs are fully connected with each other. Edges
indicating interaction between two TADs while nodes indicating TADs. (C) Bar charts
depicting the number of TADs in clusters as a function of cluster size at each time point. (D)
TAD clusters were defined during SC development. Alluvial representation plot showing the
formation, loss, expansion and reduction of TAD clusters. Line thickness is proportional to
the number of TADs within the clusters on D3 (line color: red, size >5 or 3-5; gray, non-
clusters). (E) Genome-browser view of compartment, TAD and TAD cluster of a 100 Mb
region on chr 9. The number of TADs in each TAD cluster is shown (bottom tracks). Three
dynamic TAD clusters are highlighted in blue box. (F) Box plots showing the average
distance between pair-wise TAD interactions in TAD clusters at each time point. (G) TADs
in clusters were stratified by quartile of distances between pair-wise TAD interactions. Line
charts depicting the fraction of TADs in clusters of each quartile in A and B compartments
over time of SC development. (H) Gene expression levels outside clusters (Non) and in
clusters of each quartile (Q1, Q2, Q3 or Q4) over time of SC development. (I) TADs are
classified into four quartiles (Q1, Q2, Q3 and Q4) according to distance between pair-wise
interacting TADs. Pie chart showing the distribution of SE/TE containing TADs in Q3 and
Q4. (J) Expression of genes residing in pair-wise interacting TADs in Q3 and Q4. Blue,
genes in SE containing TAD clusters; Red, genes in TAD clusters without SE. (K) Boxplots
showing the relative number of TAD clusters engaging TE, SE or random control regions at
QSC or FISC stage. (L) Left, Boxplots showing the average distance between pair-wise TAD
interactions that TE or SE engaged in at QSC or FISC stage. Right, Boxplots showing the
size of TAD clusters (i.e. the number of TADs within a TAD cluster) engaging TE, SE or
random control regions at QSC or FISC stage. (M-N) Boxplots depicting expression
dynamics (RPKM) in FISC vs. QSC for TAD clusters with TE or SE engagement at QSC (M)
or FISC (N) stage. Data in A, F, H, K, L, M and N are presented in boxplots. *P < 0.01, **P

<0.001, ***P < 0.0001. n.s., no significance, Wilcoxon signed-rank test.
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Figure S6. Chromatin loops are dynamically rewired during SC early activation. (A)
Boxplot depicting loop size in QSC and FISC. Average number of genes per loop in QSC and
FISC are show above. (B) Illustration showing the percentage of QSC- or FISC- specific
loops within A or B compartments. (C) Box plot depicting expression dynamics of genes
within QSC- or FISC- specific loops. (D) Bubble plot of the enriched GO terms associated
with genes in QSC- or FISC- specific loops. The bubble size represents the number of genes
enriched in each term; the bubble color represents the enrichment significance. (E) Pie chart
showing the overlapping between chromatin loops detected in QSC (n = 3,334) and FISC (n
= 1,375) by HICCUPS. (F) Aggregated peak analysis (APA) analysis of all chromatin loops
detected by HICCUPS at QSC or FISC. Bin size, 5 kb. (G) APA analysis of QSC- or FISC-
specific loops and constant loops detected by HICCUPS. Bin size, 5 kb. Numbers indicate
average loop strength. (H-J) The above chromatin loop analyses were conducted by
Mustache. Data in A and C are presented in boxplots. **P < 0.001, ***P < 0.0001. n.s., no

significance, Wilcoxon signed-rank test.
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Figure S7. Dynamics of chromatin loops during SC lineage progression. (A) (top)
[lustration of identified chromatin loops in QSC, FISC, D1, D2 and D3. Bin size, 10 kb.
(Bottom) Aggregated peak analysis (APA) analysis of all chromatin loops detected at QSC (n
=19,614), FISC (n = 6,487), D1 (n=10,817), D2 (n = 43,502) and D3 (» = 21,912). Bin size,
10 kb. (B) Bar graph depicting the number and fraction of QSC-specific loops (top) and
FISC-specific loops (bottom) that appeared at the late stages. (C) Aggregated peak analysis
(APA) analysis of QSC-specific loops or FISC-specific loops at each time point. Bin size, 10
kb. (D) Boxplot depicting changes in loop size during SC lineage progression. Average
number of genes per loop are show above. (E) Box plot depicting expression dynamics of
genes within stage—specific loops. (F) Bubble plot of the enriched GO terms associated with
genes in stage-specific loops. The bubble size represents the number of genes enriched in
each term; the bubble color represents the enrichment significance. (G) Hi-C contact maps
depicting stage-specific loops form around MyodI, MyoG, and Myhl genomic locus during
SC lineage progression. Left, black square in Hi-C contact matrix and black arc denote a
chromatin loop formed between MyodI locus and a downstream region at D2. RNA-seq
tracks showing the induction of Myodl RNA expression at D2. Middle, black square in Hi-C
contact matrix and black arc denote a chromatin loop formed between MyoG locus and an
upstream region at D3. RNA-seq tracks showing the induction of MyoG RNA expression at
D3. Right, black square in Hi-C contact matrix and black arc denote a chromatin loop formed
between Myhl locus and an upstream region at D2 and strengthened at D3. RNA-seq tracks
showing the induction of Myhl RNA expression at D3. (H) Motif enrichment was conducted
in the stage-specific loop anchors by HOMER. (I) YY1 ChIP-seq profiles in myoblast (MB)
or myotube (MT) were collected. Meta plot showing the enrichment of YY1 occupancy in the
anchors of D2-specific loops (YY1 ChIP-seq in MB) and reduced enrichment of YY1
binding in D3-specific loop anchors (YY1 ChIP-seq in MT). Data in D and E are presented in
boxplots. *P <0.01, **P < 0.001, ***P < 0.0001. n.s., no significance, Wilcoxon signed-rank

test.
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Figure S8. PAX7 regulates E/P loop reorganization during SC early activation. (A) Left:
RNA-seq tracks showing Ctcf, Rad21, Nipbl and Wapl mRNA expression in QSC and FISC.
Right: bar graphs showing the RNA expression levels (FPKM). (B) Western blot analysis of
RAD?21 protein in QSC and FISC. Ponceau S staining was used as loading control. (C) CTCF
ChIP-seq binding peaks in QSC and FISC were analyzed. QSC-specific, FISC-specific and
constant binding peaks were identified and Meta plot showing the CTCF binding signals in
each category. (D) Enriched CTCF binding signals at the anchor regions of QSC- or FISC-
specific loops. (E) Enriched TF motifs in the loop anchors of “other” loops in QSC and FISC
conducted by HOMER. (F) Distribution of enhancer-enhancer (E-E), Enhancer-Promoter (E-
P) and other types of loops among E/P loops in QSC and FISC. (G) APA analysis of E-E and
E-P chromatin loops detected in QSC and FISC. (H) Box plot depicting interaction intensity
(Obs/exp) of the above E-E and E-P loops. ***P < 0.0001, Wilcoxon signed-rank test. (I)
Overlapping of active enhancers and promoters between QSC and FISC. The number and the
percentage of overlapped and specific enhancers and promoters are shown. (J) Schematic
illustration showing the design of dual sgRNAs (sgRNA1, sgRNA?2) targeting Pax7 exon 2
for in vivo deletion of Pax7 in SCs by the CRISPR/Cas9/AAV9-dual sgRNA system. (K)
WB showing the decreased PAX7 protein in the above isolated SCs from KD compared to
Ctrl mice. The PAX7 expression level was normalized to Histone 3. Ponceau S was used as a
loading control. Immunoblots are representative of two independent experiments. (L) SCs
were isolated from Ctrl or PAX7 KD mice. Box plot depicting mean percentage of sorted
QSCs in the total number of events and presented as mean =+ s.d. n = 4 mice per group. *P <

0.05, two-tailed unpaired Student's #-test.
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Figure S9. 3D regulatory interactions orchestrate Pax7 expression dynamics in SC. (A)
Schematic illustration showing the design of dual sgRNA pairs for in vivo deletion of
individual regulatory element (RE) in SCs by the CRISPR/Cas9/AAV9-dual sgRNA system.
The purple arrows (F and R) indicate PCR primers for genomic PCR analysis to assess in
vivo deletion efficiency. (B) SCs were isolated from Ctrl or mutant mice and genomic PCR
analysis was performed to test the cleavage efficiency. The deletion product (red asterisk) and
expected size after deletion (below) are shown. (C) PAX7 protein level in the above QSCs
was examined by Western blot. Ponceau S was used as loading control. Relative band
intensity is shown. (D) PAX7 protein level in the above FISCs was examined by Western blot.
GAPDH was used as loading control. Relative band intensity is shown. (E) /n situ Hi-C was
performed on QSCs isolated from Ctrl or mutant mice. The number of valid pairs generated
from each sample are shown. (F) Comparison of contact frequencies at the TAD
encompassing Pax7 locus in QSCs from Pax7-nGFP or Pax7“‘ mice at 40 kb (left) or 10 kb
(right) resolution. (G) Correlation of contact frequencies within the Pax7 residing TAD
between Pax7-nGFP and Pax7¢%° mice at 40 kb (Left) or 10 kb (Right) resolution. Pearson
correlation coefficients (R) are indicated. (H) Comparison of contact frequencies of intra-
(top) or inter- TAD (bottom) between Ctrl and RE deletion mutants. Top: The yellow triangle
indicates a new sub-TAD identified in R3 QSCs. Each RE is highlighted with dotted box.
Bottom: Pax7 residing TAD is highlighted as dotted black triangle while two TADs
surrounding the Pax7 TAD are highlighted as black triangles. (I) Comparison of Hi-C contact
maps between Ctrl and R1 QSCs. CTCF ChIP-seq in QSC and FISC are highlighted. Black
circle, enhanced contact in R1 QSC; blue circle, diminished contact in R1 QSC; blue triangle,

putative CTCF sites that may participate in the new loop formation in R1 QSC.
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Figure S10. 3D regulatory interactions orchestrate Pax7 expression dynamics in SC. (A)
Virtual 4C analysis on Pax7 locus in QSC from Ctrl or RE mutant mice. (B) Circos diagrams
showing the intra-chromosome interaction between the loci in Pax7 TAD (red box) and other
loci in Ctrl and mutant QSCs. (C) Hi-C contact maps (10-kb resolution) showing Pax7 TAD
organization in C1 group in comparison with Ctrl group. (D) WB showing the deletion of
PAXT7 protein in FISCs collected from Pax7 iKO vs. Ctrl mice. GAPDH and Ponceau S were
used as loading controls. Immunoblots are representative of two independent experiments. (E)
Hi-C contact maps (10-kb resolution) showing Pax7 TAD reorganization in the Pax7 iKO
QSC in comparison with Ctrl. (F) Boxplots showing inter- (between the Pax7 TAD and other
cis-interacting TADs) or intra-TAD (within Pax7 TAD) interactions. **P < 0.001, ***P <
0.0001, Wilcoxon signed-rank test. (G) Heatmap showing the Pearson correlation among Ctrl
QSC, RE deletion QSC (R1, R2, R3, R4), Pax7 in vivo knockdown QSC and FISC, based on
the PC1 values (100 kb bins), IS values (40 kb bins) and DS (40 kb bins).
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Figure S11. Dynamics of transcriptome during mouse SC aging. (A) VCAM+ FISCs
were collected from young (2 months), aged (23-24 months) and geriatric (28-32 months)
C57BL/6J mice. FACS profiles are shown and the gates indicate the population of FISCs
isolated for following analysis. Values on the plots indicate mean percentage of sorted FISCs
in the total number of events. (B) Left: PAX7 IF staining was performed on the above
collected cells. Scale bar, 50 um. (right) the percentages of PAX7+ cells in FISCs are plotted.
Control, young FISCs stained with secondary antibody only, depicting the background signal.
n = 10 fields. (C) Scatter plots showing RNA expression (FPKM) changes in aged or
geriatric relative to young FISC expression. Pearson correlation coefficient (R) is indicated in
red. (D) (top) Genome browser view of Pax7, Egrl, Myodl, Atf3, Myc, Hmgbl and Hmgb?2
gene expression measured by RNA-seq; bottom: bar graph showing the RPKM values of the
above genes. (E) Volcano plot of differentially expressed genes (DEGs) in Aged vs. Young
(top) and Geriatric vs. Aged (bottom) FISCs. The blue and red dots lying in left and right
represent significantly down- and up-regulated genes, respectively (P-value < 0.05, linear
fold change < -2 or > 2). Number of down- and up-regulated genes is also indicated. (F) -
means clustering (k = 8) of DEG profiles showing the kinetics for 8 clusters. Line graphs on
the right depict kinetics of gene expression changes. Lines denote the mean values, while the
shaded ribbons represent the 95% confidence interval (CI). (G) Bubble plot showing the
enriched GO terms of genes associated with the indicated category. The bubble size
represents the number of genes enriched in each term; the bubble color represents the

enrichment significance.
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Figure S12. Global reorganization of genome compartmentalization during mouse SC
aging. (A) Heatmap showing the Pearson correlation among replicates of Hi-C libraries,
based on the PC1 values (100 kb bins). (B) Observed contact matrices for Chrl at 500-kb
resolution during SC aging. The scale is adjusted to account for the total coverage on Chrl at
each stage. (C) (left) Differential heatmap on chromosome 6 showing increased A-A
interactions in Geriatric vs. Young FISC, accompanied with an increase in //-6 mRNA
expression. (right) Differential heatmap on chromosome 15 showing increased A-A
interactions in Geriatric vs. Young FISC, accompanied with increase in Ccnd? mRNA
expression. PC1 signals at each stage are displayed on the bottom of the heatmap. (D) Pie
chart depicting fraction of the genome with or without compartment switching during SC
aging. (E) Genome-browser view of Pmp22 (left), Ccl2-Ccl7-Cclll (middle) and Myhl-
Myh4 (right) loci. PC1 and RNA-seq at each stage are shown. Green shade indicates

compartment switching.
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Figure S13. Multiscale analysis of 3D genome during mouse SC aging. (A) The number
of TAD borders identified per time point. Invariant borders are present at all stages while
variable borders are lost or acquired in between two adjacent stages. (B) Box plot depicting
the IS of TAD borders at each stage. (C) Boxplots depicting expression of genes in TADs
with a low (0, 0.3), average (0.3, 0.6) or high (0.6, 0.9) relative domain score (D-score). (D)
Hierarchical clustering showing the kinetics for groups with increased (n=329), decreased
(n=1,425), or stable (n=2,009) D-scores during SC aging. (E-F) Average D-score and PClI
kinetics (E) or gene expression (F) analysis for clusters of TADs that were gained or lost in
Geriatric vs. Young. Pearson correlation coefficients (R) are indicated. (G) (left) Illustration
of in situ Hi-C contact maps (40-kb resolution) on the Hoxal0 locus. Bar graph showing the
FPKM kinetics of Hoxal0 expression during SC aging. (H) Contact enrichment of intra- and
inter-TADs during SC aging. Data are represented as boxplots based on the intra- and inter-
TAD values per TAD. (I) Hi-C contact maps depicting Pax7 TAD reorganization during SC
aging. Genome-browser view of chromatin loops, Pax7 RNA expression, H3K27ac signals in
Young and Aged FISCs, and IS around Pax7 locus during SC aging. Bar plot showing the IS
values of the above borders. Boxplots showing inter- or intra-TAD interactions. (J) PCA
analysis of PC1 values, IS, and D-score during SC lineage progression and SC aging. Black
arrows denote the hypothetical trajectory. Data in B, C and I are presented in boxplots. *P <

0.01, **P <0.001, ***P <0.0001, Wilcoxon signed-rank test.
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Figure S14. Source data for gel images and immunoblots relating to Fig. 3E, S8B, S8K
and S9B.
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Figure S15. Source data for immunoblots relating to Fig. S9C, S9D and S10C.



Table S1. (separate file)
Basic statistics of in-situ Hi-C data.

Table S2. (separate file)
Compartment analysis during SC lineage progression.

Table S3. (separate file)
RNA-seq analysis during SC lineage progression.

Table S4. (separate file)
TAD analysis during SC lineage progression.

Table SS. (separate file)
TAD cluster analysis during SC lineage progression.

Table S6. (separate file)
Loop analysis from QSC to FISC.

Table S7. (separate file)
Pax7 KO analysis in QSC.

Table S8. (separate file)
RNA-seq analysis in aging SCs.

Table S9. (separate file)
Compartment analysis during SC aging.

Table S10. (separate file)
TAD and loop analysis during SC aging.

Table S11. (separate file)
Sequences of oligos used in the study.

Table S12. (separate file)
Summary of all public datasets used in the study.
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