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Supplementary Figure 1: Extended information for transcriptional memory screen. A, Details of the
plasmid used as reporter for transcriptional memory using p416 TEF as backbone4® . B, Plate reader
measurements of the relative accumulation of pGAL7-sfGFP in relation to the constitutively expressed
pTEF1-mCherry in a wild-type strain, confirming the ability of the used reporter to display transcriptional
memory. Tests using both 2 hours (up) and 6 hours of repression in YPD (down) and 2 transformed clones
are shown. As expected, protein accumulation is delayed in respect to transcriptional response. C, Network
analysis for the 35 candidate genes putatively decreased transcriptional memory (Supplementary Data 1)
using STRING v11.548. blue indicate from curated databases, pink indicate experimentally determined, green
indicate predicted interaction as gene neighborhood, light green indicate source as text mining, black
indicate co-expression. D, Network analysis candidate genes putatively enhanced transcriptional memory
(Supplementary Data 1) using STRING v11.548. Colour code as in Supplementary Figure 1C.
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Supplementary Figure 2: Differential regulation of mMRNA abundance in naive and prime states. A, RT-
gPCR analysis of the relative abundance of endogenous GAL1T mRNA normalised to SCR1 for both first and
second galactose induction. Data are presented as mean values, error bars depict +/- SD of technical gPCR
replicates. Independent biological replicates are shown in the 3 sub-panels. B, Principal component analysis
(PCA) of mRNA expression (normalised RNA-Seq data) for both first and second induction in rrp6A. Only
coding mRNAs (ORF-Ts) where considered. C, Differential coding gene expression across samples (ORF-
Ts). MA plots show log: fold change differences on the y-axis and average normalised read counts (by global
ORF-Ts abundance) on the x-axis. Time points in naive state are compared to time 0 (naive states). Time
points in primed state are compared to time O’ (primed states). Significantly upregulated genes (p-adj <
0.001) are shown in red and significantly down-regulated (p-adj < 0.001) in blue. Wald test were used here
and Benjamini-Hochberg adjustment were used for multiple comparations. Data comes from n=3
independent biological replicates. D, Gene Ontology enrichment analysis for induced genes in the wild-type
strain. Only top GO listed, please see Supplementary Data S2 for the complete list. Over representation
(hypergeometric test) analysis were used for enrichment test and Benjamini-Hochberg adjustment was used
for multiple comparations. E, as D but for repressed genes. F, as D but for genes with induction memory. G,
as D but for genes with repression memory. H, Total RNA abundance (normalised by spike in) of both first
and second induction in wild-type and rrp6A strains. |, Differential coding gene expression across samples
(ORF-Ts). MA plots show log2 fold change differences on the y-axis and average normalised read counts (by
global ORF-Ts abundance) on the x-axis. Time 0 of rrp6A in naive state are compared to time 0 of wild type
(naive states). Time O’ of rrp6A in primed state are compared to time 0’ of wild type (primed states). J,
Principal component analysis (PCA) of mRNA expression (normalised RNA-Seq data) for both first and
second induction in rrp6A as in Figure 2B, but including ORF-Ts, CUTs and SUTs. RNA abundance was
normalized using coding genes. K, as D but for upregulated genes in rrp6A. L, as D but for downregulated
genes in rrp6bA.
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Supplementary Figure 3
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Supplementary Figure 3: Contribution of transcription and chromatin organization to transcriptional
memory. A, Overlap between annotated CUTs and gene groups with different transcriptional memory
profiles. Number of overlaps was computed between the transcription start sites and CUTs from25. (i.e. -150
nt to -50 relative to transcription start site on the sense strand and -150 to +50 on antisense strand). The
significance for the overlap was tested using a hypergeometric test. Over representation analysis
(hypergeometric test, one sided) was used and Benjamini-Hochberg adjustment were used for multiple
comparations. B, Relative expression of ORF-Ts, SUTS and CUTs in naive and primed cells for the wild type
and the rrp6A strains. mMRNA abundance is normalized to global ORF-Ts abundance. 5475 ORF-Ts, 847
SUTs and 925 CUTs examined over 3 independent biological experiments. First quantile, median and third
quantile are defined as the minimum, center and maximum bounds of the box-plots. C, Strand-specific RNA-
Seq coverage for the region containing GAL71, GAL10 and GAL7 in wild type and rrp6A strains (yellow low
expressed to blue, high expressed). D, Box-plot for RNA abundance of studied genes (DESeqg2’s median of
ratios). Box-plot represent the first, second and third quartile. 546 genes examined for induction memory, 336
for induction no memory, 294 for repression no memory and 773 for repression memory over 3 independent
biological experiments. First quantile, median and third quantile are defined as the minimum, center and
maximum bounds of the box-plots. E, RNA-Seq coverage ratio over the promoter region in sense strand
(-150 bp to -50 bp) comparing primed vs naive states (P/N) in wild-type (cyan) and rrp6A (brown). P value
(two-sided Wilcoxon signed-rank test) refers to differences between gene groups within the same strain. For
all boxplots the number of genes examined is depicted in the bottom of the boxplot and the independent
biological experiments n= 3. First quantile, median and third quantile are defined as the minimum, center and
maximum bounds of the box-plots. F, As in E but antisense covering the promoter region (-150 bp to +50

bp).
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Supplementary Figure 4
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Supplementary Figure 4: Contribution of chromatin organization to transcriptional memory. A, Global
MNase and ChIP Seq analysis. Metagene plot of the distribution of average nucleosome, H3K4me3,
H3K4me2 signal. Average sequencing coverage is shown (cpm, counts per million) for wild-type to naive
(grey), wild-type to’ primed (black), rrp6A to naive (orange) and rrp6A to’ primed (pink) here. Genome-wide
chromatin profiles around transcription start sites (TSS). Average sequencing coverage is shown (cpm,
counts per million) for nucleosome mapping (MNase, left column), H3K4me3 (center column) and H3K4me?2
(right column). B, MNase-Seq and ChlIP-Seq coverage for the region containing GAL1, GAL10 and GAL7 in
wild type and rrp6A strains. Coverage in cpm, counts per million. C, as in B, but corresponding the region
between SPS22 and PDI1 in Chromosome Il
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Supplimentary Figure 5
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Supplementary Figure 5: Contribution of Chromatin organization to transcriptional memory. A, Upper
part depicts the MNase Seq coverage over the nucleosome +1 (0 to 150bp from the TSS) for naive and
primed cells in the wild-type and the rrp6A strain. P value (Wilcoxon signed-rank test) refers to differences
between gene groups within the same strain. Box-plot represent the first, second and third quartile. The
bottom part depicts the MNase Seq coverage ratio over the nucleosome +1comparing primed vs naive
states in wild-type (cyan) and rrp6A (brown). For all boxplots the number of genes examined is depicted in
the bottom of the boxplot and the independent biological experiments n= 3. First quantile, median and third
quantile are defined as the minimum, center and maximum bounds of the box-plots. Two-sided Wilcoxon test
was used for all comparisons. B, as A but depicting the MNAseq coverage for the Nucleosome Depleted
Region (NDR), -150 to 0 bp from the TSS. C-D, as A-B but for H3K4me2. E-F, as A-B but for H3K4me3.
Metagene from Figure 3B-D is shown as reference for the regions analyzed.
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Supplementary Figure 6
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Supplementary Figure 6: Differential association to NNS and remodelling of the proteome in primed
conditions. A, Relative association for the NNS complex (i.e. Nab3) as measured by CRAC in naive cells 30.
Boxplot for induced and repressed genes is shown as in Figure 4. To measure gene-specific nuclear
surveillance association, since those complexes act on nascent transcripts, CRAC data is normalized by
RNA pol Il association, as previously described. Number of analysed genes is indicated in grey. Genes with
less than 20 counts were discarded. For all boxplots the number of genes examined is depicted in the
bottom of the boxplot. First quantile, median and third quantile are defined as the minimum, center and
maximum bounds of the box-plots. Two-sided Wilcoxon test was used for all comparisons. B, as A but for
genes classified according to their transcriptional memory. C, As in A but comparing genes with induction
memory enhanced or not enhanced by RRP6 depletion. D, As in A but comparing genes with repression
memory enhanced or not enhanced by RRP6 depletion. Significance computed using Wilcoxon signed-rank
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test. CRAC data from Bresson et al.30 E, Volcano plot showing relative protein abundance changes of primed
(to') and naive (to) states in rrp6A cells. Fold changes in protein abundance for to and to samples are shown
as a function of statistical significance (n = 4 of independent replicates). The points showing the protein
subunits of the TRAMP, NNS and nuclear exosome are labelled. F, same data shown in A with labels
pinpointing components of the nuclear and cytoplasmic exosome and the 5-3’ exonuclease XRN1. G, GAL1
protein levels of naive state and primed state in both wild type and rrp6A measured using intensity Based
Absolute Quantification (iBAQ). Manual inspection of the raw MS spectra confirmed that GAL1 quantification
in naive conditions was below the limit of reliable detection.
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Supplementary Figure 7
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Supplementary Figure 7: Expanded information for SLAM-Seq comparing naive and primed states. A,
Relative mRNA turnover (comparing nascent vs total RNA) using SLAM-seq in naive and primed conditions
at to and t3o for the wild-type and the rrp6A strain. Independent biological experiments n= 3.B-C, Gene
Ontology enrichment analysis for genes with relatively decreased (B) or increased (C) mRNA turnover in
primed cells. Over representation analysis (hypergeometric test) were used for enrichment test and
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Benjamini-Hochberg adjustment were used for multiple comparations. D, mRNA turnover in naive (to) and
primed (to’) conditions according to memory gene classification in wild type strain. Independent biological
experiments n= 3. E, in wild type strain, change in mRNA turnover between primed and naive conditions for
genes with induction memory enhanced or not enhanced by RRP6 depletion. F, Genome-wide ratio of
nascent (4sU labelled) vs total RNA for all coding genes using a pulse-chase approach in the wild-type
strain. Ratio at time 0 was set to 1. G, Degradation rate (60 * In(2) / t1/2) for all coding genes at time 0 for
naive (t0) and primed (t0’) states in the wild-type strain (pulse-chase). H, ratio of degradation rate comparing
primed vs naive state for induced and repressed genes in the wild-type strain (pulse-chase). I, as G but for
induction memory genes (pink), induced gene with no memory (orange), repressed genes with no memory
(light blue) and repression memory genes (dark blue). J, as G but for genes with repression memory not
affected or enhanced by RRP6 depletion. Box-plots represent the first, second and third quartile. For all
boxplots the number of genes examined is depicted in the bottom of the boxplot. First quantile, median and
third quantile are defined as the minimum, center and maximum bounds of the box-plots. When comparing
box-plot distributions, two-sided Wilcoxon test was used.
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Supplementary Figure 8
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Supplementary Figure 8: A, Relative mRNA turnover (comparing nascent vs total RNA) in wild-type and
rrp6A naive to state for CUTs and ORF-Ts. n= 5475 ORF-Ts and n = 925 CUTs examined over 3 independent
biological experiments. B, mRNA turnover in naive (to) and primed (to’) conditions according to memory gene
classification in rrp6A strain. C, same as B but comparing genes with rrp6A enhanced induction memory vs
non enhanced induction memory. D, Relative mRNA turnover (comparing nascent vs total RNA) using
SLAM-seq in naive (N, to) and primed (P, to’) conditions for the ski2A strain. Gene-specific turnover was
computed as in Figure 5, comparing for each gene the reads containing T>C conversion to the total mapped
reads. Only reads containing at least 2 T>C conversions are considered newly synthesized reads. Only
genes with at least 20 total reads were considered for RNA turnover analysis. E, Change in mRNA turnover
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between primed and naive conditions for induced and repressed genes in response to galactose for the
ski2A strain. F, As in D but for genes according to their transcriptional memory profile. G, As in D but for
genes with repression memory enhanced or not enhanced after RRP6 depletion. H, same as B but for ski2A.
I, same as B but but for ski2A. J, same as B but for xrn1A. K, same as B but for xrn1A. L, codon stability
coefficients (CSCg) of gene groups (gene groups with less than 10 genes are omitted). Box-plot represent
the first, second and third quartile. For all boxplots the number of genes examined is depicted in the bottom
of the boxplot and derives from n03 independent biological replicates. First quantile, median and third
quantile are defined as the minimum, center and maximum bounds of the box-plots. Two-sided Wilcoxon test
was used for all comparisons.
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