

Supplementary Fig. 1 | ϕ PA3 PhuN assemblies. a, Negative Stain micrograph of a phage nuclear shell fragment isolated from *P. aeruginosa* expressing 6XHisMBP-PhuN. The isolated species is about the size expected for an intact compartment. The lattice texture is visible as well as many wrinkles and folds. Smaller, round species are present on the surface (blue arrows), similar in appearance to Class II assemblies *in vitro*. (n = 2 for shell fragments, n = 1 for likely complete shell.) **b**, CryoEM micrograph of a shell fragment isolated from *P. aeruginosa* expressing 6XHisMBP-PhuN showing many shell fragments with a lattice texture, comparable to the lattices observed in main Figure 1. (n = 1). **c**, Immunofluorescence microscopy of *P. aeruginosa* cells expressing the 6XHisMBPGp53 fusion. The fusion protein integrates into the shell and localizes at the cell center around the phage DNA 60 minutes post infection. (n = 1). **d**, CryoEM images of *in vitro* PhuN assemblies. Densities consistent with the presence of MBP are visible on the exterior (green arrows). The inset shows a cartoon representation of a side-view of PhuN (blue) with MBP (purple). (n = 1). **e**, The assemblies show a lattice like surface. (n = 1).

Supplementary Fig. 2 | PhuN crystalizes at pH 6.5. a. Anion exchange purification using a 1 mL GE MonoQ column at pH 6.5. Highlighted fractions correspond to micrographs b-d. b, Monomeric species in Class I form 2D polycrystalline assemblies when applied to negatively charged grids for negative stain EM. c, 25 nm mid-sized species present in Class II. d, Assemblies 25 nm and larger present in later elution in Class III. Samples prepared and imaged n = 3 times.

Supplementary Fig. 3 | *in vitro* 2D crystal preparation. a, 6XHisMBP-PhuN is injected into a buffer droplet with a pre-formed 21% Ni·NTA Lipid Monolayer. b-c, After incubation to allow for assembly, the PhuN arrays are adsorbed to a grid by touching the carbon side of the grid to the top of the lipid-containing droplet. These grids are then plunge frozen for CryoEM. d, Data is collected at fixed tilts ranging from 0-60°. e, 0° image from Fig. 1c shown with the diffraction patten corresponding to the region denoted with the magenta rectangle. (n = 1).

Supplementary Fig. 4 | Example micrographs collected at the specified tilt angle. Tilt angle is listed alongside the grid support used in each micrograph: Traditional Quantifoil (QF), Amino-functionalized graphene-oxide (GO/NH₂), UltrAuFoil (AuAu). The lattices often appear with bends and breaks as seen throughout these micrographs. Number of datasets collected: $n(0^{\circ}, GO/NH_2) = 3$; $n(30^{\circ}, GO/NH_2) = 1$; $n(40^{\circ}, QF) = 1$; $n(50^{\circ}, QF) = 1$; $n(60^{\circ}, AuAu) = 1$; $n(60^{\circ}, GO/NH_2) = 3$.

Supplementary Fig. 6 | FSC curves corresponding to the original and deconvolved PhuN cryoEM maps. a, Original and deconvolved maps colored by the local resolution of the original map. b,c, Map to model FSC for the original and deconvolved maps, respectively. d. 3DFSC calculated for the original map.

Supplementary Fig. 7 | Comparison of p2 and p4 lattice symmetries. a, A small population with p4 symmetry (left) is observed in 2D classification. The flexible loops at the Loop interface appear to all face the center while the remaining two interfaces are replaced by one that is most similar to the Open Hairpin interface in our p2 classes (right, full view of the class shown in Fig. 2a). b, Cartoon depiction of how the p4 and p2 lattices may compare.

Supplementary Fig. 8 | Closer look at the positioning of the β -Hairpin at the Open Channel and Closed Interface. a, 16-mer model as in Fig. 2e. The two channels and two interfaces are labeled. b, The Open Channel is shown as viewed from the cytosol (left) and inside the phage nucleus (right). c, The Closed interface is similarly represented with the phage nucleus exterior on the left and interior on the right. The surfaces of two of the four subunits at each interface are shown and colored by electrostatic potential. d, Two tetramers aligned on the asymmetric subunits with a neighboring PhuN-O and PhuN-C subunit. The β -hairpin of PhuN-O is near the C-terminus of its neighbor while the PhuN-C β -hairpin is closer to a structured loop. e, 2D class, as shown in figure 2a, compared to a 90° rotation of the same 2D class after alignment on the highlighted asymmetric PhuN-O (green) and PhuN-C (blue) subunits. The centers of two Diamond Channels are shown with a light and dark pink cross (left) and are kept in the same position in the rotated image (right) to show the ~ 20 Å lattice shift. See Movie1 for a morph between the aligned subunits. The alignment was done using the bolded PhuN-O (green) and PhuN-C (blue) as in panel (e).

Supplementary Fig. 9 | Additional images of ϕ PA3 PhuN truncations showing defects in shell integration *in vivo* and self-assembly *in vitro*. Live fluorescence microscopy and negative stain EM micrographs of a, full-length PhuN as well as the following PhuN deletions: b, N-terminal tail (residues 1-37), c, Loop (residues 272-291), d, C-terminal tail (residues 556-602), and e, β -Hairpin (residues 11-126). Fluorescence microscopy images of PhuN or PhuN deletions were collected at 40 minutes post infection, deconvolved, and are displayed in green while the the DAPI stained DNA is shown in blue. The 1 µm and 50 nm scale bars apply to all fluorescence microscopy and EM panels, respectively. (Independent sample preparation and imaging: fluorescence microscopy n = 3, negative stain EM n = 1).

d	фРАЗ	фКZ	201ф2-1
N-terminal Residues	36	53	64
C-terminal Residues	50	69	50

Supplementary Fig. 10 | AlphaFold PhuN predictions compared to the final ϕ PA3 PhuN model. Final model of ϕ PA3 gp53 (dark blue) overlaid with **a**, the starting ϕ PA3 AlphaFold Prediction (grey), **b**, ϕ KZ AlphaFold prediction (pink), and **c**, the 201 ϕ 2-1 AlphaFold prediction (green). In (b) and (c), the C-terminal tails are positioned across the back of the large, acetyltransferase-like domain. **d**, A summary of differing N- and C-terminal tail lengths as measured to the start of the helix lining the Diamond channel (pink arrow in panel a) for the N-term and from the end of the β -strand for the C-term (blue arrow in panel a).

b

	phiPA3 PhuN Tetramer, p2 (EMDB-29550)	Deconvolved phiPA3 PhuN Tetramer, p2 (EMD-29310); phiPA3 PhuN Tetramer, p2 (PDB 8FNE)	Tracing p2 phiPA3 PhuN Tetramer Interfaces (EMD-29451); Representation of 16-mer phiPA3 PhuN Lattice, p2 (PDB 8FV5)			
Data collection and processing						
Magnification	105 kx					
Voltage (kV)		300				
Electron exposure (e-/Å2)	66 or 67					
Defocus range (µm)	0.8-2.5					
Pixel size (Å)	0.834-0.835					
Symmetry imposed	C2					
Initial particle images (no.)	600,734					
Final particle images (no.)		29,303	161,270			
Map resolution (Å) FSC threshold	3.9 0.143	-	7.0 0.143			
Map resolution range (Å)		3.72-6.98	4.52-7.95			
Refinement						
Initial model used	Alpl	haFold Prediction	-			
Model resolution (Å) FSC threshold	6.8 0.5	6.9 0.5	-			
Map sharpening <i>B</i> factor (Å ²)	-	80	-			
Model composition Non-hydrogen atoms Protein residues		16,864 2,148	-			
R.m.s. deviations Bond lengths (Å) Bond angles (°)		0.018 1.748	-			
Validation MolProbity score Clashscore Poor rotamers (%)		0.60 0.27 0.00	-			
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)		98.96 1.04 0.00	_			

Supplementary Table 1 | Cryo-EM data collection, refinement, and validation statistics

Collected Datasets by Grid Type, Tilt, and Frame Rate							
Grid Type	Quantifoil GO/NH ₂ GO/NH ₂		GO/NH₂	UltrAuFoil	UltrAuFoil GO/NH ₂		
Tilt Angle	0°, 40°, 50°	0°, 60°	0°, 15°	0°, 30°, 45°, 60°	0°, 60°	35°	
Frames	120	118	246	444	444	444	
Magnification	105,000						
Voltage (kV)	300						
Electron Dose (e-/Ų)	66	67	67	67	67	67	
Defocus Range (µm)	1.5-2.5	0.8-1.6	0.8-1.6	0.8-1.6	0.8-1.6	0.8-1.6	
Pixel Size (Å)	0.834	0.835	0.835	0.835	0.835	0.835	

Supplementary Table 2 | Cryo-EM data collection parameters

NTD								
PDB ID-Chain	z	rmsd	lali	nres	%ID	PDB Description		
3s1s-A	5.5	3.1	96	871	7	RESTRICTION ENDONUCLEASE BPUSI		
3nat-A	5.2	3.4	98	156	14	UNCHARACTERIZED PROTEIN		
2w8m-B	4.7	4.5	101	168	11	ORF D212		
6em5-b	4.6	3.7	98	421	15	5.8S RIBOSOMAL RNA		
3nbm-A	4.5	3.1	80	104	6	PTS SYSTEM, LACTOSE-SPECIFIC IIBC COMPONENTS		
1yra-B	4.5	3.3	101	261	9	ATP(GTP)BINDING PROTEIN		
6vda-A	4.5	3.1	67	86	10	ZT_DIMER DOMAIN-CONTAINING PROTEIN		
2eo0-A	4.5	3.4	89	130	7	HYPOTHETICAL PROTEIN ST1444		
2ayx-A	4.4	3.1	84	254	10	SENSOR KINASE PROTEIN RCSC		
1d02-B	4.4	3.9	96	200	11	DNA (5'-D(*GP*CP*CP*AP*AP*TP*TP*GP*GP*C)-3')		
6xpd-A	4.3	3.7	76	303	3	ZINC TRANSPORTER 8		
6vd8-B	4.3	3.7	63	78	6	PROBABLE CATION EFFLUX SYSTEM PROTEIN		
2vyc-A	4.3	3.8	96	755	7	BIODEGRADATIVE ARGININE DECARBOXYLASE		
1s28-A	4.2	3.2	79	130	6	ORF1		
5fr7-B	4.1	2.9	77	146	12	AMYR		
4ccs-A	4.1	3.5	93	226	6	CBIX		
7p82-C	4.1	5.0	89	408	3	S-ADENOSYLMETHIONINE SYNTHASE		
5u4u-A	4.0	3.5	91	157	5	MGC81300 PROTEIN		
6jcx-F	4.0	3.0	66	186	9	DNA-DIRECTED RNA POLYMERASE SUBUNIT ALPHA		
1hrk-A	4.0	4.4	100	359	7	FERROCHELATASE		

СТД								
PDB ID-Chain	Dali Z-score	rmsd	lali	nres	%id	PDB Description		
7byy-A	5.7	3.9	134	180	9	ACETYLTRANSFERASE		
1y9k-B	5.2	3.6	118	154	8	IAA ACETYLTRANSFERASE		
6c30-A	5.1	3.4	129	213	8	GNAT FAMILY ACETYLTRANSFERASE		
3f5b-A	5.1	3.0	120	172	6	AMINOGLYCOSIDE N(6')ACETYLTRANSFERASE		
1kzf-A	5.0	4.3	127	198	9	ACYL-HOMOSERINELACTONE SYNTHASE ESAI		
1xeb-A	5.0	3.9	112	149	8	HYPOTHETICAL PROTEIN PA0115		
2vzz-A	4.6	3.5	126	210	6	RV0802C		
7kd7-A	4.6	3.9	124	204	9	N-ALPHA-ACETYLTRANSFERASE 40		
3owc-A	4.5	3.8	120	172	10	PROBABLE ACETYLTRANSFERASE		
7cs1-A	4.5	4.5	121	191	10	AMINOGLYCOSIDE 2'-N-ACETYLTRANSFERASE		
5hgz-A	4.4	4.2	124	211	6	N-ALPHA-ACETYLTRANSFERASE 60		
6edw-B	4.3	3.8	122	746	11	ISOCITRATE LYASE 2		
5ktc-A	4.3	3.5	119	187	10	FDHC		
3efa-A	4.2	3.5	108	146	3	PUTATIVE ACETYLTRANSFERASE		
5070-A	4.1	3.0	108	146	6	DESFERRIOXAMINE SIDEROPHORE BIOSYNTHESIS PROTEIN		
2wpw-A	4.0	4.3	129	328	5	ORF14		
5gnc-A	3.9	12.1	72	597	6	AVH146		
3fnc-B	3.8	3.5	111	161	6	PUTATIVE ACETYLTRANSFERASE		
4rs2-B	3.8	3.9	112	183	6	PREDICTED ACYLTRANSFERASE WITH ACYL-COA N-ACYLTRA		
3t9y-A	3.8	3.1	95	135	9	ACETYLTRANSFERASE, GNAT FAMILY		

Supplementary Table 3 | Dali Server searches of the PhuN NTD and CTD. 20 highest scoring Dali Server outputs with the NTD and CTD as the input.