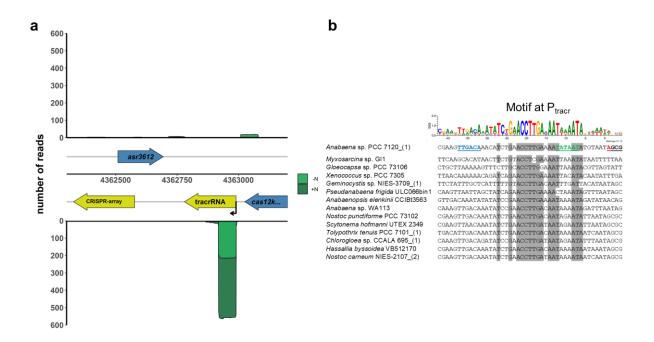
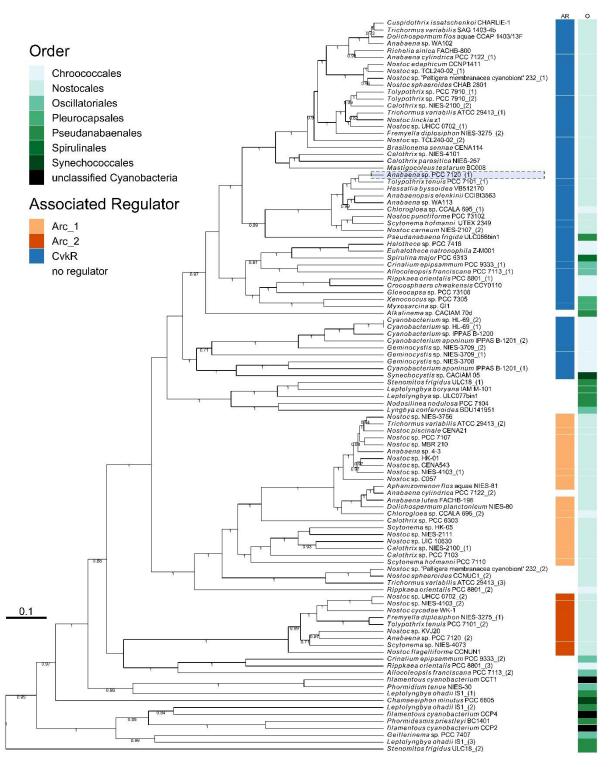
CvkR is a MerR-type transcriptional repressor of class 2 type V-K

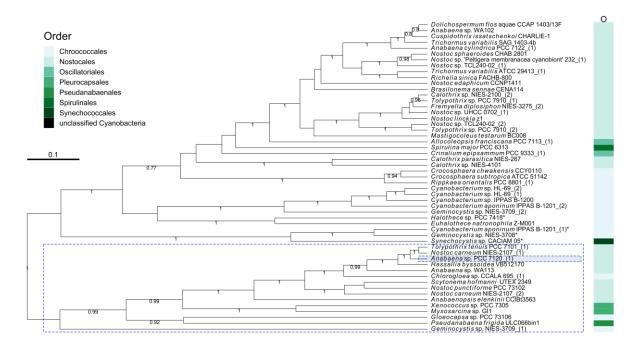

CRISPR-associated transposase systems

Marcus Ziemann^{1*}, Viktoria Reimann^{1*}, Yajing Liang^{2,3,4*}, Yue Shi^{2,3,4}, Honglei Ma^{2,3,4,5}, Yuman Xie^{2,5}, Hui Li^{2,5}, Tao Zhu^{2,3,4,5,#}, Xuefeng Lu^{2,3,4,5,6,#}, Wolfgang R. Hess^{1,#}

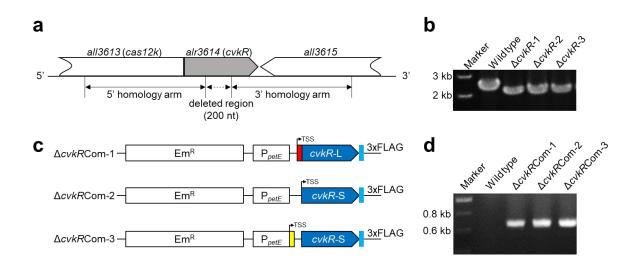

¹University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104, Germany; ²Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao 266101, China; ³Shandong Energy Institute, Qingdao 266101, China; ⁴Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; ⁵University of Chinese Academy of Sciences, Beijing 100049, China; ⁶Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Supplementary Material

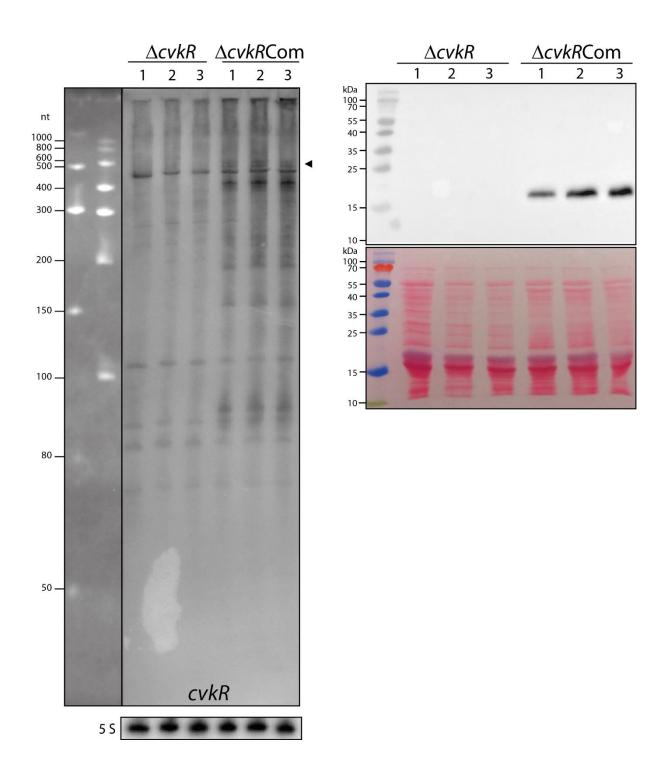
Supplementary Figures



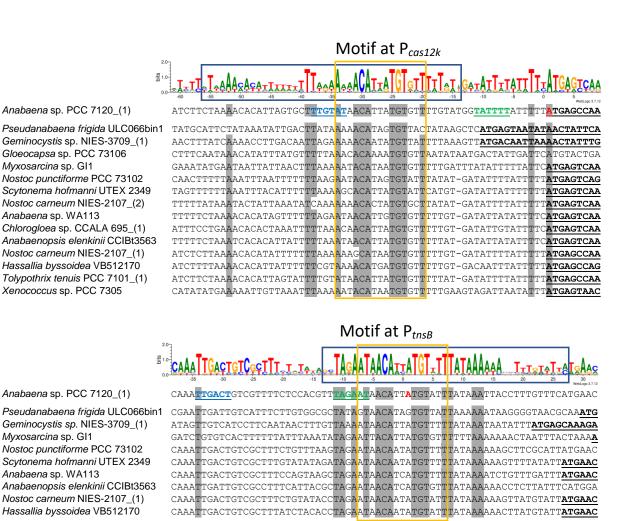
Supplementary Figure 1. The tracrRNA promoter (Ptracr). a Location of the tracrRNA TSS 35 nt downstream of *cas12k* in *Anabaena* 7120 according to the previous genome-wide mapping of TSS¹. b Sequence conservation in the tracrRNA promoters of different CAST systems belonging to the same subgroup as the *Anabaena* 7120 CvkR according to the phylogenetic analysis (Supplementary Fig. 3). Positions with ≥92% conservation are shaded. Putative -10 and -35 elements of the promoter in the AnCAST system are colored green and blue, respectively, and the first tracrRNA nucleotides are underlined and in boldface letters (TSS in *Anabaena* 7120 is highlighted in red). One of the more closely related 15 systems according to Supplementary Fig. 3 lacked a recognizable tracrRNA, therefore only 14 sequences were compared.



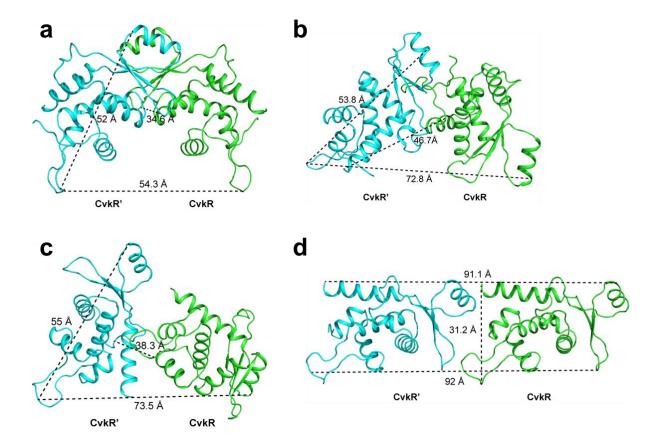
Supplementary Figure 2. Phylogenetic tree of Cas12k. The identified 106 complete Cas12k proteins were aligned using M-coffee^{2,3} and analyzed by BEAST⁴. Eleven instances of degenerated Cas12k proteins were intentionally let out to avoid misinter-pretation. The resulting tree is depicted with branches labeled with their respective posterior probability until a threshold of 0.7. For better recognition, the proteins were


labeled with their respective host organism (see **Supplementary Data 1**). The associated regulator type (AR) and taxonomic order (O) of the respective host organism are also depicted. The *Anabaena* 7120 Cas12k (All3613) (NCBI: BAB75312.1) is marked with a green dashed box. The multiple sequence alignments are available in **Supplementary Data 4**.

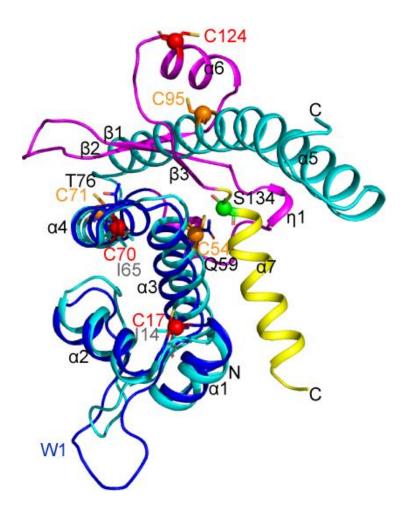
Supplementary Figure 3. Phylogenetic tree of CvkR. Phylogenetic tree of CvkR homologs. The proteins were aligned using M-coffee^{2,3} and analyzed by BEAST⁴. The resulting tree is depicted with branches labeled with their respective posterior probability until a threshold of 0.7. For better recognition, the proteins were labeled with their respective host organism (see **Supplementary Data 1**). The taxonomic order (O) of the respective host organism are also depicted. *Anabaena* 7120 CvkR (Alr3614) (NCBI: BAB75313.1) is highlighted by a green dashed box and its most similar homologs by a blue-dashed box. Asterisks label four instances of CvkRs fused to an *hsdR* restriction enzyme domain. The multiple sequence alignments are available in **Supplementary Data 5**.

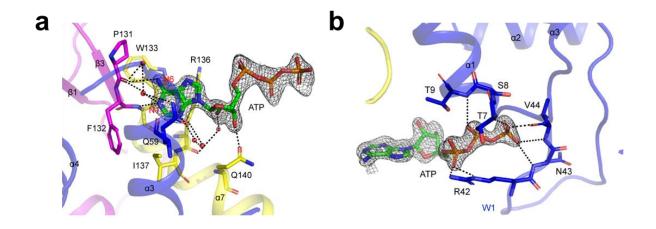


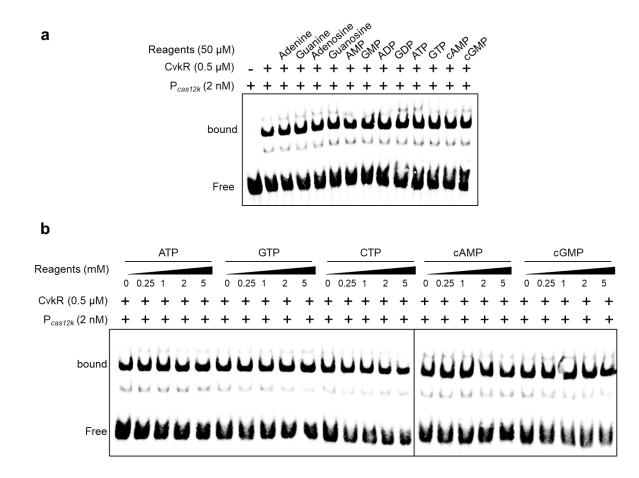
Supplementary Figure 4. Generation of *cvkR* deletion mutants and complementation of $\Delta cvkR$. a Schematic drawing of the deleted regions and flanking regions of *cvkR*. b PCR assays showing successful segregation of deletion mutants in three independent replicates each. c Schematic drawing of the three cassettes for analyzing the leaderless expression of *cvkR*. The red bar indicates the extra 54-bp fragment at the 5'-end of *cvkR-L* compared to *cvkR-S*. The yellow bar indicates the 31 nt long 5'UTR of *petE*. d PCR assays showing successful construction of reporter strains for monitoring leaderless expression of *cvkR*. Please note that the result of one positive colony out of five (n=5) is shown for each reporter strain.



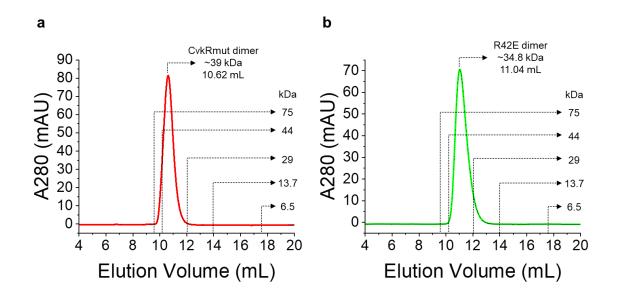
Supplementary Figure 5. Verification of absence or overexpression of CvkR in $\Delta cvkR$ or $\Delta cvkR$ Com, respectively. Left: Northern blot hybridization against cvkR in three independent replicates of $\Delta cvkR$ and $\Delta cvkR$ Com. The precise length of the cvkR mRNA is unknown because the transcript level in *Anabaena* 7120 WT is below the detection limit. The cvkR gene length is 453 bp. Taking the short-added sequence and


3'UTR into account, a correspondingly-sized additional signal in $\Delta cvkR$ Com represents the target cvkR band (labeled by triangle). Total RNA (20 µg) was loaded on a 10% PAA 8.3 M urea gel. The Low Range ssRNA Ladder (NEB) and the RiboRuler Low Range RNA Ladder (Thermo Fisher Scientific) were used as size markers. Right: Western blot against CvkR with an N-terminal 3xFLAG tag (upper panel) in three independent replicates of $\Delta cvkR$ and $\Delta cvkR$ Com. The stained membrane is shown in the lower panel. The calculated molecular mass for CvkR is 20.16 kDa. The prestained PageRuler (Thermo Fisher Scientific) was used as a size marker. Ten micrograms of total protein were loaded on a 15% SDS–PAA gel. Two separate experiments were performed, which showed consistent results.

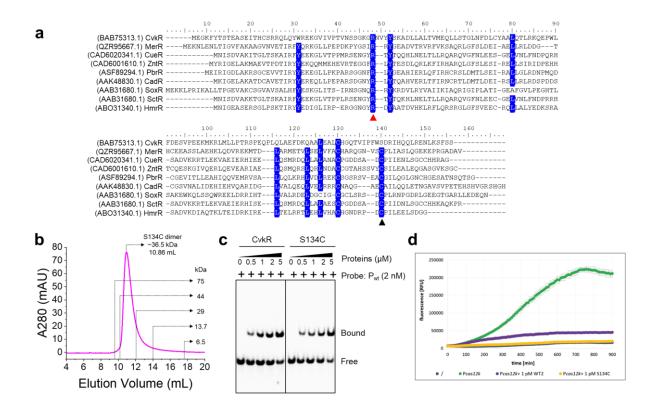

Supplementary Figure 6. Comparison of *cas12k* (top panel) and *tnsB* (lower panel) promoter homologs. The promoters of these genes belonging to the same CvkR subgroup as the AnCAST CvkR according to phylogenetic analysis (Fig. 2b) were compared to each other (\geq 92% conservation is shaded). Putative -10 and -35 elements of the genes in the AnCAST system are colored green and blue, respectively and the first codons of respective reading frames are underlined. The TSSs of the AnCAST genes are highlighted in red. Four of the observed CAST systems lack a *tnsB* gene and one *tnsB* was degraded, so the remaining 10 *tnsB* promoter sequences were aligned. The protected areas in the DNase I footprinting assays are blue boxed and the potential CvkR binding motif AnnACATnATGTnnT is yellow boxed.


Supplementary Figure 7. Analysis of CvkR homodimer in structure. a-d four potential dimeric partners (CvkR', cyan) of CvkR (green) are found through different crystallographic symmetry operations. The resulting four homodimers have interface areas of 997.6 Å², 843.3 Å², 372.2 Å², and 276.6 Å², respectively, as calculated by webtool PDBePISA⁵. The sizes of CvkR-CvkR' homodimers are respectively further measured and labeled from several structural angles. The dimeric architecture, assembled by two vertically symmetric CvkR monomers shown in panel a, is similar to other reported MerR family members and is further approved by PISA assembly analysis and DLS assay.

Supplementary Figure 8. Representation of cysteine sites in CvkR. The cysteine residues are represented in spheres and sticks and labeled with red in CvkR and with orange in HiNmIR (PDB code 5D8C, cyan). The Ser134 residue in CvkR is shown in green sphere and stick. Residues matching the positions of cysteines are shown in sticks and marked with black (CvkR) and gray (HiNmIR).

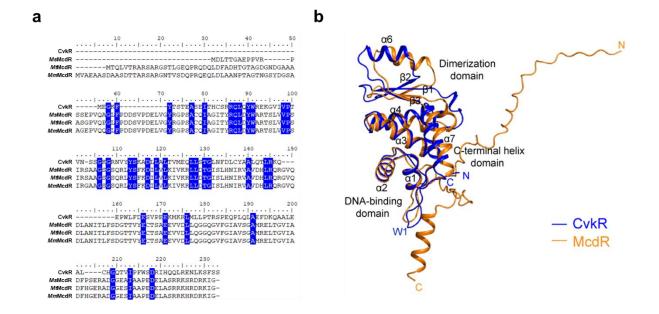


Supplementary Figure 9. ATP binding site of CvkR. a Close view of the ATP binding site in the CvkR monomer. **b** The ATP triphosphate group interacts with the wHTH domain of the adjacent CvkR monomer. The ATP ligand is represented in green stick and colored by the atom type. The N1 and N6 sites of ATP are labeled in red. The 2Fo-Fc density for the ATP is contoured in gray at 1.5σ . The key residues involving in ATP binding are shown in sticks and labeled in black. Hydrogen bonds are indicated by dashed lines. The water molecules involved in hydrogen bonds are presented as red spheres.



Supplementary Figure 10. EMSA assays showing the binding of CvkR to P_{cas12k} in the presence of multiple molecules with similar chemical structures to ATP. a EMSA showing the DNA binding ability of CvkR with the addition of adenine, adenosine, AMP, ADP, ATP, cAMP, guanine, guanosine, GMP, GDP, GTP and cGMP. **b** EMSA showing the DNA binding ability of CvkR with concentration gradients of ATP, GTP, CTP, cAMP, and cGMP. EMSA assays showing the binding of S134C to the *cas12k* promoter. The P_{cas12k} probe was used for the assay. The data are presentative from three independent experiments. The free probe and complexes of P_{cas12k} with CvkR are marked as "Free" and "Bound", respectively.

13



Supplementary Figure 11. Molecular weight estimates of CvkR mutant proteins by size exclusion chromatography (SEC) with Superdex 75 10/300 GL column (GE Healthcare). Calibration standards are indicated. **a** The elution volume of CvkRmut was 10.62 mL, corresponding to a mass of ~39 kDa. **b** The elution volume of R42E was 11.04 mL, corresponding to a mass of ~34.8 kDa. The estimated masses of both mutant proteins correspond to twice their calculated theoretical molecular weights.

Supplementary Figure 12. Characterization of S134C mutant of CvkR. a Multiple sequence alignment of CvkR with selected MerR-type regulators. The NCBI accession numbers of the MerR-type regulators are given in brackets. The sequence alignment was performed using MAFFT⁶, and visualized with BioEdit⁷. Threshold for shading is 80% identity. The black triangle indicates CvkR lacks a cysteine residue in the C-terminal sensor domain which is conserved in the selected members of the MerR-type regulators. The red triangle indicates one of the conserved arginine reported to interact with the phosphate backbone of promoter DNA^{8,9}. **b** Molecular weight estimates of S134C mutant protein on SEC. Calibration standards are indicated. The elution volume of S134C was 10.86 mL, corresponding to a mass of ~36.5 kDa (twice its calculated molecular weight). **c** EMSA assays showing the binding of S134C to the *cas12k* promoter. The 33-nt Pwt probe was used for the assay. The data are presentative from three independent experiments. The free probe and complexes of Pwt with S134C are

marked as "Free" and "Bound", respectively. **d** TXTL assay to test the regulatory capacity of S134C compared to CvkR WT2 for repressing deGFP fluorescence expressed from p70a under the control of P_{cas12k} (5 nM). Error bars show the standard deviation and are derived from 2 technical replicates. The experiments were repeated twice independently. The TXTL reactions were performed at 29°C overnight, and fluorescence was measured every 10 min in a Wallac 1420 Victor2 microplate reader. Error bars show the standard deviation derived from two technical replicates.

Supplementary Figure 13. Comparison of CvkR and McdR. a Multiple sequence alignment of CvkR and McdR. CvkR: Alr3614 of *Anabaena* sp. PCC 7120 (NCBI: BAB75313.1). MsMcdR: McdR of *Mycolicibacterium smegmatis* MC2 155 (NCBI: ABK74795.1). MtMcdR: McdR of *Mycobacterium tuberculosis* H37Ra (NCBI: ABQ73597.1). MmMcdR: McdR of *Mycobacterium marinum* M (NCBI: ACC41150.1). The sequences were aligned using MAFFT² and visualized with BioEdit⁷. **b** Superimposition of CvkR (blue, NCBI: BAB75313.1) onto AlphaFold2¹⁰ predicted McdR (orange, NCBI: ABK74795.1) [https://alphafold.ebi.ac.uk/entry/A0QYF9]. The secondary structure elements and the DNA-binding, dimerization, and C-terminal helix domains of CvkR are labeled.

Supplementary Tables

Supplementary Table 1. Number of identified CAST associated regulator homologs and of CAST typical components in close vicinity.

	Trailin	near	near	near	near	near	no
	Total hits	cas12k	Left end	CRISPR-array	tracrRNA	tRNA	CAST-components
CvkR	157	130	93	61	85	100	11
Arc_1	32	25	22	19	24	25	5
Arc_2	21	14	15	10	10	14	2
total	210	169	130	90	119	139	18

Supplementary Table 2. Microarray analysis of $\Delta cvkR$ or $\Delta cvkR$ Com strains.

Transcripts with significantly different accumulation levels in $\Delta cvkR$ compared to the complementation strain $\Delta cvkR$ Com. The microarray data was normalized using the R-implementation in package limma¹¹ and resulted p-values from t-tests were corrected using the Benjamini and Hochberg method to control the False Discovery Rate (FDR) of differential expression¹². Threshold: $|\log_2| \ge 1$, p-value ≥ 0.01 . Two replicates were used for the microarray experiment.

Probe_Label	Gene/region_Function	location	log₂FC	adj. pvalue
alr0738_igFwd	intergenic	chr	-2.413	1.41E-03
rtcB	RNA-splicing ligase	chr	-2.382	4.19E-03
cvkR	CvkR	chr	-2.203	4.77E-04
nTSS_52243_52243	tRNA L-array	delta	-1.987	4.77E-04
all8564	restriction endonuclease	delta	-1.743	1.41E-03
alr0739	uncharacterized conserved pro- tein Ydel	chr	-1.616	5.37E-04
alr0740	slipin family protein	chr	-1.500	1.06E-04
asr0855	unknown	chr	-1.328	4.19E-03
all7121	cytochrome c domain-containing protein	alpha	1.075	1.41E-03
all0328_igFwd	intergenic	chr	1.109	3.81E-03
alr0786_igRev	intergenic	chr	1.268	3.28E-03
pecB	phycoerythrocyanin beta-chain	chr	1.300	4.19E-03
all0736_igRev	intergenic	chr	1.344	8.26E-03
alr1198_igFwd	intergenic	chr	1.387	1.12E-03
pecA	phycoerythrocyanin alpha-chain	chr	1.416	1.68E-03
pecC	phycoerythrocyanin-associated rod linker protein	chr	1.435	1.69E-04
tracrRNA	CAST tracrRNA	chr	1.493	4.33E-03
cas12k probe 1	CAST effector gene	chr	1.550	1.41E-03
all3391_igFwd	intergenic	chr	1.567	4.77E-04
tnsB	CAST transposase	chr	1.594	4.67E-04
cas12k probe 2	CAST effector gene	chr	1.870	9.16E-05

Supplementary Table 3. Oligonucleotide primers used in this work. Sequences

belonging to the T7 promoter are underlined. Primers were purchased from IDT or

Tsingke.

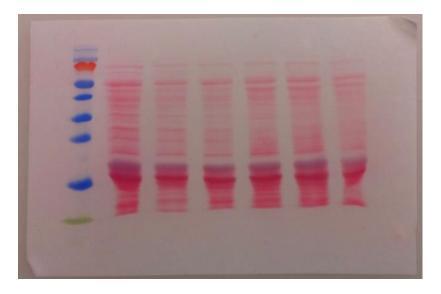
alr3614 deletio	on mutant ($\Delta cvkR$) construction			
alr3614gRNA-1	AGATCATTAACAGTAATGGAGCAG			
alr3614gRNA-2	AGACCTGCTCCATTACTGTTAATG	gRNA for <i>cvkR</i>		
alr3614KO-1	GGTCATTTTTTGTCTAGCTTTAATGCGGTAGTTG GTACCGGTTAAGAGAATATCCTGCC	5' homology arm for <i>cvk</i>		
alr3614KO-2	CAGGCGATCGCGTGGGTAATTACTATAACTCCTT TCTCTC	knock out		
alr3614KO-3	GAGAGAAAGGAGTTATAGTAATTACCCACGCGAT CGCCTG	3' homology arm for <i>cvkR</i>		
alr3614KO-4	GCGCTGCCCGGATTACAGATCCTCTAGAGTCGA CGGTACCAAAATCTTCGATGCAGATGA	knock out		
alr3614-3	GACGACTATCGCAGTAAACTTC	Genotype confirmation		
alr3614-4	TTAGCTGCTTTACTACGACG	Genotype commation		
alr3614 compl	ementation strain (<i>∆cvkR</i> Com) construction			
59M-F	GATTATAAAGATCATGATGGTGATTATAAAGATCAT GATATTGATTATAAAGATGATGATGATAAATGAAAG GGTGGGCGCGCCGACCCAG	Amplification of pRL59EH- Cm/Em backbone with overlap to 3xFlag tag		
59M-R1	GTTAATTTCACAGGCTTTAGGTCGACCTGCATCC CTTAAC	Amplification of pRL59EH- Cm/Em backbone with overlap to P _{petE}		
P _{petE} -F	GTTAAGGGATGCAGGTCGACCTAAAGCCTGTGA AATTAAC	With overlap to pRL59EH- Cm/Em backbone		
P _{petE} -R4	CACATTAGTGCTTTGTATAACATTTATTTCATTTTA AATAAAATCGACACC	P _{petE_no5'UTR} -cvkR-L-3xFlag		
P _{petE} -R5	GCTTGTGTAGAACTTTCCTTCCATTTATTTCATTT TAAATAAAATCGACACC	P _{petE_no5'UTR} -cvkR-S-3xFlag		
P _{petE} -R6	GTGTAGAACTTTCCTTCCATGGCGTTCTCCTAAC CTGTAG	P _{petE} -cvkR-S-3xFlag		
3614L-F	GGTGTCGATTTTATTTAAAATGAAATAAATGTTATA CAAAGCACTAATGTG	P _{petE_no5'UTR} -cvkR-L-3xFlag		
3614S-F1	CGATTTTATTTAAAATGAAATAAATGGAAGGAAAG TTCTACACAAGC	P _{petE_no5'UTR} -cvkR-S-3xFlag		
3614S-F2	CTACAGGTTAGGAGAACGCCATGGAAGGAAAGT TCTACAC	P _{petE} -cvkR-S-3xFlag		
3614-R	TCATTTATCATCATCATCATCATATCAATATCATGA TCTTTATAATCACCATCATGATCTTTATAATCGCTA CTAAAGCTTTTAAGATTC	Amplification of <i>cvkR</i> -3xFlag with overlap to pRL59EH- Cm/Em backbone		
3614TesT-F	GCCGCCAGTTGCAGTATT	Construct confirmation		
3614TesT-R	CGGGCAAGTACGACATCA	Genotype confirmation		
qRT-PCR				
alr3614 RT-F	GTGGCAAAGGTCGTAATGTT	gRT-PCR of <i>cvkR</i>		
alr3614 RT-R	CGCTTCATCTTTCTTCTGGG			
rnpB RT-F	CGTGAGGATAGTGCCACAGA	Internal standard		
rnpB RT-R	CCAACCATAGTTCCTTCGGC			
Northern hybri	dizations			
CR_9_fwd	TTTGAATATTCAGAACTTTATATTGTGCGCGAT	as published ¹³ , for mutant analysis		

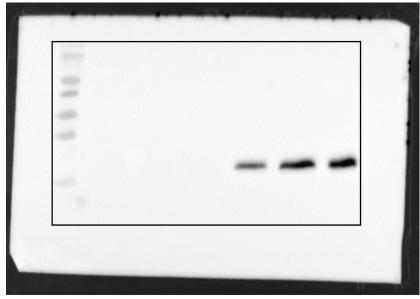
CR_9_rev	TAATACGACTCACTATAGGGGCAAGCTGATTTG	for mutant analysis
	GTAGAAGCTGTTAAT	
all3613-Nblot1	GGAGTAAGCTTGGGGCTAGAA	
all3613-Nblot2	TAATACGACTCACTATAGGGGCCTGCTTTATAGG TCTGTGC	for mutant analysis
tracrRNA_Fw_T	TAATACGACTCACTATAGGGCTCTTTGGTGCGTC	
7_1	AAATCAAG	for mutant analysis
tracrRNA_Rev	CAGTTCATGCTGCTTGCAGC	
Alr3614_Nblot_f	GCACAGAAGCATCAGAAATTAC	
Alr3614_Nblot_r	TAATACGACTCACTATAGGGAGACAGCAACTGC	for mutant analysis
5S_7120	TAGCAGCGTTTCACCTCTGAGTTCGG	as published ¹³
TXTL assay		
pet28a_HisTEV fwd	CTCGAGCACCACCAC	Amplification of pET-28a(+)
pet28a_HisTEV _fwd	GGATCCCATATGCTGAAAATACAGG	with 6xHis tag and TEV site
3614mut_fwd	ATTTTCAGCATATGGGATCCATGGAAGGAAAGTT CTACAC	Amplification of <i>cvkR</i> mut with
3614mut_rev	TGGTGGTGGTGGTGCTCGAGTTAGCTACTAAAG CTTTTAAGATTC	overlaps to pET-28a(+)
p70a- deGFP_fwd	GCTAGCAATAATTTTGTTTAACTTTAAGAAGGAG ATATACC	Amplification of p70a with deGFP and 5′UTR but without
p70a- deGFP_rev	GCATGCCCAGCGGAACAG	promoter
P3613_fwd	TGCTGTTCCGCTGGGCATGCAAGAAACATCCTA TAGAAGC	Amplification of the all3613
P3613_rev	TAAACAAAATTATTGCTAGCAAAAATAAAATACCA TACAAAACAC	promoter with overlaps to p70a
P3614_fwd	TGCTGTTCCGCTGGGCATGCAAAAATAAAATAC CATACAAAACAC	Amplification of the alr3614
P3614_rev	TAAACAAAATTATTGCTAGCAAGAAACATCCTAT AGAAGC	promoter with overlaps to p70a
P43_fwd	TGCTTTGTATAACATTATGTGTTTTGTATGGTATT TTATTTTGCTAGCAATAATTTTGTTTAACTTTAA GAAGGAGATATACC	Amplification of p70a with deGFP under control of a shorter version of the <i>all</i> 3613
P43_rev	AAAAATAAAATACCATACAAAACACATAATGTTAT ACAAAGCAGCATGCCCAGCGGAACAG	promoter
Ptracr_fwd	TGCTGTTCCGCTGGGCATGCCGCAGGATAAAGC AAAAG	Amplification of p70a with deGFP under control of the
Ptracr_rev	TAAACAAAATTATTGCTAGCTATTACATATTATAT TTTCAAGGTTCAG	tracrRNA promoter
PpsbAI_TXTL_f wd	TGCTGTTCCGCTGGGCATGCAAGGATTCCCAAA GATAGG	Amplification of p70a with
PpsbAI_TXTL_r ev	TAAACAAAATTATTGCTAGCCTCATAAAATTTACA TGA	deGFP under control of the <i>psbAl</i> promoter
d	TGCTGTTCCGCTGGGCATGCGTCGCTTCAGTAA TTACAAAAAG TAAACAAAATTATTGCTAGCAATTTATAAATACAT AATGTTATTCTAAACG	Amplification of p70a with deGFP under control of the <i>all3630</i> promoter
Alr3614S prote	in heterologous expression	
3614S-BamHI-F	CGGGATCCATGTTATACAAAGCACTAATGTG	Producing 2614S pET 28c(1)
3614S-taa-Xhol- R	CCGCTCGAGTTAGCTACTAAAGCTTTTAAGATTC TC	Producing 3614S-pET-28a(+)- smt3
	nents for TXTL assay	

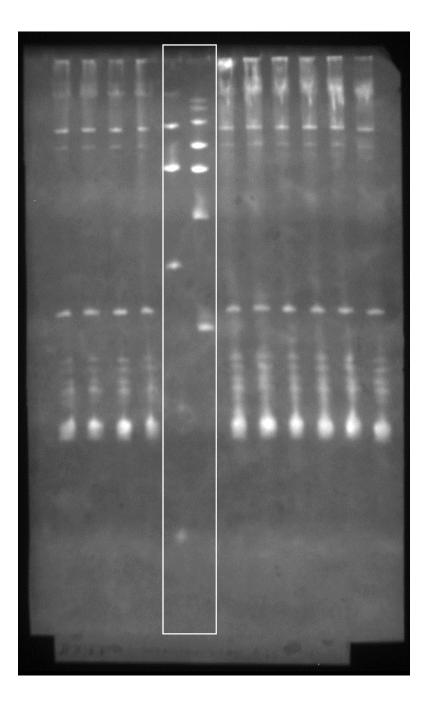
P _{cas12k}	AAGAAACATCCTATAGAAGCATCTTCTAAAACACA TTAGTGCTTTGTATAACATTATGTGTTTTGTATGGT ATTTTATTTT	TXTL
P _{tracr}	CGCAGGATAAAGCAAAAGAATTAGCCCTCTATGC TTATAGTCTCCGCCTAGCTAGGCGAAGTTGACAA ACATCTGAACCTTGAAAATATAATAT	TXTL
P _{cvkR}	AAAAATAAAATACCATACAAAACACATAATGTTATA CAAAGCACTAATGTGTTTTAGAAGATGCTTCTATA GGATGTTTCTT	TXTL
P43	TGCTTTGTATAACATTATGTGTTTTGTATGGTATTT TATTTTT	TXTL
P _{psbAl}	CAAGGATTCCCAAAGATAGGGGGGAATAATTAACA TTAAGAATTATTAATTCATGGGTTTTTAGTCTAGTA AATTTGCGTGAATTCATGTAAATTTTATGAG	TXTL
P _{tnsB}	GTCGCTTCAGTAATTACAAAAAAGGTTTTGTATAT TTTCATAATGACAAATTGACTGTCGTTTTCTCCAC GTTTAGAATAACATTATGTATTTATAAATT	TXTL
DNase I footpr	inting	
P3613-F(FAM)	AACTCCTTTCTCTCGCCAATAC	Producing FAM-labeled
P3613-R	GCTGCTGAAGCAGTTCGTT	probes
M13F(FAM)	CCCAGTCACGACGTTGTAAAACG	Producing FAM-labeled
M13R	AGCGGATAACAATTTCACACAGG	probes
CvkR protein r	nutant construction	
CvkRMut-F	GGTGGTCATATGGGATCCATGGAAGGAAAGTTCT ACAC	
CvkRMut-R	CGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATT GCTCAG	CvkRmut mutant
pET28a-sumo-F	GAGCAATAACTAGCATAACCCCTTGGGGGCCTCTA AACGGG	
pET28a-sumo-R	GTAGAACTTTCCTTCCATGGATCCCATATGACCA CCAA	
R42E-F	TTAACAGTAGTGGCAAAGGTGAAAATGTTTACT	
R42E-R	AGTAAACATTTTCACCTTTGCCACTACTGTTAA	R42E mutant
S134C-F	AAACTGTGATTCCTTTTTGGTGCGATCGCATTCA TCAACAA	S134C mutant
S134C-R	GCACCAAAAAGGAATCACAGTTTGTCCATGAC	

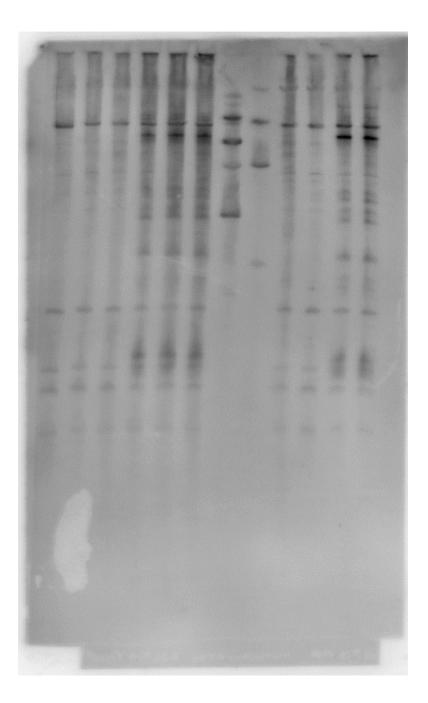
	SeMet CvkR	Native CvkR
Data collection		
Space group	C121	C121
Cell dimensions		
a, b, c (Å)	78.813, 49.778, 41.017	78.579, 49.703, 40.52
α, β, γ (°)	90, 116.38, 90	90, 116.044, 90
Resolution (Å)	24.90-1.93 (2.03- 1.93)	50.00-1.60 (1.66 1.60)
R _{sym} or R _{merge}	0.054(0.25)	0.054(0.441)
Ι/σΙ	14.6 (3.8)	32.1 (2.93)
Completeness (%)	94 (84.4)	99.8 (99.2)
Redundancy	3.2 (3.1)	2.5 (2.6)
Refinement		
Resolution (Å)		1.6
No. reflections		18599
R _{work} / R _{free}		0.194/0.217
No. atoms		
Protein		1199
Ligand/ion		38
Water		92
B-factors		
Protein		45.39
Ligand/ion		45.50
Water		51.62
R.m.s. deviations		
Bond lengths (Å)		0.01
Bond angles (°)		1.29

Supplementary Table 4. Data collection and refinement statistics.

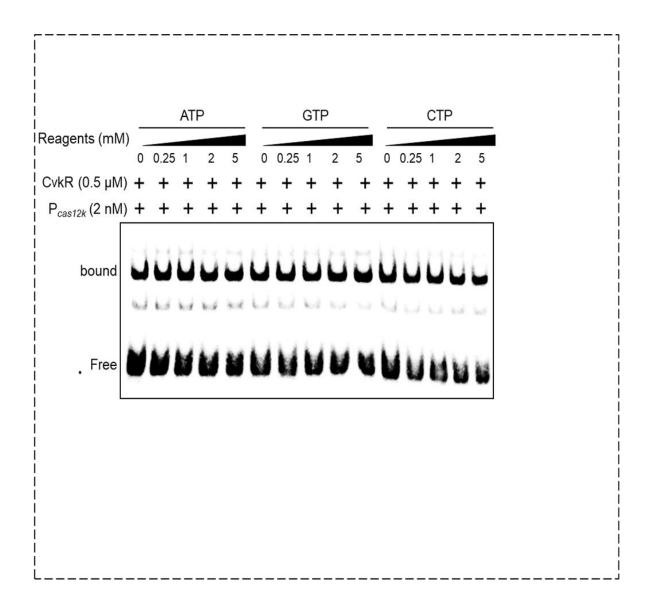

Supplementary References

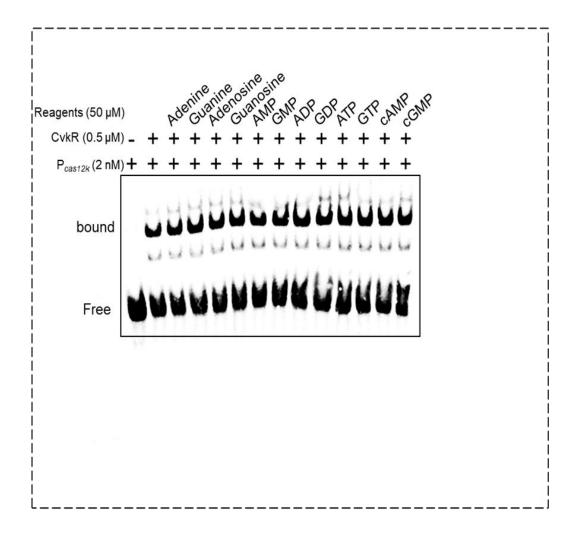

- Mitschke, J., Vioque, A., Haas, F., Hess, W. R. & Muro-Pastor, A. M. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in *Anabaena* sp. PCC7120. *Proc. Natl. Acad. Sci.* **108**, 20130–20135 (2011).
- Di Tommaso, P. *et al.* T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. *Nucleic Acids Res.* **39**, W13–W17 (2011).
- 3. Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and accurate multiple sequence alignment. *J. Mol. Biol.* **302**, 205–217 (2000).
- 4. Suchard, M. A. *et al.* Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evol.* **4**, (2018).
- Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. *J. Mol. Biol.* 372, 774–797 (2007).
- Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software version
 7: improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).
- 7. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* **41**, 95–98 (1999).
- Changela, A. *et al.* Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. *Science* **301**, 1383–1387 (2003).
- 9. Liu, X. *et al.* Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 20398–20403 (2019).
- 10. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).
- 11. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNAsequencing and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

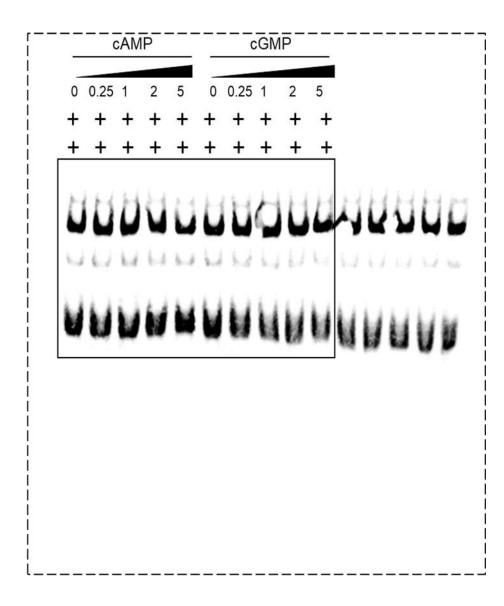

- Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B Methodol.* 57, 289– 300 (1995).
- Hou, S. *et al.* CRISPR-Cas systems in multicellular cyanobacteria. *RNA Biol.* 16, 518–529 (2019).

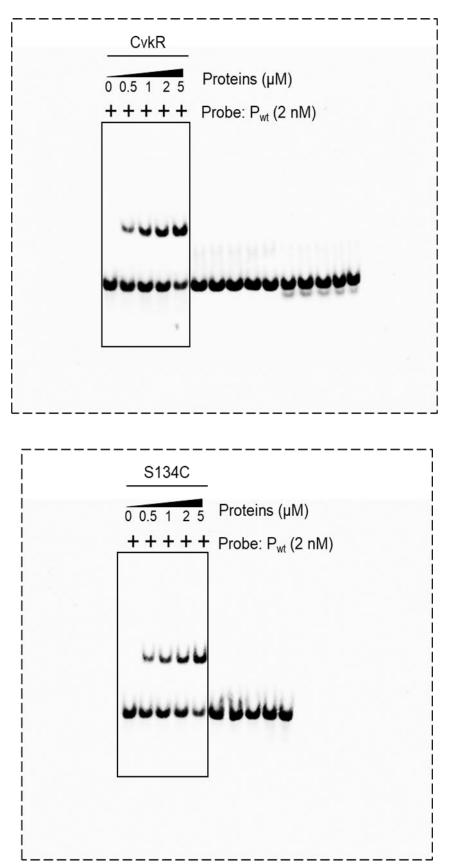

Uncropped scans of blots and gels in Supplementary Figures


Supplementary Figure 5.








Supplementary Figure 10.

Supplementary Figure 12.

