1	Supplementary Materials for
1	Supplementary Materials for
2	
3	Pooled screening of CAR T cells identifies diverse immune signaling domains for next-
4	generation immunotherapies
5	
6	Daniel B. Goodman [†] , Camillia S. Azimi [†] , Kendall Kearns, Alexis Talbot, Kiavash Garakani, Julie
7	Garcia, Nisarg Patel, Byungjin Hwang, David Lee, Emily Park, Vivasvan S. Vykunta, Brian R.
8	Shy, Chun Jimmie Ye, Justin Eyquem, Alexander Marson, Jeffrey A. Bluestone, Kole T. Roybal*
9	
10	Correspondence to: kole.roybal@ucsf.edu
11	
12	
13	This PDF file includes:
14	
15	Figs. S1 to S7
16	Table S1 and S2
17	Legend for data file S1 and S2

1 Fig. S1. Repetitive stimulation reproducibly induces exhaustion.

2 (A) Mean fluorescence intensity (MFI) for four cell surface markers of exhaustion (CD39, 3 lymphocyte activating protein 3 (LAG3), programmed cell death protein 1 (PD1), T cell immunoglobulin domain and mucin domain 3 (TIM3)) in anti-CD19 chimeric antigen receptor 4 5 (CAR) T cells generated from two donors measured after repeated stimulation with CD19-6 expressing irradiated K562 cells. CARs contained either 4-1BB or CD28 costimulation domains, 7 no costimulatory domain (CD3ζ only), or were untransduced (Unt) T cells from the same donor 8 as a control. (B) Aggregated measurements for panel (A) are shown, displayed as the percentage 9 of cells expressing 0 to 4 exhaustion (Exh.) markers, for each donor, timepoint, and CAR. (C) Rank ordering of all 40 CARs within multiple assays is shown, with average rank for donor as 10 11 well as CD4 and CD8 replicates plotted against the rank within the individual donors and T cell 12 subsets. Proliferation (Prolif.), relative (Rel.) expansion, interferon (IFN)-y production, and 13 interleukin (IL)-2 production are shown. A Kruskal Wallis H test was performed for each assay, 14 and the H statistic and p-value are shown. The upper right and lower left (lowest- and highest-15 ranked domains) are the most consistently ranked among individual replicates. (D) Initial library 16 abundance (Init. Lib. Abund.) of each CAR (as a log2 fraction of the total read count) and 17 domain length (log2 of the number of nucleotides) plotted versus either the Cell Trace Violet 18 (CTV) score on day 3 (representing early proliferation) or the long-term expansion, log2-19 transformed and normalized to the average library member. None of these plots show any 20 statistically significant correlation between either initial library abundance or costimulatory 21 domain size and domain performance.

1 Fig. S2. Additional data and statistical correlations for the differential activation,

2 proliferation, and long-expansion in a library of CAR-T costimulatory domain variants.

3 (A) Volcano plots showing the relative proliferation or expansion (according to panel labels) of 4 CD4 or CD8 T cells expressing CARs containing different costimulatory domains, during the 5 repetitive stimulation assay with CD19+ K562 cells. The x-axis shows the calculated difference in 6 log2-fold change (FC) in proliferation or expansion, and the y-axis shows the associated adjusted 7 P-value, as calculated by the DESeq2 algorithm. BAFF-R, B cell activating factor receptor; TACI, 8 Transmembrane activator calcium modulator and cyclophilin ligand interactor; TIGIT, T cell 9 immunoreceptor with Ig and ITIM domains; NTB-A, NK-T-B-antigen; TLT-1, Triggering 10 receptors expressed on myeloid cells-like transcript-1; BCMA, B-cell maturation antigen. (B) A 11 comparison of CAR T cell proliferation from d0-d3 across the library with and without CD19 12 stimulation. The top plots show the scaled proliferation averaged over each replicate but retain the 13 differences in relative proliferation between CD19- and CD19+ conditions, which were measured simultaneously in our FlowSeq CTV assay. The bottom plots show the mean CAR rankings 14 separately for the CD19- and CD19+ conditions. The top-performing potent costimulatory CARs 15 16 are labeled. On the top, the y-axis is truncated due to the higher relative proliferation in the CD19+ condition. (C) FlowSeq measurement of intracellular cytokine production are shown across library 17 18 domains in CD4 and CD8 (circle, square) T cells across three independent human donors (blue, 19 purple, green), 18 hours after the initial addition of CD19+/- irradiated K562 cells. Means of all 20 conditions for each cytokine are indicated by an open circle. Domains labeled in bold with stars 21 next to their name indicate significance using a Wilcoxon rank-sum test, FDR-corrected p < 0.05. 22 HAVCR, Hepatitis A virus cellular receptor 1; NKR-P1A, natural killer cell surface protein P1A; 23 KLRG1, killer cell lectin like receptor G1; LAIR1, leukocyte associated immunoglobulin like 24 receptor 1; ILT4, immunoglobulin-like transcript 4; KIR, killer cell immunoglobulin-like receptor; 25 ICOS, inducible T cell costimulator; CRTAM, cytotoxic and regulatory T cell molecule; BTLA, 26 B and T lymphocyte attenuator; CTLA4, cytotoxic T-lymphocyte associated protein 4; CXADR, 27 Coxsackie virus and adenovirus receptor; CRACC, CD2-like receptor activating cytotoxic cells. 28 (D) FlowSeq measurement of the percentage of CD69+ cells is shown for each CAR library 29 domain in both CD4 and CD8 cells, 18 hours after the addition of irradiated K562 cells either with 30 or without CD19 expression. Cells are ranked based on the difference in percentage of CD69+ 31 cells between CD19+ and CD19- conditions. (E) A comparison of early versus late antigenstimulated proliferation is shown. The x- axis measures overall expansion by day 14 or 16 (d14/16) with more potent CARs on the right and less potent CARs on the left. The y-axis measures the ratio of late proliferation (d3 to d14) versus early proliferation (d0 to d3). CARs above 0 on the yaxis are more expanded in the library at later time points, and CARs below 0 are more expanded earlier. Domains significantly enriched earlier versus later during the expansion were colored purple and green, respectively. Significance of each domain's overall relative expansion indicated by size of circle (Wald test using DeSEQ2, -log10(p)).

- 8
- 9

1 Fig. S3. Functional characterization of costimulatory landscape and analysis of the 2 composition of the principal components of CAR performance across our library.

3 (A) The bar plots show the relative contributions of different measurement types (in CD4 T cells and CD8 T cells, with and without antigenic stimulation) to each principal component (PC) of the 4 5 PC analysis (PCA) plot in Fig. 3B and fig. S3B. The y-axis indicates the mean log fold change 6 (LFC) and the x-axis indicates the contribution of each PC. Contributions are grouped across donor 7 replicates and separated out by different timepoints, proliferation (cell trace violet (CTV) 8 FlowSeq), expansion (change in relative library abundance over time), intracellular cytokine 9 FlowSeq, and activation (CD69 FlowSeq). PC1 (red) describes most of the variability in antigen-10 positive proliferation and expansion, and contributions to PC2 (blue) include early expansion (but 11 not CTV-measured cell divisions), decreased CD4 cytokine secretion and reduced tonic signaling. 12 (B) A recoloring of Fig. 3B is shown according to the amino acid length of each costimulatory 13 domain, showing a slight correlation between domain length (blue to red is shortest to longest) and 14 the second principal component, but not the first. (C) Ratio of surface CAR expression (using a 15 myc tag and flow cytometry staining) to green fluorescent protein (GFP) fluorescence is shown 16 for each CAR. All CAR variants were normalized to the mean within each time point, donor, and T cell type (CD4 or CD8). Expression with CD19+ K562 cells, CD19- K562 cells, and no target 17 18 cells are shown separately. Box and whisker plots indicate median CAR:GFP ratio and variance 19 as plotted by interquartile range, minimum, and maximum (excluding outliers plotted separately) for each measured CAR. (D) Relative expansion of library members CD28, 4-1BB, BAFF-R, 20 21 TACI, CD40, CD30, and KLRG1 is shown over 24 days of repeated stimulation with irradiated 22 CD19- K562 cells, as in Fig. 3C. Expansion was quantified by calculating the fold-change of the 23 proportion of each CAR within the library at each timepoint (x-axis) as compared to baseline 24 relative to the average CAR within the pooled library. The library was measured in CD4 and CD8 25 primary human T cells individually in 2 to 3 biological replicates. (E) Amino acid sequence and 26 motif analysis of selected library members' belonging to the tumor necrosis factor (TNF) receptor 27 family. TNF receptor associated factor (TRAF) binding sites indicated with colored lines under 28 amino acid sequence. Phosphorylation and ubiquitination sites as annotated by Phosphosite are 29 indicated with blue and red downward arrows, respectively.

Figure S4

0 1 2 3

1

Naive TCM TEM TEMRA

Fig. S4. Proliferation, exhaustion, and differentiation characteristics of CARs with chosen costimulatory domains, and metabolism of CARs with chosen costimulatory domains.

3 (A) CTV flow cytometry histograms are shown, as in Fig. 4C, for both donors, all time points, and CD4 T cells. AU, arbitrary units. (B) CTV cytometry histograms are shown, as in Fig. 4C, for both 4 5 donors, all time points and CD8 T cells. (C) Normalized relative metabolic mitochondrial 6 dependence for CD4 and CD8 T cells was measured among select CARs. This metric is based on 7 measurement of protein synthesis using the simple method for complex immune-metabolic 8 profiling (SCENITH), which calculates the change in overall metabolic output with and without 9 the addition of oligomycin, a mitochondrial inhibitor. (D) MFI for three cell surface markers of 10 exhaustion (LAG3, PD1, and TIM3) is shown for anti-CD19 CAR T cells generated from two 11 donors, measured after repeated stimulation with CD19+ irradiated K562 cells. (E) The proportion 12 of CAR T cells expressing 0 to 3 of the exhaustion (Exh.) markers PD1, TIM3, and LAG3 after 13 different numbers of days in culture is shown, as in Fig. 4F. (F) A table of significant differences in pairwise statistical tests based on a Repeated Measures ANOVA model is shown for mean 14 exhaustion markers across different subtypes, donors, and days of measurement. FDR < 0.05:*, <15 0.01:**, < 0.001:***, < 0.0001:****; ns, not significant. (G) MFI of CD27 was measured across 16 17 all T cells, timepoints, and CAR T variants, as in Fig. 4G. (H) Differentiation of T cells at different 18 timepoints throughout the repeated stimulation assay was evaluated. Differentiation subsets 19 [Naive, Central Memory (TCM), Effector Memory (TEM), and Effector Memory RA-positive 20 (TEMRA)] were calculated using surface expression of CD45RA and CD62L,.

Figure S5

1 Fig. S5. Time course of cytokine production, cytotoxicity, and transcriptional activity across

2 CARs with chosen costimulatory domains.

3 (A) Mean cytokine production is shown across all T cells, time points, and CAR T variants, as in Fig. 5B. (B) All cytotoxicity plots across both CD4 and CD8 donors and all measured days are 4 5 shown as in Fig 5E. (C) Cytotoxicity of CAR T cells were quantified at 80 hours for all four CD4 6 T cell donors (left) or at 32 hours for all CD8 T cell donors (right) expressing BAFF-R, TACI, 7 CD28, or 4-1BB as in Fig. 5. Colors for each CAR are indicated in the legend. CARs are ranked 8 at each timepoint from least to most cytotoxic (left to right). (D) Representative plots of 9 cytotoxicity of CD4 CAR T cells from all four donors expressing BAFF-R, TACI, CD28, or 4-10 1BB are shown, with colors labeled as in (B). CARs are ranked at each timepoint from least to 11 most cytotoxic (left to right). Vertical dashed lines indicate the time points analyzed in (C). Error bars indicate the standard error calculated across donors. (E) Table of significant differences in 12 13 CD4 cytotoxicity shown in (D) using pairwise statistical tests across the chosen 4 donors and 4 14 CARs. Significance scores are based on a Repeated Measures ANOVA model of percentage of 15 cell killing at 80 hours across different donors and days of repetitive stimulation (FDR < 0.05:*; 16 ns, not significant). (F) Transcriptional activity reporter Jurkat cell lines for activator protein 1 (AP-1) were transduced with each CAR and sorted within one log of GFP expression. The cells 17 18 were stimulated with either CD19- or CD19+ K562 cells for 0, 8, 24, or 48 hours and then assessed 19 for activity by flow cytometry. Percent transcription factor activity relative to untransduced 20 reporter Jurkat cells is plotted on the y-axis. (G) Transcriptional activity reporter Jurkat cell lines 21 for nuclear factor of activated T-cells (NFAT) as described in (F).

Figure S6

Fig. S6. Single-cell analysis of CARs with chosen costimulatory domains with and without antigen stimulation.

3 (A) Uniform manifold approximation and projection (UMAP) plots are faceted separately for each 4 CAR costimulatory domain and stimulation condition. Points are colored the same as Fig. 6A. An 5 additional CD3/CD28 bead stimulation condition is also shown, which was done only in Donor 2. 6 **(B)** Gene expression overlap is shown across 5 pairs of clusters, which are very similar between 7 CD4 and CD8 T cells (Naive/CD62L, Memory, Cytotoxic, OXPHOS, and Glycolytic). A list of 8 the top 100 differentially expressed genes was calculated for each cluster among all CD4 or CD8 9 T cells. This plot shows the percentage overlap in these gene lists between clusters, showing a 10 mirroring of gene expression across the CD4-CD8 axis among the 5 matched clusters in the bottom 11 left quadrant. (C) Enrichment of resting CAR T cells containing different signaling domains within 12 each phenotypic cluster, similar to Fig. 6E. The size of each dot corresponds to the percentage of 13 stimulated CAR T cells with a specific costimulatory domain that is assigned to a cluster. The 14 color of each dot corresponds to the log-2 fold enrichment or depletion of that CAR within the 15 cluster. (D) Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) z-scores 16 are shown for a variety of surface proteins among T cells in different activated clusters, grouped by their functional classification. Z-scores for CD4 and CD8 T cells were calculated separately. 17 18 (E) A breakdown of the cluster frequency is shown among all stimulated and resting CAR variants 19 of both donors. The bar length on the x-axis is the percentage of each costimulatory CAR variant 20 (resting and stimulated separately) within that cluster, such that each set of bars within each faceted 21 box sums to 1. The bars represent the mean percentage for both donors, and the blue and red dots 22 represent the individual percentages for each donor. The color of each bar corresponds to the 23 relative log2 enrichment for that CAR variant in that cluster, relative to other CAR variants. (F) 24 UMAP heatmaps display the relative RNA expression of single cells (scaled individually), 25 showing a subset of functionally-important transcripts that are upregulated in the Cytotoxic and 26 Memory subsets. (G) Correlation of T cell gene signatures indicative of lymphocyte innateness, 27 based on Gutierrez-Arcelus et al. (64) (left) with phenotypic clusters in CD4 and CD8 CAR T cells 28 (middle) or with CARs containing different costimulatory domains (right). Cluster and CAR colors 29 match those in Fig. 6F. The two dots per group correspond to donors A and B. Error bars indicate 30 99% confidence intervals for the z-scores.

Fig S7. In vivo efficacy of highlighted signaling domains in the M28 and MM1S cancer
models.

(A) Experimental timeline for in vivo M28 mesothelioma tumor model. We injected $4x10^{6}$ CD19+ M28 mesothelioma tumor cells subcutaneously into the flanks of NOD.Cg-Prkdc scid Il2rg tm1Wi1/SzJ (NSG) mice and, seven days later, transferred 6x10⁶ engineered *TRAC* knockout (KO) CAR T cells targeting CD19 intravenously into the tail vein. Tumors were measured by caliper every 7 days for a total of 49 days. (B) Tumor burden was measured in mice treated with CAR T cells targeting either ALPPL2 or CD19. Untransduced (Unt) T cells and non-treated (NT) mice were included as controls. Tumors were measured by caliper every 7 days for a total of 30 days. Error bars indicate standard error of the mean for tumor volumes across mice. (C) M28 tumor volume was plotted over time for individual mice, corresponding to the mean tumor volumes in Fig. 7A and B. (D) Experimental timeline for in vivo MM1S multiple myeloma tumor model is shown. We injected 1x10⁶ MM1S multiple myeloma tumor cells intravenously into NSG mice and, three weeks later, transferred 200,000 engineered TRAC-knockin CAR T cells targeting BCMA intravenously into the tail vein. (E) Survival curves are shown for mice treated with CAR T cells derived from Donor 1 and Donor 2 in the MM1S tumor model; results were combined for both donors. Mice were monitored over 100 days. (F) MM1S tumor volume is shown plotted over time for individual mice in all treatments, corresponding to Fig. 7C.

- ____

2 Table S1. Expression of individual signaling domains by receptor type.

- 3 The table shows a list of all costimulatory domains in our library and whether they are expressed
- 4 by different immune cell types. Note that some receptors may have low expression or may only be
- 5 expressed under specific circumstances by individual cell types.

Supplemental Table 1. Expression of individual cosignaling receptors by cell type									
Cosignaling									Total Cell
Receptor 👻	T cel 🔻	B cel 💌	NK cel 🔻	DC C 👻	Macrophag 💌	NKT C 💌	Granulocy 🔻	Microgl	Types 💌
41BB	Х								1
BAFF-R	Х	Х							2
BCMA		Х							1
BTLA	Х	Х							2
CD2	Х		Х						2
CD200R	Х						Х		2
CD244	Х		Х				х		3
CD28	Х	Х					Х		3
CD300a	Х	Х	Х	Х			Х		5
CD300f									0
CD40		Х			х				2
CD7	Х		Х						2
CD72		Х							1
CD96	Х		Х						2
CRACC	Х	Х	Х						3
CRTAM	Х					Х			2
CTLA4	Х	Х					х		3
CXADR									0
DC-SIGN				Х					1
GITR	Х		Х						2
TIM3	Х		Х	Х					3
ICOS	Х								1
ILT2		Х	Х	Х	Х				4
ILT3		Х	Х	Х	Х				4
ILT4		Х	Х	Х					3
KIR2DL1			Х						1
KIR3DL1	Х		Х						2
KLRG1	Х		Х						2
LAG3	Х		Х						2
LAIR1	Х	Х	Х	Х					4
NKG2D	Х		Х	Х					3
NKR-P1A	Х		Х						2
NTB-A	Х	Х	Х	Х					4
PD1	Х	Х	Х	Х	Х			Х	6
Siglec-3				Х				Х	2
TACI	Х	Х							2
TIGIT	Х		Х						2
TLT-1									0
CD30	Х	Х	Х		Х				4

1 Table S2. List of reagents used in this study.

Reagent	Source	Catalog Number
<u>Antibodies</u>	I	
Monoclonal anti-human	BioLegend	Cat# 353226, RRID:
CD197(CCR7)-PE/Cy7 (clone		AB_11126145
G043H7)		
Monoclonal anti-human CD223(LAG-	BioLegend	Cat# 369304, RRID: AB_2566480
3)-AF647 (clone 11C3C65)		
Monoclonal anti-human CD27-	BioLegend	Cat# 356424, RRID: AB_2566773
APC/Cyanine7 (clone M-T271)		
Monoclonal anti-human CD297(PD-1)-	BioLegend	Cat# 329928, RRID: AB_2562911
BV711 (clone EH12.2H7)		
Monoclonal anti-human CD366(Tim-	BioLegend	Cat# 345008, RRID:
3)-BV421 (clone F38-2E2)		AB_11218598
Monoclonal anti-human CD39-	BioLegend	Cat# 328226, RRID: AB_2571981
APC/Cyanine7 (clone A1)		
Monoclonal anti-human CD4-PE (clone	BioLegend	Cat# 317410, RRID: AB_571955
OKT4)		
Monoclonal anti-human CD4-PE (clone	BioLegend	Cat# 344606, RRID: AB_1937246
SK3)		
Monoclonal anti-human CD4-BUV395	BD	Cat# 563552
(clone SK3)	Biosciences	
Monoclonal anti-human CD4-Pacific	BioLegend	Cat# 344620, RRID: AB_2228841
Blue (clone SK3)		
Monoclonal anti-human CD45RA-APC	BioLegend	Cat# 304112, RRID: AB_314416
(clone HI100)		
Monoclonal anti-human CD45RO-	BD	Cat# 564291
BUV395 (clone UCHL1)	Biosciences	
Monoclonal anti-human CD62L-BV785	BioLegend	Cat# 304830, RRID: AB_2629555
(clone DREG-56)		

Monoclonal anti-human CD8-PE (clone	BioLegend	Cat# 344706, RRID: AB_1953244
SK1)		
Monoclonal anti-human CD8-BUV395	BD	Cat# 563795
(clone RPA-T8)	Biosciences	
Monoclonal anti-human CD8-Pacific	BioLegend	Cat# 344718, RRID:
Blue (clone SK1)		AB_10551438
Monoclonal anti-human CD95-BV711	BioLegend	Cat# 305644, RRID: AB_2632623
(clone DX2)		
Monoclonal anti-human c-Myc-AF594	Cell	Cat# 9483S
(clone 9B11)	Signaling	
	Technology	
Monoclonal anti-human IFN-γ-BV786	BD	Cat# 563731
(clone 4S.B3)	Biosciences	
Monoclonal anti-human IL-2-APC	BD	Cat# 554567
(clone MQ1-17H12)	Biosciences	
Monoclonal anti-human TNF-BUV395	BD	Cat# 563996
(clone MAb11)	Biosciences	
TotalSeq-A0251 HT1	BioLegend	Cat# 394601
TotalSeq-A0252 HT2	BioLegend	Cat# 394603
TotalSeq-A0253 HT3	BioLegend	Cat# 394605
TotalSeq-A0254 HT4	BioLegend	Cat# 394607
TotalSeq-A0255 HT5	BioLegend	Cat# 394609
TotalSeq-A0256 HT6	BioLegend	Cat# 394611
TotalSeq-A0257 HT7	BioLegend	Cat# 394613
TotalSeq-A0258 HT8	BioLegend	Cat# 394615
TotalSeq-A0259 HT9	BioLegend	Cat# 394617
TotalSeq-A0260 HT10	BioLegend	Cat# 394619
TotalSeq-A0262 HT12	BioLegend	Cat# 394623
TotalSeq-A0263 HT13	BioLegend	Cat# 394625
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940046

human CD2	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940000
human CD3	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940030
human CD183	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940067
human CD103	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940097
human CD270	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940072
human CD54	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940011
human CD45RA	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940014
human CD197	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940077
human CD11a	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940047
human CD194	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940085
human CD336	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940090
human CD126	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940020
human CD123	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940038
human CD5	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940033
human CD196	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940089

human CD178	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940028
human CD24	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940007
human CD56	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940092
human CD124	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940042
human CD185	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940086
human CD18	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940027
human IgG	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940012
human CD127	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940009
human CD25	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940044
human CD13	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940083
human CD1c	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940043
human CD278	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940035
human CD274	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940008
human CD11b	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940094
human CD49a	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940024

human CD11c	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940041
human CD62L	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940015
human CD279	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940050
human CD195	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940019
human CD69	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940064
human CD335	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940087
human CD49b	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940056
human CD184	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940103
human CD30	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940045
human CD10	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940080
human CD223	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940065
human CD61	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940099
human IL-21R	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940032
human CD90	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940036
human CD80	Biosciences	
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940081

human CD94	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940075			
human CD226	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940062			
human HLA-ABC	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940057			
human TCRgd	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940025			
human CD86	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940102			
human CD155	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940068			
human CD206	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940051			
human CD117	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940037			
human CD95	Biosciences				
ABSeq Oligo Mouse Monoclonal anti-	BD	Cat# 940078			
human CD9	Biosciences				
Bacterial and Virus Strains					
Escherichia coli: strain HST08 (Stellar	Takara Bio	Cat# 636766			
Competent Cells)					
NEB 5-alpha Electrocompetent E. coli	New England	Cat # C2989			
	Biosciences				
Biological Samples					
T Cells from Donor D001004304	STEMCELL	Cat# 70500.2			
	Technologies				
T Cells from Donor RG1765	STEMCELL	Cat# 70500.1			
	Technologies				

T Cells from Donor RV01000251	STEMCELL	Cat# 70500.1
	Technologies	
T Cells from Donor RG1310	STEMCELL	Cat# 70500.1
	Technologies	
T Cells from Donor RG1945	STEMCELL	Cat# 70500.1
	Technologies	
Chemicals, Peptides, and Recombinant Pr	roteins	
Recombinant Human IL-2 Protein	R&D	Cat# 202-IL-500
	Systems	
Acetic acid, glacial	Sigma-	Cat# ARK2183-1L
	Aldrich	
CellTrace Violet	Thermo	Cat# C34557
	Fisher	
eBioscience Brefeldin A Solution	Invitrogen	Cat# 00-4506-51
(1000X)		
Zombie Yellow Fixable Viability Kit	BioLegend	Cat# 423104
Dulbecco's Phosphate Buffered Saline	Sigma-	Cat# D8537
	Aldrich	
X-VIVO 15	Lonza	Cat# 04-418Q
	Bioscience	
Human AB Serum Heat Inactivated	Valley	Cat# HP1022HI
	Biomedical,	
	Inc	
N-Acetyl-L-Cysteine	Sigma-	Cat# A9165
	Aldrich	
1.0N NaOH	Sigma-	Cat# S2770
	Aldrich	
2-Mercaptoethanol	Gibco	Cat# 21985-023
RPMI 1640 Medium	Gibco	Cat# 11875-093
Glutamax	Fisher	Cat# 35050061

	Scientific	
Fetal Bovine Serum (Heat Inactivated)	SAFC	Cat# 12306C-500ML
	Biosciences	
Penicillin-Streptomycin (10,000 IU/mL,	MP	Cat# 1670249
10,000 μg/mL)	Biomedicals	
InFusion	Takara Bio	Cat# 638951
EasySep Human CD4+ T Cell Isolation	STEMCELL	Cat# 17952
Kit	Technologies	
EasySep Human CD8+ T Cell Isolation	STEMCELL	Cat# 17953
Kit	Technologies	
EasySep Human T Cell Negative	STEMCELL	Cat # 17951
Isolation Kit	Technologies	
Cyto-Last Buffer	BioLegend	Cat# 422501
NucleoSpin Tissue XS	Macherey-	Cat# 740901.50
	Nagel	
NucleoSpin	Macherey-	Cat# 740952.50S
	Nagel	
NucleoSpin 96 Tissue	Macherey-	Cat# 740741.4
	Nagel	
TaKaRa Ex Taq DNA Polymerase	Takara Bio	Cat# RR001B
MiniSeq High Output Reagent Kit (150-	Illumina	Cat# FC-420-1002
cycles)		
HiSeq 4000 300 Cycle Kit	Illumina	Cat# FC-410-1003
eBioscience Intracellular Fixation &	Invitrogen	Cat# 88-8824-00
Permeabilization Buffer Set		
Experimental Models: Cell Lines		l
Human: HEK293T	ATCC	
Human: K562	Lim Lab,	
(CD19+mCherry+)	UCSF	
Human: Nalm6	Eyquem Lab,	

(CD19+GFP+Luciferase+)	UCSF	
Human: M28	Gerwin Lab,	
	NCI/NIH	
Experimental Models: Organisms/Strains	<u> </u>	
Mouse: NOD.Cg-Prkdc ^{scid}	The Jackson	JAX: 005557
<i>IL2rg^{tm1Wjl}</i> /Szj	Laboratory	
Software and Algorithms		
FlowJo version 10	FlowJo, LLC	https://www.flowjo.com
RStudio	RStudio	https://rstudio.com/
IncuCyte Base Software	Essen	https://www.essenbioscience.com/e
	Bioscience	<u>n/</u>
	(now part of	
	Sartorius)	
Living Image	PerkinElmer	https://www.perkinelmer.com
Prism version 9	Graph Pad	https://www.graphpad.com/scientif
		ic-software/prism/
<u>Other</u>		
Poly(A), Polyadenylic acid	Roche	Cat# 10108626001
Dynabeads Human T-Activator	Thermo	Cat# 11131D
CD3/CD28	Fisher	
CountBright Absolute Counting Beads	Invitrogen	Cat# C36950
OneComp eBeads Compensation Beads	Invitrogen	Cat# 01-1111-42

- **Data file S1. T Cell Donor Demographic and Processing Information.**
- **Data file S2. Raw, individual level data for experiments where n<20.**