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MOTIVATION Designing antibody sequences that bind to an antigen of interest is a fundamental problem in
therapeutics design. In addition to the binding toward the target antigen, the antibodies of clinical interest
should have favorable biophysical (i.e., developability) properties. The simulation of antigen-antibody bind-
ing affinity is a complex process that requires a model to generate a structure of antibody and antigen from
their respective sequences and then simulate the binding affinity. We view this intricate process as a black-
box oracle that takes a pair of antibody and antigen sequences as an input and returns their binding affinity.
The design process to find an optimal antibody sequence is essentially a combinatorial search in the anti-
body sequence space to find an instance that maximizes the target function of a black oracle (e.g., a func-
tion that determines binding affinity). The combinatorial nature of the antibody sequence space makes it
impossible to query the oracle function exhaustively, both computationally and experimentally. Therefore,
we need a computationally efficient mechanism to search for an antibody sequence that maximizes the or-
acle’s output to achieve strong affinity with an antigen and has desired biophysical properties.
SUMMARY
Antibodies are multimeric proteins capable of highly specific molecular recognition. The complementarity
determining region 3 of the antibody variable heavy chain (CDRH3) often dominates antigen-binding specificity.
Hence, it is a priority to design optimal antigen-specific CDRH3 to develop therapeutic antibodies. The combi-
natorial structure of CDRH3 sequences makes it impossible to query binding-affinity oracles exhaustively.
Moreover, antibodies are expected to have high target specificity and developability. Here, we present AntBO,
a combinatorial Bayesian optimization framework utilizing a CDRH3 trust region for an in silico design of anti-
bodieswith favorable developability scores. The in silico experiments on 159 antigens demonstrate that AntBO
is a step toward practically viable in vitro antibody design. In under 200 calls to the oracle, AntBO suggests an-
tibodies outperforming the best binding sequence from 6.9million experimentally obtainedCDRH3s. Addition-
ally, AntBO finds very-high-affinity CDRH3 in only 38 protein designs while requiring no domain knowledge.
INTRODUCTION

Antibodies or immunoglobulins (Igs) are utilized by the immune

system to detect, bind, and neutralize invading pathogens.1

From a structural perspective, these are mainly large

Y-shaped proteins that contain variable regions, enabling spe-

cific molecular recognition of a broad range of molecular
Cell Re
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surfaces of foreign proteins called antigens.2–5 As a result, an-

tibodies are a rapidly growing class of biotherapeutics.6 Mono-

clonal antibodies now constitute five of the ten top-selling

drugs.7–9 Antibodies are also used in molecular biology

research as affinity reagents due to their ability to detect low

concentrations of target antigens with high sensitivity and

specificity.10
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A typical antibody structure consists of four protein domains:

two heavy and two light chains connected by disulfide bonds.

Each heavy chain (VH) includes three constant domains and

one variable domain (Fv region), while a light chain (VL) pos-

sesses one constant and one variable domain.3,4,11 Antibodies

selectively bind antigens through the tip of their variable regions,

called the Fab domain (antigen-binding fragment), containing six

loops, three on the light and three on the heavy chain, called

complementarity-determining regions (CDRs).4,12,13 The inter-

acting residues at the binding site between antibody and antigen

are called the paratope on the antibody side and the epitope on

the antigen side.4,12,13 The base of an antibody is called the frag-

ment crystallizable (Fc) region that reacts with the Fv region.

Despite many studies focusing only on Fv regions of antibodies

and CDRH3 loops, it has been shown that the Fc region is also

important for antibody design. The Fc region is connected to de-

velopability parameters such as aggregation, half-life, and stabil-

ity, which are crucial for antibody success in clinical trials.14

The main overarching goal in computational antibody design

is to develop CDR regions that can bind to selected antigens

(such as pathogens, tumor neoantigens, or therapeutic

pathway targets) since the CDR regions mainly define the bind-

ing specificity.3,15,16 In particular, the CDRH3 region possesses

the highest sequence and structural diversity, conferring a

crucial role in forming the binding site.2,4,5 For this reason,

the highly diverse CDRH3 is the most extensively re-engineered

component in monoclonal antibody development. In this article,

we refer to the design of the CDRH3 region as an antibody

design.

When a candidate antibody-antigen complex structure is

already known, structural methods predicting affinity change

upon mutation at the interaction site17–20 are useful in generating

antibodies with higher affinity. As recent examples,21 combine

structural modeling and affinity scoring function to get a

140-fold affinity improvement on an anti-lysozyme antibody. In

contrast to other affinity-based scoring functions,22 use an

ensemble machine learning (ML) strategy that utilizes the affinity

change induced by single-point mutations to predict new

sequences with improved affinity. mCSM-AB223 uses graph-

based signatures to incorporate structural information of

antibody-antigen complexes and combine it with energy infer-

ence using FoldX24 to predict improvements in binding energy.

Finally, two other generalized methods derived from the pro-

tein-protein interaction problem have been used on antibody af-

finity prediction: TopNetTree25 combines a convolutional neural

network (CNN) with gradient-boosting trees, and GeoPPI26 uses

a graph neural network instead of the CNN. However, there is still

a high discrepancy between the results of affinity prediction

methods.27,28

In practice, the development of antibodies is a complex

process that requires various tools for building a structural model

for different parts of the antibody,29 generating structures from

antigen sequences,30 and docking them.31 Moreover, the

combinatorial nature of all possible CDRH3 sequences makes

it impractical to query any antigen-antibody simulation frame-

work exhaustively. For a sequence of length n consisting of

naturally occurring amino acids (AAs) ðm = 20Þ, there

are mn possible sequences. Thus, even with a modest size of
2 Cell Reports Methods 3, 100374, January 23, 2023
n = 11, this number becomes too large to search exhaustively.

In reality, the search space is even larger since CDR sequence

lengths can be up to 36 residues,32 and designed proteins are

not restricted to naturally occurring AAs.33 Furthermore, not all

CDRH3 sequences are of therapeutic interest. A CDRH3 can

have a strong binding affinity to a specific target but may cause

problems in manufacturing due to its unstable structure or show

toxicity to the patient. Antibodies should be evaluated against

typical properties known as developability scores for such rea-

sons.34 These scores measure properties of interest, such as

whether a CDRH3 sequence is free of undesirable glycosylation

motifs or the net charge of a sequence is in a prespecified

range.35,36

Recently, Robert et al.13 proposed Absolut!, a computa-

tional framework for generating antibody-antigen binding data-

sets that has been used to stress test and benchmark different

ML strategies for antibody-antigen binding prediction.13

Absolut! is a deterministic tool that provides an end-to-end

simulation of antibody-antigen binding affinity using coarse-

grained lattice representations of proteins. We can use Abso-

lut! to evaluate all possible binding conformations of an

arbitrary CDRH3 sequence to an antigen of interest and return

the optimal binding conformation. To be of real-world relevance,

Absolut! preserves more than eight levels of biological

complexity present in experimental datasets13: antigen topol-

ogy; antigen aa composition; physiological CDRH3 sequences;

a vast combinatorial space of possible binding conformations;

positional aa dependencies in high-affinity sequences; a hierar-

chy of antigen regions with different immunogenicity levels; the

complexity of paratope-epitope structural compatibility; and a

functional binding landscape that is not well described by

CDRH3 sequence similarity. Moreover, Absolut! demon-

strates three examples where different ML strategies showed

the same ranking in their performance compared with experi-

mental datasets. Importantly, ML conclusions reached on

Absolut!-generated simulated data transfer to real-world

data.13 However, the combinatorial explosion of CDRH3

sequence space makes it unrealistic to exhaustively test every

possible sequence, either experimentally or using Absolut!

Therefore, the problem of antibody-antigen binding design de-

mands a sample-efficient solution to generate the CDRH3 region

that binds an arbitrary antigen of interest while respecting devel-

opability constraints.

Bayesian optimization (BO)37–40 offers powerful machinery for

aforementioned issues. BO uses Gaussian processes (GPs)41 as

a surrogatemodel of a black box oracle that incorporates the prior

belief about the domain in guiding the search in the sequence

space. Theuncertainty quantification ofGPsallows the acquisition

maximization step to trade off exploration and exploitation in the

search space. (The idea of exploration is to eliminate the region

of search space that does not contain the optimal solution with a

high probability. The exploitation guarantees that the search finds

optimal samplepointswithahighprobability.BOusesGPasasur-

rogate model that introduces mean and variance estimates with

every data point. As BO encounters new data points in a local

search tomaximize the acquisition function, it checks if two points

have the exactmean estimate and selects the onewith the highest

variance, thereby exploring the space. When data points have the
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same variance, BO chooses the one with the highest mean esti-

mate thus exploiting the solution.) This attractive property of BO

enables us to develop a sample-efficient solution for antibody

design. In this article, we introduce AntBO—a combinatorial BO

framework for in silico design of a target-specific antibody

CDRH3 region. Our framework uses Absolut!’s binding energy

simulator asablack-boxoracle. Inprinciple,AntBOcanbeapplied

to any sequence region. Here, we consider CDRH3, since this is

the primary region of interest for antibody engineering.4,5,42,43 In

addition, the Absolut! framework currently only allows CDRH3

binding simulation.

Our key contributions are as follows.

� The AntBO framework utilizes biophysical properties of

CDRH3 sequences as constraints in the combinatorial

sequence space to facilitate the search for antibodies suit-

able for therapeutic development.

�We demonstrate the application of AntBO on 159 known

antigens of therapeutic interest. Our results demonstrate the

benefits of AntBO for in silico antibody design through

diverse developability scores of discovered protein se-

quences.

� AntBO substantially outperforms the very-high-affinity se-

quences available from a database of 6.9 million experimen-

tally obtained CDRH3s, with several orders of magnitude

fewer protein designs.

� Considering the enormous costs (time and resources) of

wet-lab antibody-design-related experimentation, AntBO

can suggest very-high-affinity antibodies while making the

fewest queries to a black-box oracle for affinity determina-

tion. This result serves as a proof of concept that AntBO

can be deployed in the real world where sample efficiency

is vital.
RESULTS

Formulating antibody design as a black-box
optimization with CDRH3 developability constraints
To design antibodies of therapeutic interest, we want to search

for CDRH3 sequences with a high affinity toward the antigen of

interest that satisfies specific biophysical properties, making

them ideal for practical applications (e.g., manufacturing,

improved shelf life, higher concentration doses). These proper-

ties are characterized as ‘‘developability scores.’’35 In this

work, we use the three most relevant scores identified for the

CDRH3 region.35,44 First, the net charge of a sequence should

be in the range ½ � 2;2�. It is specified as a sum of the charge of

individual residues in a primary aa sequence. Consider a

sequence x = fx1;.; xng, and let I½:� be the indicator function

that takes value 1 if the conditions are satisfied and 0 otherwise;

then, the charge of a residue is defined asCðxiÞ = I½xi ˛ fR;Kg�+
0:1,I½xi = H� � I½xi ˛ fD;Eg� and that of the sequence asP

iCðxiÞ, where R stands for arginine, K for lysine, H for histidine,

D for aspartic acid, and E for glutamate. Second, any residue

should not repeat more than five times in a sequence

I½countðxiÞ %5jci ˛ ½0; n � 1��. Lastly, a sequence should not

contain a glycosylation motif—a subsequence of form N-X-S/T

except when X is a proline.
The binding affinity of an antibody and an antigen simulated

as an energy score comes with several challenges. The energy

score is not directly accessible as a closed-form expression

that can return binding energy as a function of an input

sequence without enumerating all possible binding structures.

A vast space of CDRH3 sequences makes it computationally

impractical to exhaustively search for an optimal sequence.

Therefore, we pose the design of the CDRH3 region of anti-

bodies as a black-box optimization problem. Specific to our

work, a black box refers to a tool that can take an arbitrary

CDRH3 sequence as an input and return an energy score

that describes its binding affinity toward a prespecified antigen.

The high cost of lab experiments expects the antibody design

method to suggest a sequence of interest in the fewest design

steps. To simulate such a scenario, we want a sample-efficient

solution that makes a very small prespecified number of calls to

an oracle and suggests antibody sequences with very high

affinity.

To formally introduce the problem, consider the combinato-

rial space X of protein sequences of length n, for 20 unique

aas, the cardinality of space is jXj = 20. We can consider a

black-box function f as a mapping from protein sequences

to a real-valued antigen specificity f : X/R where an

optimum protein sequence under developability constraints is

defined as

x� = argmin
x˛X

fðxÞ
s:t: CDRH3 � DevelopableðxÞ ; (Equation 1)

where CDRH3 � Developable : X/f0;1g is a function that

takes a sequence of aas and returns a Boolean value for whether

constraints introduced in formulating antibody design as a

black-box optimization with CDRH3 developability constraints

are satisfied (1) or unsatisfied (0). An example of an unsatisfied

CDRH3 sequence is shown in Figure 1C.
Combinatorial BO for antibody design
Our goal is to search for an instance (antibody sequence) in the

input space x� ˛X that achieves an optimum value under the

black-box function f. In a typical setting, the function f has

properties such as (1) high evaluation cost, (2) no analytical so-

lution, and (3) may not be differentiable. To circumvent these is-

sues, we use BO to solve the optimization problem. BO typi-

cally goes through the following loop: we first fit a GP on a

random set of data points at the start. Next, we optimize an

acquisition function that utilizes the GP posterior to propose

new samples that improve over previous observations. At

last, these new samples are added to data points to refit a

GP and repeat the acquisition maximization, as shown in Fig-

ure 1. We have provided a brief introduction to BO in the

STAR Methods section method details. For a comprehensive

overview of BO, we refer to readers to Snoeck et al.,45 Shahriari

et al.,46 Hernández-Lobato et al.,47 Frazier,48 Cowen-Rivers

et al.,49 Antoine et al.,50 and Garnett.51

Kernels to operate over antibody sequences

To build a GP surrogate model, we need a kernel function to

measure a correlation between pairs of inputs. Since, in our
Cell Reports Methods 3, 100374, January 23, 2023 3
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(A) The demonstrative example of two CDRH3 sequences not satisfying the developability criterion is discarded in the overall optimization procedure.

(B) Overall optimization process of AntBO for antibody design: from a predefined target antigen structure (discretized from its known PDB structure), binding

affinities of antibody CDRH3 sequences to the antigen are simulated using Absolut! as an in silico surrogate for costly experimental measurements. AntBO treats

Absolut! as a black-box to be optimized for Ebind and can suggest high-affinity CDRH3 protein designs within a trust region of acceptable sequences.
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problem, the input space is categorical, we need a kernel that

can operate on sequences. We investigate three choices of

kernels. Firstly, a transformed overlap kernel (TK) that uses

hamming distance with a length-scale hyperparameter for

each dimension. Secondly, a protein BERT kernel (protBERT)

that uses pretrained BERT model52 to map a sequence

to a continuous Euclidean space and uses radial

basis function (RBF) kernel to measure correlation. Lastly, the

fast string kernel (SSK) defines the similarity between two se-

quences by measuring a number of common substrings of or-

der l. The details are discussed in the STAR Methods section

kernels.

CDRH3 trust region acquisition maximization

The combinatorial explosion of antibody design space makes it

impractical to use standard methods of acquisition maximiza-

tion. Several recent developments have proposed the use of

discrete optimization algorithms for the combinatorial nature

of problem.53–57 However, their application to antibody design

requires a mechanism to restrict the search to sequences

with feasible biophysical properties. We next introduce our

method, which utilizes crucial biophysical properties to

construct a trust region (TR) in the combinatorial sequence

space, thus allowing us to extend the combinatorial BO ma-

chinery to antibody design.

At each iteration t of the search step, we define a trust region

CDRH3-TR around the previous best point x� that includes

all points satisfying antibody design constraints introduced

in formulating antibody design as a black-box optimization

with CDRH3 developability constraints and differ in at most

Lt indices from x�. We then run CDRH3-TR acquisition

maximization,
4 Cell Reports Methods 3, 100374, January 23, 2023
CDRH3 � TRLt ðx�Þ =
(
xjCDRH3 � DevelopableðxÞ;

X
i

d
�
xi; x

�
i

�
%Lt

)
;

(Equation 2)

where dð:; :Þ is the Kronecker delta function. To perform a search,

we start with the previous best x� and, next, sample a neighbor

point x�Neigh: contained within CDRH3-TR by selecting a random

aa and perturbing it with a new aa. We store the sequence if it

improves upon the previous suggestions. The value of Lt is

restricted in the range ½dmin;dmax�, where dmin and dmax are the

minimum and maximum size of TR that we treat as a hyperpara-

meter. When Lt reaches dmin, we restart the optimization using

GP-upper-confidence bound (UCB) principle.58 It has been

noted in several works59,60 that introducing Lt promises theoret-

ical convergence guarantees. Figure 1 illustrates this process.

Algorithm 1 outlines the pseudocode of AntBO. The details of

acquisition function are presented in the STARMethods section.

Evaluation setup and baseline methods
We use Absolut! for simulating the energy of the antibody-an-

tigen complex. We indicate our framework (AntBO’s) kernel

choice directly in the label, e.g., AntBO SSK, AntBO TK, and

AntBO ProtBERT. We compare AntBO with several other

combinatorial black-box optimization methods such as

HEBO,49 COMBO,61 TuRBO,62 LamBO,63 random search (RS),

and genetic algorithm (GA). We introduce the same developabil-

ity criteria defined as in the CDRH3 trust region in all themethods



Algorithm 1. Antibody Bayesian Optimisation (AntBO)

Input: Objective function f : X/R, number of evaluations N, alphabet size of categorical variable K.

Randomly sample an initial dataset D1 = ðxi ; fðxiÞÞMi = 1

for i = 1;.;N do

Fit a GP surrogate g on Di

Construct a CDRH3� TRLi ðx�Þ around the best point x� = arg minx˛Di
gðxÞ using Equation 2 in the main document.

Optimise constrained acquisition,

xi + 1 = arg minx˛TRðx�ÞaðxjDiÞ
Evaluate the black-box fðxi + 1Þ
Update the dataset Di +1 = DiWðxi + 1; fðxi +1ÞÞ

Output: The optimum sequence x�
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for a fair comparison. We also run AntBO TK without a hamming

distance criterion, which is by omitting
P

idðxi; x�i Þ%Lt term in

Equation 2 of the trust region, and label it as AntBO NT. The trust

region size Lt is the distance of the best-seen sequence from the

random starting sequence. The criterion restricts the local opti-

mization within a certain radius Lt from the starting sequence.

Removing the distance criterion dmax allows a local search to

reach the maximum possible value and lets the optimization

process explore distant regions in the search space. For an

explanation of the algorithms, including the configuration of hy-

perparameters, we refer to readers to STAR Methods section

baseline approaches. For the primary analysis in themain article,

we use twelve core antigens identified by their PDB ID and a

chain of an antigen. Our choice of antigens is based on their in-

terest in several studies.13,64 We also evaluate our approach on

the remaining 147 antigens in the Absolut! antibody-antigen

binding database. The results for those are provided in

Figures S3, S4, and S5.

AntBO is sample efficient compared with baseline
methods
Precise wet-lab evaluation of an antibody is a tedious process

and comes with a significant experimental burden because it re-

quires purifying both antibody and antigen and testing their bind-

ing affinity.31,65 We, therefore, first investigate the sample effi-

ciency of all optimization methods. We ran experiments with a

prespecified budget of 200 function calls and reported the

convergence curve of protein designs versus minimum energy

(or binding affinity) in Figure 2. The experimental validation we

substitute here by Absolut!-based in silico proof is expensive

and time consuming. Therefore, budgeting of optimization steps

is a vital constraint.65 In Figure 3, we compare AntBO with base-

line methods and various binding affinity categories very high,

super, and super+ (determined from 6.9 M experimentally ob-

tained murine CDRH3s available from the Absolut! database).

We normalize the energy score by the super+ threshold. Core

antigen experiments are run with ten random seeds and the re-

maining antigens with three. We report the mean and 95% con-

fidence interval of the results.

We observe that AntBO TK achieves the best performance

with regards to (w.r.t.) to minimizing energy (maximizing affinity),

typically reaching high affinity within 200 protein designs, with no

prior knowledge of the problem. AntBO TK can search for

CDRH3 sequences that achieve significantly better affinity than

very-high-affinity sequences from the experimentally obtained
Absolut! 6.9 M database. In the majority of antigens, AntBO

TK outperforms the best-evaluated CDRH3 sequence by

Absolut! We noticed that for the S protein chain of 1NSN,

the P protein chain of 2JEL, and on a few other antigens (figures

reported in the supplemental information), AntBO gets close to

the best experimental sequence known for that antigen but

does not outperform its affinity. We attribute this result to the

complexity of the 3D lattice representation of an antigen that

might require more sequence designs to explore the antibody

optimization landscape. We wish to study this effect in future

work. For some antigens, such as 1H0D, the binding affinity de-

creases in smaller factors when compared with other antigens,

such as 1S78. This observation shows that some antigens are

difficult to bind, while there are more possible improvements

for others.34 We make a similar observation in which transfer

learning from one antigen to another differed across different

pairs.

We found for amajority of antigens that AntBO TK outperforms

AntBO ProtBERT. This finding contradicts our assumption that

a transformer trained on millions of protein sequences would

provide us with a continuous representation that can be a

good inductive bias for GPs.We believe this could be associated

with specific characteristics of antibody sequences that differ

from a large set of general protein sequences. Consequently,

there is a shift in distribution between the sequences used for

training the protein BERT model and the sequences we

encounter in exploring the antibody landscape. This finding

also demonstrates that AntBO can reliably search in combinato-

rial space without relying on deep-learning models trained on

enormous datasets. However, we want to remark that AntBO

ProtBERT performs on par with other baselines.

We next investigate the average number of protein designs

AntBO TK takes to get to various levels of binding affinity across

all antigens. For this purpose, we take five affinity groups from

existing works13,64: low affinity (5%), high affinity (1%), very

high affinity (0.1%), super (0.01%), and super+ (the best known

binding sequence taken from the 6.9 M database.) and report

the average protein designs needed to suggest a sequence in

the respective classes for 188 antigens. Table 1 describes the

performance of AntBO TK and other baselines. We observe

that AntBO TK reaches a very-high-affinity class in around

� 38 protein designs, super in around 50 designs, and only 85

to outperform the best available sequence. This sample effi-

ciency of AntBO TK demonstrates its superiority and relevance

in the practical world.
Cell Reports Methods 3, 100374, January 23, 2023 5



Figure 2. AntBO is a sample-efficient solution for antibody design compared with existing baseline methods
AntBO with the transformed overlap kernel can find binding antibodies while outperforming other methods. It takes around 38 steps to suggest an antibody

sequence that surpasses a very-high-affinity sequence from the Absolut! 6.9 M database and about 100 to outperform a super+ affinity sequence. We run all

methodswith 10 random seeds and report themean and 95%confidence interval for the 12 antigens of interest.13 The title of each plot is a PDB ID followed by the

chain of an antigen. For extended results on the remaining 147 antigens, we refer to readers to Figures S3, S4, and S5. To understand the AntBO optimization, we

also report the 3D visualization for an antigen 1ADQ_A in Figure S2.
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Visualization of trajectory for antigen 1ADQ_A

Figure S2 shows the trajectory of protein designs for an antigen

1ADQ_A for every ten steps. We observe that AntBO first ex-

plores sequences with different binding structures, later con-

verges into regions of sequence space that contain antibodies

of the same bindingmode, and iteratively improves binding affin-

ity by mutations that preserve the binding structure. We provide

the sequence trajectories of all antigens in our codebase under

the directory ‘‘results_data/’’. The instructions for the 3D visual-

ization of the trajectory are also provided in the codebase.

AntBO suggests antibodies with favorable developability
scores
AntBO iteratively designs antibodies that improve (over previous

suggestions) to reach an optimal binding sequence. The anti-

body sequences we encounter in the iterative refinement pro-
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cess compose a trajectory on the binding affinity landscape.

To understand the search mechanism of AntBO, here, we inves-

tigate the developability scores of 200 CDRH3 designs found

along the above trajectory on the binding affinity landscape.

This analysis helps us understand how optimizing energy affects

the biophysical properties of antibody sequences. The develop-

ability scores we used in CDRH3-TR are a few of many other bio-

physical properties. As noted in formulating antibody design as a

black-box optimization with CDRH3 developability constraints,

more scores can be added as constraints. However, finding an

optimum sequence also adds an extra computational cost.

Here, in addition to charge, we report hydrophobicity (HP) and

the instability index, which have been used in other studies for

assessing downstream risks of antibodies.13,42 A smaller insta-

bility index value means the sequence has high conformational

stability, and in practical scenarios, it is desired to have a score



Figure 3. We compare the binding energy threshold of different categories (low, high, very high, super, super+) obtained from the Absolut!

6.9M database and the average binding affinity of a sequence designed using AntBO methods and the baselines

The energycan scores are normalized by the threshold of the super+ category. We observe AntBO outperforms the best sequence in a majority of antigens and

emerges as the best method in finding high-binding-affinity sequences in under 200 evaluations.

Article
ll

OPEN ACCESS
of less than 40. CDRH3 regions tend to aggregate when devel-

oping antibodies, making it impractical to design them. This phe-

nomenon is due to the presence of hydrophobic regions. A low

value of HP means a sequence has a lesser tendency to aggre-

gate.We use the Biopython66 package to compute HP and insta-

bility scores. We next discuss the analysis of developability pa-

rameters for severe acute respiratory syndrome coronavirus

(SARS-CoV) antigen. The results on the remaining core antigens

are provided in Figures S6, S7, and S8.

Case study: Application of AntBO for SARS-CoV antibody
design
The spike (S) protein of the SARS-CoV (PDB: 2DD8) is respon-

sible for the entry of the virus into the host cell, making it an

important therapeutic target for the effective neutralization of

the virus. Figure 4 demonstrates that AntBO can design anti-

bodies for SARS-CoV with diverse developability parameters.

On the top of each plot is a histogram of binding affinity of 200

designs and a right histogram of developability scores. The

hexagon discretizes the space with the binding affinity on the

vertical axis and the developability score on the horizontal axis.

The color of hexagons shows a subspace frequency within a
specific binding affinity range and the respective developability

score. We observe that the distribution of three developability

scores varies across all methods, showing the distinction be-

tween their designed sequences. Interestingly, the performance

on developability scores, which were not included in constraints,

demonstrates that the AntBO methods can identify sequences

with diverse developability parameters. This observation sug-

gests that our approach is suitable for exploring sequences to-

ward high affinity and selecting candidates in a desired develop-

ability region. To understand how the spread of scores

compares with experimentally known sequences, we take a

set of super+ (top 0.01% annotated using the Absolut! 6.9 M

database) and report their average developability score, which

is denoted by the star (+) symbol in the hexagram plots. We

observe that the spread of scores of AntBO methods is close

to the mean of super+. Thus, we can conclude AntBO is a

more practically viable method for antibody design.

Knowledge of existing binders benefits AntBO in
reducing the number of calls to black-box oracle
The optimization process of AntBO starts with a random set of

initial points used in fitting the GP surrogate model. This
Cell Reports Methods 3, 100374, January 23, 2023 7



Table 1. AntBO consistently ranks as the best method in designing high-affinity-binding antibodies whilemakingminimum calls to the

black-box oracle

Method affinity

Low High Very high Super Super+

Top 5% Top 1% Top 0.1% Top 0.01% Best

# Y % [ Score Y # Y % [ Score Y # Y % [ Score Y # Y % [ Score Y # Y % [ Score Y

AntBO TK 20 100 0.2 29 100 0.29 41� 99� 0:42� 58� 96� 0:� 97� 55� 1:76�

AntBO SSK 21 100 0.21 30 100 0.3 46 100 0.46 64 96 0.67 94 48 1.94

AntBO ProtBERT 24 100 0.24 37 97 0.39 60 88 0.69 84 73 1.14 121 24 5.02

AntBO NT 19 100 0.19 28 99 0.29 43 98 0.44 61 95 0.64 111 52 2.15

COMBO 44 92 0.48 56 56 0.97 67 15 4.44 99 3 39.47 – – –

HEBO 15� 100� 0:15� 25� 100� 0:25� 50 100 0.5 74 97 0.75 130 56 2.33

TuRBO 34 100 0.34 65 99 0.65 109 79 1.37 124 40 3.11 112 1 134.4

Genetic algorithm 34 100 0.34 70 99 0.7 111 92 1.21 140 56 2.48 141 4 33.79

Random search 37 100 0.37 71 78 0.9 84 23 3.61 99 3 39.6 – – –

LamBO 19 100 0.19 32 100 0.32 55 100 0.55 73 94 0.78 101 51 1.99

Here, we analyze the required number of successful trials to reach various binding affinity categories. We report a number of protein designs needed to

reach low, high, very high, and super affinity (top 5%, 1%, 0.1%, and 0.01%quantiles from theAbsolut! 6.9 M database, respectively). We denote by

super+ the number of designs required to outperform the best CDRH3 in the 6.9 M database. The various binding categories are taken from existing

works.13,64 We collectively report three scores for every affinity class across all respective methods (10 trials and 12 antigens). For a given method, let

TE be a matrix of size ½12310; 200� (where each trial lasts 200 iterations) of all trial affinities; IðTEi %cÞ be an indicator function that returns 1 if for a

given trial i amethod finds any TE better than the affinity category c’s value; andF as a function that returnsminimum samples required to reach affinity

category c; if the trial did not reach the affinity category, it returns 0. The first column (#[) outlines the average number of protein designs
PN

i FðTEi ; cÞ=
N required to reach the respective affinity quantile value c. The second column (% [) is the proportion of trials

PN
i IðTEi % cÞ=N that output a protein

design better than the given affinity category c, given as a percentage. Ideally, the best method would attain the lowest value in the first column and a

value of 100% in the second column, showing that it reaches the affinity category in all trials and does so in the lowest number of samples on average.

Due to the importance of both measurements, in the third column (Score Y), we report the ratio of the two values to get an estimate of overall perfor-

mance, where we penalize the reported mean samples required to reach an affinity category by the percentage of failed trials to reach that affinity

category. The penalized ratio balances the probability of designing a super+ sequence and required evaluations. The categories in which no samples

by a method reach the affinity class are denoted by � . The asterisk * symbol indicates the best performing method. Our results demonstrate that

AntBO TK is the superior method that consistently takes fewer protein designs to reach important affinity categories.
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initialization scheme includes the space of non-binders, allowing

more exploration of the antibody landscape. Alternatively, we

can start with a known set of binding sequences to allow the sur-

rogate model to better exploit the local region around the good

points in finding an optimum binding sequence. We hypothesize

that the choice of initial data points dictates the tradeoff between

exploration and exploitation of the protein landscape. To inves-

tigate the question, we study the effect of different initialization

schemes on the number of function evaluations required to

find very-high-affinity sequences. We create three data point

categories: losers, mascotte, and heroes. In the losers, all data

points are non-binders; in the mascotte, we use half non-binders

and half low binders; and finally, in the heroes, we take a propor-

tion of six non-binders, six low binders, and eight high binders.

The threshold of categories is obtained using the Absolut!

database.13

For each of the 12 core antigens, Figure 5 reports the conver-

gence plot and the histogram of an average number of evalua-

tions across 5 trials required to reach the super affinity category.

When starting with the known sequence, AntBO exploits prior

knowledge of the landscape, limiting the search technique to

find an optimal design in the vicinity of available binders. Interest-

ingly, we observe that when using prior information of binders for

some antigens, such as 2YPV_A and 3RAJ_A, AntBO requires

more sequence designs to reach the super affinity category.
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We hypothesize that this phenomenon can be attributed to the

complexity of antigen structure that, in turn, can benefit from

more exploration of the antibody sequence landscape.

Figure 6 further reports the histogram of a number of antibody

designs averaged across both 5 trials and 12 core antigens. We

observe that the overall required number of calls to the black-

box oracle to reach the super binding affinity category decreases

when information on known antibody binding sequences is

made available to AntBO as training data for the GP surrogate

model. We can interpret the initialization as prior domain knowl-

edge that aids the antibody design process by reducing the

computational cost of evaluating the black-box oracle.

DISCUSSION

General computational approaches for antibody
discovery
Several computational approaches have been developed to

support antibody design14,16 either using physics-based anti-

body and antigen structure modeling29,67,68 and docking69,70

or using MLmethods to learn the rules of antibody-antigen bind-

ing directly from sequence or structural datasets.14 (1) Paratope

and epitope prediction tools consider either sequence or struc-

ture of both antigen or antibody to predict the interacting resi-

dues.12,28,71–78 Knowledge of the paratope and epitope does



Figure 4. AntBO can design antibodies that achieve diverse developability scores, demonstrating that it is a viable method to be practically

investigated

We analyze the developability scores of 200 proteins designed by each method averaged across all 10 random seeds to simulate the diversity of suggested

proteins across a single trial. Here, we report developability scores for S protein from the SARS-CoV virus (PDB: 2DD8). The landscape of designed sequences

suggested during the optimization process for each method is shown with their binding affinity and three developability scores (hydropathicity, charge, and

instability). We also take super+ (top 0.01%) sequences from the Absolut! 6.9 M database and report their mean developability scores denoted by a star (+) in

the plots. Interestingly, we observe a positive correlation between hydropathicity increasing with energy. While other methods have a larger charge spread, we

see AntBO favorably suggesting the most points with a neutral charge. We observe the spread of developability scores of AntBOmethods is close to the average

score of super+ sequences. Overall, we conclude that energetically favorable sequences still explore a diverse range of developability scores and that the protein

designs of AntBO are more stable than other methods.
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not directly inform affinity but helps priorities important residues

to improve affinity. (2) Binding prediction tools, often inspired by

protein-protein interaction (PPI) prediction tools,79 predict the

compatibility between an antibody and an antigen sequence or

structure. The compatibility criterion is decided by either using

clustering to predict sequences that bind to the same target,80,81

using a paratope-epitope prediction model,5 or using a ranking

of binding poses to classify binding sequences.82 However, pre-

dicting antibody binding mimics the experimental screening for

antibody candidates but does not directly help to get high affinity

and specific antibody sequences. (3) Affinity prediction tools

specifically predict affinity improvement following mutations on

antibody or antigen sequences. Our work particularly focuses

on the affinity prediction problem because it is a major time

and cost bottleneck in antibody design.

Small size of available experimental datasets limiting
the application of ML methods
Available experimental datasets

The experimental datasets describing the antibody binding

landscape can be categorized in four ways. (1) Structures of

antibody-antigen complexes provide the most accurate

description of the binding mode of an antibody and the involved

paratope and epitope residues,83 which helps to prioritize resi-

dues that can modulate binding affinity. Structures do not
directly give an affinity measurement but can be leveraged

with molecular docking and energy tools to infer approximate

binding energy. Only � 1200 non-redundant antibody-antigen

complexes are known so far.83 (2) Sequence-based datasets

contain the results of qualitative screenings of thousands of an-

tibodies (either from manually generated sequence libraries or

from ex vivo B cells).65 Typically, millions of sequences can be

inserted into carrier cells expressing the antibody on their sur-

face. Following repeated enrichment steps for binding to the

target antigen, a few thousand high-affinity sequences can be

obtained,42 and newer experimental platforms will soon allow

reaching a few million. As of yet, however, sequencing datasets

can only label sequences with binder or non-binder or low-affin-

ity, medium-affinity, and high-affinity classes. (3) Affinity mea-

surements are very time consuming because they require the

production of one particular antibody sequence as protein

before measuring its physicochemical properties (including

other in-vitro-measurable developability parameters). Affinity

measurements are precise and quantitative, either giving an af-

finity reminiscent of the binding energy or down to an associa-

tion and dissociation constant. As an example, the AB-bind

database only reports in total 1,100 affinities on antibody vari-

ants targeting 25 antigens,84 and a recent cutting-edge study42

measured the affinity of 30 candidate antibodies, showing the

experimental difficulty in obtaining the affinity measurement of
Cell Reports Methods 3, 100374, January 23, 2023 9



Figure 5. Effect of different initial class distributions on BO convergence
Experiments are run for three sets of initial points varying with the amount of binder (top 1%) and non-binders (remaining sequences): losers 20L (with only non-

binders), mascotte 10L-10M (half non-binders and half low binders), and heroes 6L-6M-8H (six non-binders, six low binders, and eight high binders). The top is the

BO convergence plot with a horizontal line denoting the energy threshold to reach the super binder level. The bottom figures show the histogram of the number of

antibody designs required to reach super binding affinity class averaged across 5 trials. We find that for the majority of antigens, prior knowledge of binders helps

in reducing the number of evaluations.
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many antibodies. Finally, (4) in (and ex) vivo experiments

describe the activity of injected antibodies, including in vivo de-

velopability parameters35,85 such as half-life, and toxicity,

including off-targets. In vivo experiments are restricted to lead

candidates due to their high cost and cannot be performed

when screening for antibody leads. Although qualitative

(sequencing) datasets inform on initial antibody candidates,

increasing the activity and specificity of antibody candidates re-

quires many steps to further improve their affinity toward the an-

tigen target while keeping favorable developability parameters.

It is the most tedious and time-consuming step. However, up-

coming methods may reveal more quantitative affinity measure-

ments at high throughput.86

Generative models for sampling antibody candidates

Generative ML architectures have been leveraged to generate

antibody candidates from sequence datasets. Specifically, an au-

toregressivemodel,87 a variational autoencoder,88 or a generative
10 Cell Reports Methods 3, 100374, January 23, 2023
adversarial network (GAN)89 has been used for generating aa se-

quences of antibodies64,90–94. Amimeur et al.90 also incorporate

therapeuticconstraints toavoidsamplinganon-feasiblesequence

at inference. Ingraham et al.,95 Koga et al.,96 and Cao et al.97 addi-

tionally include information of a backbone structure. Recently, Jin

et al.44 proposed an iterative refinement approach to redesign the

3D structure and sequence of antibodies for improving properties

such as the neutralizing score. The generativemodeling paradigm

can increase the efficient design of antibodies by prioritizing the

next candidates to be tested experimentally.

Due to the current small size of datasets, the application of ML

methods for improving antibody affinity has been minimal.

Further, the generalizability of such approaches is difficult to

assess, and there is a lack of generative models that can be

conditioned for affinity. Here, we set out to leverage the maximal

information on antibody sequence affinity from the minimal num-

ber of experimental, iterative measurements using BO to



Figure 6. AntBO benefits from the knowledge of a prior binding

sequence in arriving at super binders

The average number of antibody designs reduces when information about

known binders is made available to GP surrogate model. On the y axis, we

report the average number of iterations required across all antigens to reach

the super binding affinity class (outperforming the best sequence in the Ab-

solut! database), and on the x axis, we have three affinity classes, namely

losers 20L (with only non-binders), mascotte 10L-10M (half non-binders and

half low binders), and heroes 6L-6M�8H (six non-binders, six low binders, and

eight high binders).
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generate an informed prediction on potential higher-affinity se-

quences. We use the Absolut! simulator as a black-box oracle

to provide a complex antibody-antigen landscape that recapitu-

latesmany layers of the experimental complexity of antibody-an-

tigen binding.
Combinatorial methods for protein engineering
Methods on protein engineering98–100 use evolutionary methods

to explore the combinatorial space of protein sequences. They

use directed evolution—an iterative protocol of mutation and se-

lection followed by a screening to identify sequences with

improved diversity and functional properties. However, the

approach suffers from high experimental costs due to inefficient

screening methods. To overcome the experimental hurdle, Yang

et al.33 propose an ML pipeline for protein engineering. The cen-

tral theme is to utilize the measurements of known protein se-

quences to train anMLmodel that can further guide the evolution

of protein sequences. A concurrent work63 introduces LamBO—

a multiobjective BO framework for designing molecular se-

quences. LamBO utilizes a deep kernel for fitting GPs. Specif-

ically, it does optimization in the latent space of a denoising au-

toencoder. Wewant to remind the readers AntBOwith protBERT

uses a deep kernel in the latent space of pretrained BERT for

training GPs. However, the acquisition maximization is done in

the input space. The major limitation is that none of these

methods have been investigated for antibody design due to

limited data on antibody specificity.
AntBO: A sample-efficient solution for computationally
favorable antibody design
A list of therapeutically relevant developability parameters is

considered vital for designing antibodies.14,42 These parame-
ters include solubility, charge, aggregation, thermal stability,

viscosity, immunogenicity (i.e., the antibody should not induce

an immune response, which might also induce its faster clear-

ance by the body), glycosylation motifs, and the in vivo half-life.

Although the whole antibody sequence can be modified to

improve developability, the CDRH3 region also seems to

have a critical impact on them beyond only affinity and antigen

recognition.101 Therefore, it is crucial to include developability

constraints in CDRH3 design. Interestingly, many parameters

can be calculated in advance from the antibody sequence ac-

cording to experimentally validated estimators,14 allowing for

defining boundaries of the search space according to develop-

ment needs. Our proposed AntBO framework utilizes the devel-

opability parameters to construct a trust region of feasible se-

quences in the combinatorial space, thus allowing us to

search for antibodies with desired biophysical properties.

Our findings across several antigens demonstrate the effi-

ciency of AntBO in finding sequences outperforming many

baselines, including the best CDRH3 obtained from the Abso-

lut! 6.9 M database. AntBO can suggest very-high-affinity

sequences with an average of only 38 protein designs and a

super binding sequence within 100 designs. The versatility of

Absolut! allows defining binder/non-binder levels based on

user requirements. In the future, an interesting investigation

would be measuring the performance of AntBO as a function

of different binder definitions.13 We also wish to investigate

our framework for improved structure prediction with other

docking simulation models and perform experimental

validations.

Limitations of the study
We want to remark to the readers that AntBO is the first

framework showcasing different flavors of combinatorial BO

for the antibody design problem. The potential limitations

of AntBO in its current scope are (1) AntBO sequentially de-

signs antibodies suggesting one sequence per evaluation

step. To achieve a more efficient experimental scenario,

AntBO can be adapted to a batch scenario, allowing us to

design more sequences in fewer evaluations. (2) Another lim-

itation is that the current binding simulation framework Ab-

solut! utilizes 3D lattice representation based on prespecified

inter-aa distances and 90� angles. Such a representation is

highly restrictive in many configurations where antibodies

can bind to an antigen of interest. We wish to address

this in future work, building on a more realistic framework

combining docking such as FoldX24 with structure prediction

tools like AbodyBuilder29 and Alpha-Fold Multimer.102 (3) In

the current work, we only design the CDRH3 region, which

is identified as the most variable chain for an antibody,

and ignore the folding of other CDR loops that can affect

the binding specificity. The above-discussed limitations are

promising research questions to extend AntBO that we

wish to study in future work.
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Data and code availability
� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

� The code of our software AntBO and other used resources are open source on https://github.com/huawei-noah/HEBO/tree/

master/AntBO. The DOI is listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Introduction to BO and GP
Gaussian Processes

A GP is defined as a collection of random variables, where a joint distribution of any finite number of variables is a Gaussian.41

Let f : X/R be a continuous function, then the distribution over function f is specified using a GP, that is, fðxÞ � GPðmðxÞ;Kðx;x0ÞÞ,
where mðxÞ = E½fðxÞ� is a mean function andKðx; x0Þ = E½ðfðxÞ �mðxÞÞðfðx0Þ �mðx0ÞÞ� is a covariance matrix. The standard choice for a

mean function is a constant zero mðxÞ = 0,41 and the entries of a covariancematrix are specified using a kernel function. By definition,

kernel function k : X3X/Rmaps a pair of input to a real-valued output that measures the correlation between a pair based on the

closeness of points in the input space. As X is combinatorial, we need particular kernels to get a measure of correlation, which we

introduce in section kernels to operate over antibody sequences.

GP prediction

Consider X = ðxi; yiÞNi = 1 be a set of training data points and X� = ðx�i ; y�i ÞNi = 1 be a set of test data points. To fit a GP, we parameterise

kernel hyperparameters and maximise the marginal log likelihood (MLL) using the data. Specifically, we define KðX;XÞ as a covari-

ance matrix of training samples, KðX;X�Þ and KðX�;XÞ are covariance matrix of train-test pairs and vice versa, and KðX�;X�Þ is a

covariance matrix of test samples. The final posterior distribution over test samples is obtained by conditioning on the train and

test observation as,
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KðX�;XÞKðX;XÞ� 1y;

KðX�;X�Þ � KðX�;XÞKðX;XÞ� 1KðX;X�Þ
�i
GP training
We fit the GP by optimising the negative MLL using Adam.105 The kernel functions in GPs come with hyperparameters that are useful

to adjust the fit of a GP; for example, in an SE kernel described above, we have a lengthscale hyperparameter that acts as a filter to

tune the contribution of various frequency components in data. In a standard setup, the optimum value of the hyperparameter is ob-

tained by minimising the negative marginal log likelihood,

� log pðyjX; qÞ = 0:5 log
���KqðX;XÞ+ s2I

���
+ 0:5yT ðKqðX;XÞÞ+ 0:5N logð2pÞ

where q is the set of kernel hyperparameters and j:j is the determinant operator.

Kernels
Transformed overlap kernel (TK)

TK defines the measure of similarity as kðx; x0Þ = exp
�
1
L

PL
i = 1qidðxi; x0iÞ

�
where fqigLi = 1 are the lengthscale parameters that learn the

sensitivity of input dimensions allowing GP to learn complex functions.

ProteinBERT kernel (ProtBERT)

We utilise a deep kernel for protein design based on the success of transformer architecture BERT. The ProteinBERT52 model is a

transformer neural network trained onmillions of protein sequences over 1000s of GPUs. Such large-scale training facilitates learning

of the representation space that is expressive of the higher-order evolutionary information encoded in protein sequences. We use the

encoder of the pre-trained ProteinBERT model followed by a standard RBF kernel to measure the similarity between a pair of inputs.

Fast string kernel (SSK)106

Let Sl be a set of all possible ordered sub-strings of length l in the alphabet, x and x0 be a pair of antibody sequences, then the cor-

relation between the pair is measured using a kernel kqð:; :Þ is defined as,

kqðx; xÞ =
X
y˛Sl

fq
yðxÞfq

yðx0Þ;

fq
yðx0Þ

= qjyjm

X
1% i1 < ;.;% ik % jxj

q
ijyj � i1 + 1
g Iy

h�
x0
i1
;.; x0

ijyj

�i

where x0ij is a length j subsequence of sequence x0, q = qm; qg are kernel hyperparameters, qm; qg ˛ ½0; 1� control the relative weighting

of long and non-contiguous subsequences, Iy½x� is an indicator function set to 1 if strings x and ymatch otherwise 0, and fq
yðxÞmea-

sures the contribution of subsequence y to sequence x.

Acquisition function

BO relies on the criterion referred to as acquisition function to draw new samples (in our problem protein sequences) from the pos-

terior of GP that improve the output of the black box (binding energy). The most commonly used acquisition function is expected

improvement (EI).107 EI aims to search for a data point that provides expected improvement over already observed data points. Sup-

pose we have observed N data pointsDn = fðx1; fðx1ÞÞ;.; ðxn; fðxnÞÞg then the EI is defined as an expectation overDn under the GP

posterior distribution as aEIðxÞ = Eð:jDnÞ½minðfðxÞ � fðx�Þ;0Þ�, where x� = arg minx˛Dn
fðxÞ. There are several other choices of acqui-

sitions we refer to readers to.45,51,108

Implementation details
We use Python for the implementation of our framework. We run all our experiments on a Linux server with 87 cores and 12 GB of

GPU memory. We have outlined the hyperparameter used for all the methods in Table S1. For BERT we use a pre-trained ‘‘prot_-

bert_bfd’’ model available from.52 We package AntBO as software that comes with an easy interface to introduce a new optimisation

algorithm and a black box oracle function. Thus, it offers a platform to investigate new ideas and benchmark them quickly across

other methods. We next provide the details of the software.

Software
The framework’s architecture can be seen in part (a) of Figure S1. The dataloader, execution, and summarise layer are abstracted and

integrated with the training, leaving only the optimizer for developers to design. The developers could also optionally include Gaussian

Process,Neural Network or an arbitrarymodel to usewith the optimiser. The platformhas three important features that facilitate training.

� Distributed training: Multiple CPU processes for data sampling in a parallel environment, especially useful in low data efficiency

algorithms such as deep reinforcement learning. Multiple CPU processes are also utilised to evaluate the binding energy with Abso-

lut, which speeds up the evaluation time. Multiple GPU training for an algorithm that supports the neural network.
Cell Reports Methods 3, 100374, January 23, 2023 e2
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� Real-time visualisation: Update the training results of the optimizer in real-time. Our framework offers visualisation of the training

graph, minimum binding energy obtained so far per iteration, and the corresponding sequence for the minimum binding energy and

antigen docking visualisation.

� Gym environment: Our framework offers a highly reusable gym environment containing the objective function evaluator via Ab-

solut!. Developers could set the antigen to evaluate and CDRH3 sequences to bind, and the environment returns the binding en-

ergy of the corresponding CDRH3 sequences. The gym environment has two options, SequenceOptim and BatchOptim. For

SequenceOptim, the agent fills a character in each step until all characters for the CDRH-3 are filled, when the episode stops. For

each step, the reward is zero until the last step of the episode, when the CDRH-3 sequences will be evaluated, and the negative bind-

ing energy is returned as a reward. The binding energy is negative; hence lower negative binding energy represents a higher reward.

For BatchOptim, each episode only has one step, in which the agent inputs the list of CDRH3 sequences of the antigens into the

environment and the reward returns are a list of binding energy corresponding to the CDRH-3 sequences. SequenceOptim is useful

for seq2seq optimisation, and BatchOptim is useful for combinatorial optimisation.

Baseline approaches
In this section, we discuss details of all the baseline approaches we use for comparison.

Random search

Given a computational budget of s black-box function evaluations in a constrained optimisation setting, random search (RS) samples

s candidates that satisfy the specified constraints and evaluate the black-box function at those samples. The best candidate is the

one with the minimum cost.

BO methods
HEBO

The Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO49) is the winning solution of the NeurIPS 2020 black-box

optimisation (BBO) challenge.109 HEBO is designed to tackle BBO problems with continuous or categorical variables, dealing with

categorical values by transforming them into one-hot encodings. Efforts are made on the modeling side to correct the potential het-

eroscedasticity and non-stationarity of the objective function, which can be hard to capture with a vanilla GP. To improve the

modeling capacity, parametrised non-linear input and output transformations are combined to a GPwith a constant mean and aMa-

térn-3/2 kernel. When fitting the dataset of observations, the parameters of the transformations and of the GP are learned together by

minimising the negative marginal likelihood using Limited-memory BFGS (LBFGS) optimiser. When it comes to the suggestion of a

new point, HEBO accounts for the imperfect fit of the model and for the potential bias induced by choice of a specific acquisition

function by using a multi-objective acquisitions framework, looking for a Pareto-front solution. Non-dominated sorting genetic algo-

rithm II (NSGA-II), an evolutionary method that naturally handles constrained discrete optimisation, is run to jointly optimise the Ex-

pected Improvement, the Probability of Improvement, and the Upper Confidence Bound. The final suggestion is queried from the

Pareto front of the valid solutions found by NSGA-II that is run with a population of 100 candidate points for 100 optimisation steps.

HEBO results presented in this paper are obtained by running the official implementation by49 at https://github.com/huawei-noah/

HEBO/tree/master/HEBO.

TuRBO

To tackle the optimisation of high-dimensional black-box functions, BO solvers face the difficulty of finding good hyperparameters to

fit a global GP over the entire domain, as well as the challenge of directly exploring an exponentially growing search space.62 intro-

duces local BO solvers to alleviate the above issues. The key idea is to use local BO solvers in separate subregions of the search

space, leading to a trust region BO algorithm (TuRBO). A TR is a hyperrectangle characterised by a center point and a side length

L similar to what we describe in Section CDRH3 trust region acquisition maximisation. A local GP with constant mean and Ma-

térn-5/2 ARD kernel fits the points lying in the TR better to capture the objective function’s behavior in this subdomain. The GP fit

is obtained by optimising the negative MLL using Adam.105 The size of the TR is adjusted dynamically as new points are observed.

The side length L is doubled (up to Lmax) after tsucc consecutive improvements of the observed black-box values and is halved after

tfail consecutive failures to find better point in the TR. The TR is terminated whenever L shrinks to an Lmin value, and a new TR is ini-

tialised with a side size of Linit. The next point to evaluate is selected using the Thompson Sampling strategy, which ideally consists of

drawing a function f from the GP posterior and finding its minimiser. However, it is impossible to draw a function directly over the

entire TR; therefore, a set of minð100d;5000Þ candidate points covering the TR is used instead. Function values are sampled

from the surrogate model’s joint posterior at these candidate points. The candidate point achieving the lowest sample value is ac-

quired. Our experiments only acquire suggested points that fulfill the developability constraints.

In our experiments, we rely on the TuRBO implementation provided in the BBO challenge109 codebase at https://github.com/

rdturnermtl/bbo_challenge_starter_kit/tree/master/example_submissions/turbo.

COMBO

To adapt the BO framework for combinatorial problems,61 proposed to represent each element of the discrete search space as a

node in a combinatorial graph. Then a GP surrogate model is trained for the task of node regression using a diffusion kernel over

the combinatorial graph. However, the graph grows exponentially with the number of variables, making it impractical to compute

its diffusion kernel. To address this issue, the authors express the graph as a cartesian product of subgraphs. This decomposition
e3 Cell Reports Methods 3, 100374, January 23, 2023
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Algorithm 2. Genetic Algorithm

Input: Black box function f : X/R, Constraint function C : X/0; 1, Maximum number of iterations Niter , Population size Npop, Number of elite

samples Nelite, Crossover probability pc, Mutation probability pm

Output: Best performing sample.

1 P0 = rejectionSamplingðCÞ // Sample initial population

2 F0)fðP0Þ // Evaluate initial population

for i = 1;.;Niter do

3 Pi +1 = ½� // Initialise next population with an empty list

4 Qi = ½� // initialise list of parents

for j = 1;.;Nelite do

5 pj) sample with jth highest fitness from Pi // Get sample with the next highest fitness

6 Pi +1)Pi + 1Wpj // Add this sample to the next population

7 Qi)QiWpj// Add this sample to the list of parents

for j = Nelite + 1;.;Npop where j increases in steps of 2 do

8 q1;q2 � Qi // Randomly sample two parents

9 constraint satisfied = False

while not constraint satisfied do

10 h1;h2 = crossoverðq1;q2;pcÞ // Perform crossover to generate two offsprings

11 h1;h2)mutateðh1;pmÞ;mutateðh2;pmÞ // Mutate both offsprings

12 constraint satisfied = Cðh1Þ^Cðh2Þ // Check that both offsprings satisfy all constraints

13 Pi +1)Pi +1Wh1Wh2 // Add offsprings to new population

14 Fi +1)fðPi +1Þ // Evaluate new population
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allows the computation of a graph diffusion kernel as a cartesian product of kernels on subgraphs. The efficient computation of diffu-

sion kernel is done using Fourier transform. The hyperparameters of the GP model, such as kernel scaling factors, signal variance,

noise variance, and constant mean value, are obtained using 100 slice sampling steps at the beginning and ten slice sampling iter-

ations afterward. Oncewe obtain theGP fit, it remains to optimise an acquisition function over the combinatorial space, which is done

by applying a breadth-first local search (BFLS) from 20 starting points selected from 20,000 evaluated random vertices. Since

COMBO does not support constraints on the validity of the suggested sequences, we modify the acquisition optimisation to incor-

porate the CDRH3-TR introduced in 2. We use the default hyperparameters that we provide in Table S1 and add constraints handling

to the official implementation by61 at https://github.com/QUVA-Lab/COMBO.

Genetic algorithm

Genetic algorithms (GAs) are inspired by Charles Darwin’s theory of natural selection. The idea is to use probabilistic criteria to draw

new population samples from the current population. This sampling is generally done via crossover and mutation operations.110

Overall the primary operations involved in GA are: encoding schemes, crossover, mutation, and selection, respectively.111 For en-

coding, we use a general ordinal encoding scheme that assigns a unique integer to each AA—inspired from binary encoding where

each gene represents integer 0–1 or hexadecimal that represents integer 0–15 (or 0–9, A-F).112 Specific to our work, we express each

gene by a letter of CDRH3 sequences ranging from (0–19). For selection, we use the elitism mechanism,113 which preserves a few

best solutions in the current population to the next population. Our mutation operator is inspired by the most commonly used bit flip-

ping mutation114 that flips a bit of each gene with a given probability. Instead, we randomly replace a gene from 0–19 as our range is

different. Finally, for crossover, we use a uniform crossover, which suggests unbiased exploration and better recombination.111 The

pseudocode of a GA is illustrated in Algorithm 11.8.2 (Algorithm 2).

Absolut! a binding affinity computation framework

Absolut!13 is a state-of-the-art in silico simulation suite that considers biophysical properties of antigen and antibody to create a

simulation of feasible bindings of antigen and antibody. Although Absolut! is not able to directly generate antibody-antigen bind-

ings at the atomic resolution, and therefore to predict antibody candidates directly. However, using Absolut!, we can develop

methods in the simulation world and later employ the best method in the complex real-world scenario, with the knowledge that

this method already performed well on the levels of complexity already embedded into Absolut! datasets. This feature of

Absolut! makes it an ideal black-box candidate for the antibody design problem. However, we note that AntBO is, in principle,

agnostic to the choice of the black-box oracle used and can be adapted to other in silico or experimental oracles provided they

can compute or determine binding affinity or any other criteria relevant for antibody design. Absolut! performs the computation

of binding affinity in three main steps, i) antibody-antigen lattice representation, ii) discretisation of antigen and iii) binding affinity

computation. We next introduce the main steps of binding affinity computation in Absolut!

Discretisation of antigen

The Absolut! suite utilises Latfit115,116 to transform a PDB structure of an antigen into a 3D lattice coordinates position. The PDB

structure represents each residue in a protein sequence using 3D coordinates. The Latfit maps these coordinates to a discretised

lattice position by optimising dRMSD (Root-Mean-Square Distance) between the original PDB structure and many possible lattice
Cell Reports Methods 3, 100374, January 23, 2023 e4
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reconstitutions of the same chains. Specifically, for a sequence of length n, Latfit first assigns a lattice position to a starting residue

and then enumerates all neighboring sites to select the one with the best dRMSD to the PDB coordinate of the next residue. The

generated nascent lattice structures are rotated to better match the original PDB before adding the next AA. This process is repeated

sequentially, and at each step, Latfit keeps track of s best structures of length K to find the best position of the next residue.

Antibody-antigen binding representation

Absolut! uses the Ymir117 framework to represent the protein structures as a 3D lattice model. A protein’s primary structure is a

sequence of amino acids (AA). In a 3D lattice structure, each AA can occupy a single position, and the consecutive AAs occupy the

neighboring sites. This layout form only permits a fixed inter-AA distance with joint angles of 90�.
The structure of the protein is specified with the help of a starting position in the grid and a sequence of relative moves (straight (S),

up (U), down (D), left (L), right (R)) that determine the next AA position. The first step is to define a coordinate system with the starting

point as an observer and the next move relative to the observer to specify the sequence of moves. There is also a possibility of back-

wards (B) for the first move that is not allowed for other positions to prevent any collision.

Computation of antibody-antigen binding affinity

In this stage, the lattice structure of two proteins is used to compute their binding affinity. Since the structure of the antibody is not

known apriori for a specific antigen, all possible foldings of CDRH3 are generated recursively using the algorithm proposed in117 and

stored in the memory. As the number of possibilities of folding grows combinatorially with the length of a sequence, Absolut! re-

stricts the size of the CDRH3 sequence to 11 and limits the search to structures with a realistic minimum of contact points (10) to the

target antigen.

After we obtain the lattice structure of an antigen and the list of pre-computed structures for the CDRH3 sequences, the binding

affinity of one structure is described as a summation of three terms, a) binding energy the interaction between residues of antibody

and residues of antigen, b) antibody folding energy the interactions within the residues of antibody, and c) antigen folding energy the

interaction within the residues of antigen. Since the antigen structure is fixed apriori, the third term is constant and can be ignored.

Consider a pair of lattice positions and residues of an antigen sequence ðS;RÞ and of an antibody sequence ðG;KÞ. The binding

energy Ebind is defined as a sum of all interaction potential,

Ebind =
XLG
k = 1

XL

j = 1

IðSj;KkÞAðRj;GkÞ (Equation 3)

and the folding energy Efold of an antibody is defined as a sum of intra-bonds between its AAs,

Efold =
XL

j = 1

XL

k = 1

IðKj;KkÞAðKj;KkÞ (Equation 4)

where Að:; :Þ is an interaction potential of residues determined via Miyazawa-Jernigan interaction potential118 and Iða;bÞ is an indi-

cator function that takes the value 1 if a and b are non-covalent neighbors in the lattice otherwise 0. For the evaluation of an arbitrary

CDRH3 sequence, the pre-computed structures are filled one by one with residues of CDRH3, and their total energy is computed as

Etotal = Efold +Ebind, this step is known as exhaustive docking. The best structure is then selected using the minimum total energy

criterion. Absolut! does this computation for sequences of length 11; if the CDRH3 is of size greater than 11, the same process

is repeated for all subsequences of length 11 with a stride of 1 from left to right. Altogether, the total energy of an antibody-antigen

structure determines its stabililty, and the binding energy is the term that represents the energy score (binding affinity), that aims to be

minimized in this work.

Visualisation tools

We use open source python package matplotlib119 and seaborn library built on top of matplotlib for the purpose of data visualisation

in the paper. For the visualisation in Figure 1 we use an open-source online tool draw.io. For the graphical abstract we thank to the

service of 10creative.co.uk.

QUANTIFICATION AND STATISTICAL ANALYSIS

In all convergence plots reported across all methods we run experiments with 10 random seeds and report the mean and 95% con-

fidence interval for the 12 antigens of interest.13 For the analysis of remaining antigens reported in supplemental materials we run

experiments with 5 seeds. All relevant details are explained in the caption of figures.
e5 Cell Reports Methods 3, 100374, January 23, 2023
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(a) Architecture of end-to-end framework for black-box
optimisation. The architecture divides into four layers.
The bottom layer consists of model parameters and ex-
periment configurations which could be defined by the
developers. The application layer, pre-written or written
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(b) Abstraction within the execution layer. The agent
suggests the CDRH3 sequences and passes them into the
gym environment. The gym environment evaluates the
corresponding binding energies with Absolut!. The agent
observes the results and calls the summarisation function
to update real-time data. The results are stored in the
replay buffer, which can be used to train deep reinforce-
ment learning models. Within the observe function, the
model-based agent also optimises the model. The agent
then suggests the new CDRH3 sequences in the next iter-
ation.

Figure S 1: Layout of AntBO software as introduced in Method Section 11.7 of a manuscript. On the left is the architecture of
the framework. On the right is the illustration of the execution layer.
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0 HICAGFWHMPI -88.31

10 TDKTHPEVYTR -67.36

20 HYGMFLLPVGL -97.67

30 HGHMFFLHVIL -90.44

40 HFGMFELYVIL -100.75

50 HFVMFFLYVAL -102.87

60 HFVMPLLVLML -98.53

70 HFVMFYLVLML* -102.68

80 HFTMFFLVLML -105.87

90 HFTMCFLVLML -102.31

100 FFIMFFLQLIL -106.61

110 FFIMFFLVLCL -109.5

120 FFIMFPLVLIF -107.18

130 PFIMFFLVLTL -104.53

140 FFIMFLLVLFL -108.22

150 FFIMFLLHLYL -96.04

160 CFIMFLLVLTL -107.29

170 FFIFFLSVLWL -102.17

180 FFIFFLLFTIL -107.2

190 FFIFFVLFLIL* -110.42

197 FFYFYLLFLIL -109.14

*+

Step Sequence Energy

Figure S 2: An example of a trajectory of sequences every ten steps generated by AntBO, annotated with their respective binding
affinity, Related to Figure 2 and Section 3.4.1 of a manuscript. The structures of sequences are shown on the right. Each
structure is denoted by a different colour, and from steps 40 to 197, the sequences share the same binding structure (in purple).
Additionally, two sequences (70 and 190, marked with an asterisk) add an equally optimal binding structure (i.e., two binding
modes), shown in green.
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(b)

Figure S 3: Evaluation of AntBO on remaining antigens. Here, we report binding energy vs the number of protein designs
comparing best performing AntBO TK with random search and genetic algorithm baseline. Related to Figure 2 of the manuscript.
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(b)

Figure S 4: Evaluation of AntBO on remaining antigens. Here, we report binding energy vs the number of protein designs
comparing best performing AntBO TK with random search and genetic algorithm baseline. Related to Figure 2 of the manuscript.
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(b)

Figure S 5: Evaluation of AntBO on remaining antigens. Here, we report binding energy vs the number of protein designs
comparing best performing AntBO TK with random search and genetic algorithm baseline. Related to Figure 2 of the manuscript.
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Algorithm Hyperparameter Value

AntBO TK /
AntBO NT /
AntBO SSK /
AntBO BERT

Acquisition function
Nb. of initial points

Normalise
Kernel Type TK /
Kernel Type NT /
Kernel Type SSK /
Kernel Type BERT

Noise Variance
Search Strategy

Use trust region TK / NT / SSK / BERT
Trust region Length Min dmin

Trust region Length Max dmax

Expected Improvement
20

True
Transformed Overlap Kernel /
Transformed Overlap Kernel /

Fast String Kernel /
RBF Kernel with lengthscale on BERT features

1e-6
CDRH3 (trust-region) Local Search

Yes / No / Yes / Yes
1
30

COMBO

Batch size
Nb. of initial points

GP-parameters slice sampling steps
Acquisition function

Nb. of random samples for BFLS
Nb. of initial points for BFLS

1
20

100 (init) / 10 (refine)
Expected Improvement

20,000
20

HEBO

Batch size
Surrogate Model
Acquisition Class

Acquisition Optimiser
Population Size

Optimiser Nb. of Iterations
Optimiser ES

1
Gaussian Process

Evolution Optimiser
MACE
100
100

NSGA-II

TURBO

Batch size
Nb. of trust regions

Trust region Length Min
Trust region Length Max
Trust region Length Init

τsucc
τfail

Max Cholesky Size
GP fit - Optimiser

GP fit - Training Steps
GP fit - Learning Rate

Nb. of Thompson Samples

1
1

2−7

1.6
0.8
3
d

2000
Adam
50
0.1

min(100d, 5000)

GA

Population size
Nb. of iterations
Nb. of parents
Nb. of elite

Crossover type
Crossover probability

Elite ratio
Mutation probability

40
5
16
6

uniform
1.
0.15
1/d

RS
Nb. of iterations
Sampling type

200
uniform

LamBO

Query batch size (b)
Batch set size (|Xbase|)

Nb. of initial points (|D0|)
Surrogate model

Acquisition function)
Encoder

1
16
200

Exact GP (single task exact gp)
Expected Improvement

mlm cnn

Table 1: Hyperparameter Configuration of different optimisation methods explained in the Method Section 11.8 of a manuscript.
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(b) 1FBI (X)
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(d) 1NSN (S)

Figure S 6: We analyse the developability scores of 200 proteins designed by each method averaged across all 10 random seeds.
Related to Figure 4 of the manuscript.
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(c) 1WEJ (F)
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(d) 2JEL (P)

Figure S 7: We analyse the developability scores of 200 proteins designed by each method averaged across all 10 random seeds.
Related to Figure 4 of the manuscript.

8



Energy Score

 In
st

ab
ilit

y 
In

de
x

AntBO TK

Energy Score

 In
st

ab
ilit

y 
In

de
x

AntBO SSK

Energy Score

 In
st

ab
ilit

y 
In

de
x

AntBO ProtBERT

Energy Score

 In
st

ab
ilit

y 
In

de
x

COMBO

Energy Score

 In
st

ab
ilit

y 
In

de
x

HEBO

Energy Score

 In
st

ab
ilit

y 
In

de
x

TuRBO

Energy Score

 In
st

ab
ilit

y 
In

de
x

Genetic Algorithm

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 C
ha

rg
e

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

Energy Score

 H
yd

ro
pa

th
ici

ty

 

(a) 2YPV (A)
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(b) 3RAJ (A)
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(c) 3VRL (C)

Figure S 8: We analyse the developability scores of 200 proteins designed by each method averaged across all 10 random seeds.
Related to Figure 4 of the manuscript.
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