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Supplementary Figure 1: Performance of SparseGMM at different regularization values. Related
to Figure 2. Comparison shown for TCGA LUAD (A-D) and TCGA HNSC (E-H) data. (A,E)
Robustness of clustering is evaluated using adjusted Rand index. (B,F) Validation of regulators is
represented by adjusted R-squared. (C,G) Degree of sparsity is evaluated using statistics on the
number of drivers. (D,H) Module size informs the choice of regularization parameter value.
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Supplementary Figure 2: SparseGMM achieves superior performance compared to GRNBoost2.
Related to Figure 2. (A) Summary of comparison between SparseGMM and GRNBoost2. The
total number of regulators represents the number of regulators selected by each method from
the set of candidate regulators for which there are LINCS experimental data. (B) Distributions of
p-value results from validation using the Fast Gene Set Enrichment Analysis tool. Results shown
for both methods on the TCGA data sets: LIHC, HNSC and LUAD. (C) Distribution of modules size
for SparseGMM and GRNBoost2. The number of target genes per regulators is used as a proxy
for module size in GRNBoost2. (C) Distribution of the number of regulators per module for
SparseGMM and GRNBoost2. The number of regulators per target gene is computed for
GRNBoost2.
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Supplementary Figure 3: Co-expression patterns of target genes in highly robust communities.
Related to Figure 4. (A) normal liver communities: Lipid and protein catabolism, complement,
vesicle trafficking, myofibril formation, and FGFR1 signaling. (B) Cancer communities: antigen
presentation, interferon signaling, T cell and myeloid. (C) Shared communities: cell cycle and

ribosome - protein synthesis. (D) Correlation between vascular development and EMT
communities in TCGA samples
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Supplementary Figure 4: Cell type identification based on Panglao DB markers: comparison
with original data annotation and Seurat-based clustering. Related to Figure 5. (A) Average
expression of different cell type Panglao DB markers. (B) Original cell type assignments. (C)
Seurat clusters (D) Cell type specific expression of communities 21 (dendritic cells) and 60 (T
cells).
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Supplementary Figure 5: Comparison of gene expression in different tissues. Related to Figure
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5. (A) Expression of cell-type specific robust communities. Similar expression patterns of T cell
and myeloid communities occur in cancer, normal and blood tissue. Cell cycle genes are
significantly more expressed in subpopulation of immune cell in tumor samples. Top, left to
right expression in blood samples of target genes in T cell, myeloid and cell cycle community,
and cell type assignment. Bottom, left to right normal samples of target genes inin T cell,

myeloid and cell cycle community, and cell type assignment. (B) Average expression of cell cycle

community target genes in blood, normal and cancer immune cells.
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Supplementary Table 1: Comparison of SparseGMM to AMARETTO at different regularization
values: 50, 500 and 5000. Robustness of clustering is evaluated using adjusted Rand index.
Validation of regulators is represented by R-squared. Degree of sparsity is evaluated using
statistics on the number of drivers. Module size informs the choice of regulatization parameter

value. Standard Deviation (std dev). Related to Figure 2.

Adjusted R-Squared Module Size | Number of
Rand Index Drivers

GTEx sparseGMM Mean 0.29 0.97 72.02 37.87
50 | std dev 0.01 0.01 36.09 8.60
p-value 3.99E-44 7.77E-32 1.00E+00 6.87E-222
sparseGMM Mean 0.34 0.91 97.68 21.27
500 | std dev 0.02 0.10 53.32 9.24
p-value 5.96E-25 7.52E-05 9.57E-45 0.00E+00
sparseGMM mean 0.42 0.78 679.43 30.15
5000 | std dev 0.07 0.24 382.79 10.80
p-value 1.30E-01 5.42E-13 3.57E-45 2.54E-185
AMARETTO Mean 0.40 0.93 72.02 84.14
std dev 0.02 0.13 29.18 46.92
TCGA sparseGMM Mean 0.31 0.96 53.44 86.19
50 | std dev 0.01 0.02 23.54 18.63
p-value 9.77E-32 6.82E-04 1.00E+00 6.53E-297
sparseGMM Mean 0.33 0.92 54.31 38.20
500 | std dev 0.02 0.08 21.65 12.64
p-value 3.06E-30 1.21E-63 3.30E-01 0.00E+00
sparseGMM Mean 0.41 0.82 178.13 27.09
5000 | std dev 0.03 0.19 87.42 12.55
p-value 3.47E-01 1.82E-48 5.96E-111 0.00E+00
AMARETTO Mean 0.40 0.97 53.44 196.33
std dev 0.02 0.06 26.81 90.69




Supplementary Table 4: ReMap validation of robust normal liver and liver cancer communities.
Robust communities were defined by having Jaccard Index >= 0.7. Main pathway of each
community was revealed through gene set enrichment analysis of SparseGMM modules in GTEx
and TCGA data against MSigDB collections. Validation of regulators is established with an
adjusted p-value < 0.05. Related to Figure 4.

Community | Main pathway/Gene set Jaccard Index | ReMap-validated Regulators
Cancer Communities
72 Blood coagulation 0.7 HNF4A
Shared Communities
23 Sterol biosynthesis 0.9 SREBF2
21 Cell Cycle/DNA replication 0.9 BRCA1, HMGXB4, HSF2, ZNF652




Methods S1: Model for Sparse Gaussian
Mixtures

Related to STAR Methods

1 Model

We propose a Bayesian generative model to learning the regulatory
relationships among genes. In the context of gene regulatory networks, we
classify genes into one of two types: target genes and regulator genes.
Regulator genes are genes undergoing genomic events that are relevant to
cancer progression or tumor growth. Target genes are genes whose
expression is controlled by regulator genes, and which contribute to the
biological processes responsible for cancer progression. Each group of target
genes is regulated by a small set of regulator genes.

This model can be formulated as follows: X7 = [x179..7;..x ] is a gene
expression matrix X € RV*M where N is the number of target genes and
M is the number of subjects, G is a regulator expression matrix € RM*?
where M is the number of subjects and P is the number of regulator genes.
Finally, 3 € RF*E is a weight matrix, where K is the number of gene
modules. The mean of each Gaussian component is a vector of weights
passed through a constant regulator gene expression matrix:

z ~ Cat(m)
.Cl;z‘ZZ:/C ~ N(G,Bk,O'k[),

where z; is the latent indicator of the mixture component that generated
gene 7. The expression of gene 7 is a sample from a Gaussian with mean
equal to the weights, 3, passed through a constant regulator gene
expression matrix G. oy is the variance of the Gaussian mixture component



k and 7 is the parameter of the categorical distribution. Thus,

O = [By, o1l

Our Bayesian approach combines Gaussian mixtures with /1-norm
regularization to enforce sparsity on the regulator weights, resulting in a
small set of regulators for each mixture component. We develop an
expectation-mazimization (EM)-based algorithm to obtain a maximum a
posteriori (MAP) estimate the Gaussian mixture of parameters. This is
detailed in the following sections.

2 (Gaussian Mixtures for Gene Regulatory
Networks

Mixture models are useful for representing data that are generated from
different distributions, such as multimodal data. The data is assumed to be
generated from a mixture of components, each with specific parameters
that specify its distribution. The goal is to estimate these parameters using
the observed data without observing the true component membership of
the data points, which is a hidden or latent variable of our model. In a
mixture model with K distributions z; € {1,..., K}, point x; is generated
from distribution k with likelihood p(@;|z; = k). z; has the distribution
p(z;) = Cat(m) and the K distributions are mixed as follows:

p(x;]0) = Zmp x;|0y), (1)

where 0 are the parameters to be estimated for k =1: K, 0 is
[01...0...0K]|. 7 is the mixing weight of base distribution k, 0 < m, < 1
and Zszl mr = 1. For example, a mixture of Gaussian distributions would
be modeled as follows:

p(x;]0) = Zwk/\/ Ti| g, L) (2)

Point i can then be assigned to a component using the MAP or ML
estimate of the parameter @ is needed.

To obtain this estimate, we fit the model for the data D, using the iterative
expectation-maximization (EM) algorithm applied to the likelihood
function. The EM algorithm, consists of two steps. In the first (E) step the
missing values are inferred using parameter estimates from the previous



iteration. In the second (M) step, the likelihood function is maximized with
respect to model parameters, giving new parameter estimates, which are
improved with each subsequent iteration until convergence.

Using this model to cluster the data involves calculating the posterior
probability p(z; = k|x;,0"""), the posterior probability that point i is
generated from distribution k& or the responsibility of cluster k& for point #:

i £ plz; = ki, 047Y), (3)

where ¢ is the current iteration number. This can be expanded as:

p(z = k‘gtfl)p(a:i‘zi — k, Htﬂ) "
> p(z = K10 p(ai|z = K,671)

To derive the objective function, we first look at the complete log likelihood
of the data, which is defined as:

Tik =

S Zlog[p(mi, 2i9)]. ()

Since the cluster assignments, z; are not observed the expected likelihood is
used. This is defined as:

Q(0.6"") =E[(.(6)/D,6"], (6)

where we take the expectation to account for the fact that z; is not
observed.
Specifically in the case of GMM, this gives:

N

6,6 ") Z 7ir log[mip(2:] 0] (7)

i=1 k=1

Now, a MAP estimate can be performed on the above equation in the M
step, obtaining 0. In the case of Gaussian mixtures, each class conditional
density is a Gaussian distribution and € is made up of the mean and
variance of each distribution and this estimate is iteratively improved .
Upon convergence, the final iteration 7' gives the final estimate 67 .

We can apply this model to gene regulatory networks. In this case, the
average expression of target genes is the mean of the mixture component,
which corresponds to a gene module. The mean of the component is a
linear function of the regulator genes regulating that module. Equation (7)
then becomes:



N K
0,0 ") ZZTzk log[mxN (x:|GBy., 7). (8)

i=1 k=1

3 MAP Estimation - /1-norm
Regularization and Sparse GMM

MAP estimation with the right prior can be useful when we would like to
avoid over-fitting of parameter estimates, which can occur in the case of
Maximum Likelihood Estimation (MLE). Adding parameter priors, (8)
becomes:

N K
Q0.6 =33 riloalmaN (#:|GBy. o)) + log(p(0)). (9

i=1 k=1
The parameters of the GMM to be estimated are Oy = [3,, 0%] and 7y, for
k=1: K. In our problem, we are more interested in discovering the
regulatory relationships between regulator and target genes, so we use a
zero-mean Laplace prior for the weights 3, and use uniform priors for oy,
and 7. Uniform priors will give the same result as MLE estimates, while
the Laplace prior will give a regularized MAP estimate. Specifically, a
Laplace prior is commonly chosen where a sparse solution is desired as it
corresponds to /1-norm regularization. A sparse solution can improve our
understanding of gene regulatory relationships, as we hypothesize that only
a few regulator genes regulate each module.
The expected likelihood function from (9) is updated to be:

N K
Ot 1 = Z Zrzk 10?; Wsz(wz|Gﬂka Uk)]

i=1 k=1
+ log[Lap(B4|0,1/vx)] + log(p(ow) + log(p(mk)), (10)

where

N K
log(p(8)) =Y > log[Lap(B,]0,1/v)] + log(p(ox) + log(p(ms)). (1)
i=1 k=
Thus, we define a sparse Gaussian Mixture model as a Gaussian mixture
model, where the mean of each Gaussian component is a random vector of
weights sampled from a Laplace distribution with zero mean and passed
through a constant matrix.

—_



4 Hierarchical Bayes modeling

Using a Laplace prior directly results in an ¢1-norm, which does not give a
closed form solution during optimization.

We follow an approach similar to the EM for lasso approach [S26]. We then
utilize the representation of a Laplace distribution as a Gaussian Scale
Mixture (GSM) [S27, S28].

Lap(3y10.1/7) = 3% = [ M@0, Gatr, Jrars. (12)

This is an example of a hierarchical Bayes model, where we include a

prior on the hyperparameter 72 of the prior distribution p(@). In this case,

the hyperprior is the Gamma distribution with scale parameter 2 . The

2
expected complete data log likelihood is given by:

N K
Q(8, g1 :ZZTzklog [N mz|G/6k:70-k)]

=1 k=1

+ /1Og[N(ﬁk|0,Drk)[Z Ga(ri,|1,7%/2)]1dry, + log(p(ow) + log(p(m)),

(13)
where D}, is diag(T]fp) for p=1: K. The objective function then becomes:
N
1 2 L or
Q(By, %) = D _[ris[—nlog Ok~ 53 |l2i=GBillyHog(mix)] — 5 8 AiBy)dr] +,
k

i=1

(14)

where: 7, is the marginal probability of component z; = k, Ay = diag(1/ T,?p)
forp=1:Kandc=3>r | [llog(p(Tip))]dT + log(p(oy) + log(p(w)).

5 EM Algorithm

E step: We evaluate: F (T—lg) and 7;,. From the expected complete data

likelihood equation (14), the expected value of Ay is
E[Ax|Br. v, 64] = ydiag(|3;,! |- 15pi])- (15)
and the responsibilities are:

= Wkp(xiaﬁlwo'k)
ik — )
' Zk/ Wk'p(xiyﬁk,ak)

(16)



where:
p(@i| G, By, or) = N (2| GBy,, o1l ), (17)
and

p(ﬂkh—k) :N(5k|07DTk)- (18>

M step: Using a sparse learning approach [S29]. We estimate model
parameters 7, Br and o, by optimizing the expected complete likelihood
function with respect to each of the parameters, after substituting E(T%)
and r;, obtained in the E step, taking derivative wrt By

N

Vg, le = ZTik[GTﬂﬁz‘ — G"GB] — 01 M) = 0

i=1
N N
(Z TikGTG + O'kAk),Bk = Z Tik(GTZL’i)
i=1 =1

[(re"1)GTG + 01,A]Bre = (GTXT )1

)

where 7, is the responsibility vector of component k € RY

B, = (r,"1)GTG + 01 AR) "H(GT X7y, (19)

Taking the derivative wrt oy, yields

N rallai — Bl

= 20
o M(rT1) (20)
Taking the derivative wrt 7 yields the same result as a GMM:
. rI1
Ty = % (21)

6 Implementation for Numerical Stability

Since we expect most B to be equal to zero, and to make the matrix under
the inverse numerically stable, we use the SVD decomposition of G as follows:
G=UDV", (22)

and

Y = diag(|Bjkl/7)- (23)



Taking the derivative wrt B;:
1 1
arg ma —ri]—||lz; = UDVT 7 ZpIA
a3 sl | Bl — 55T AB

> vl (UDVT) (w; — UDVT By)] + 0xAB, = 0

N N
Z ri(UDVT) 2 = G ABy + Z ra[(UDVT)(UDVT)B,]

=1 i=1

VDU XTry, = [6pA + (r 1)V D*VT)3,

A 1 oL\
B = m([r:—Tl] + VD2VT)_1VDUTXTT‘k.
) 1 ‘ka 27 ,T\—1 2 —2v,T ™ vT
,gk: [Tle](m—i—VD Vv ) (VD) (D |4 )(VDU )X Tk
1 JAk:A 2v,T\—1 2\ —177T v T
1 AV D72
-5 Tl]("’“[T A VDVIVD DX
k k

Thus, we are able to remove A from the inverse:

dkAVD_Q
[ri"1]

1
HZE

+ V) 'DUT X Ty,

o 1 OkaVD72
_ W

T 11777 T
] + VIV DT X Ty,

1 oxAV D2

T -1 17T ~T
[Tle]W( m Y WV) D UT X .

Bk:

This computation of ﬁk avoids numerical instability.

(25)

(26)

(27)



7 Target Gene Entropy

The model allows us to calculate the entropy of each target genes using the
conditional distribution of the latent indicator z;. This is given by:

K
H(Z) =) rilog(ra), (31)
k=1
where
T = p(zi = k|z;, 0). (32)

Since entropy is a measure of uncertainty, we hypothesized that gene en-
tropy, or uncertainty in assignment to a gene module, could be interpreted
as a proxy for multiple module membership, and thus be used to unveil the
elements of hidden crosstalk in cancer.
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